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Abstract. There exists an abundance of Linked Data storage solutions,
but only few meet the requirements of a production environment with
interlinked life sciences data. In such environments, a triple store has to
support complex SPARQL queries and handle large datasets with hun-
dreds of millions of triples. The Ontoforce platform DISQOVER offers
federated search for life sciences, relying on complex federated queries
over open life science data. The queries correspond to user actions in
its exploratory search interface. Different state-of-the-art approaches for
scaling out are compared, both in terms of their ability to execute the
queries as in terms of performance. This paper analyzes and discusses
the features of the datasets and query mixes. An in-depth analysis is
provided showing the features of the most challenging queries.
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1 Introduction

Life Sciences is one of the successful application domains of semantic technology.
The Life Sciences domain is interdisciplinary, which makes interlinking data
sources interesting and crucial. The Linked Open Data Cloud contains many
RDF data sources related to life sciences, but this comes with a set of challenges:
(i) the union of all datasets qualifies as Big Data and therefore puts a strain on
the available technologies for querying and (ii) these insights contain information
of multiple datasets at once, making the queries federated in nature. These
challenges are being addressed by:

– Vertical scaling is using an expensive high-end machine with a lot of RAM
and CPU power. No additional software development is required in this case.

– A Compression algorithm such as HDT [7] can easily compress RDF datasets
by a factor of 10–20. This allows for much larger datasets to be handled by
a single server.
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An alternative is to opt for a distributed architecture:

– Horizontal scaling uses multiple - often cheap, low-end - instances in a dis-
tributed system. Most enterprise RDF stores support parallelization, but this
can imply both a high availability solution (data replication), or a sharded
system (data partitions) that can deal with increasingly large datasets.

– Query federation [15]: All datasets are hosted by their providers and a fed-
erated query engine redirects the relevant parts of each query to the right
endpoint and finally combines all the recieved information to solve the query.

– Native Big Data approaches typically map SPARQL queries to SQL tech-
nologies available in the Hadoop stack: SparkSQL [5] or Impala [13].

1.1 Related Work

Specifically in the Life Sciences domain BioBenchmark Toyama 2012 [16] sheds
light on the capabilities of typical single-node RDF storage solutions. In this
work 5–10 queries are evaluated against 5 real datasets ranging from 10 million
to 8 billion triples. The novelty in our work lies in the fact that we are dealing
with a large set of 1,223 federated queries used in a production environment.

Complementary to this work we evaluated 4 RDF databases [6] on a new
artificial benchmark named WatDiv, which guarantees diversity both in terms
of query properties and dataset properties [1]. Other artificial benchmarks ex-
tensively used in the past are the Lehigh Universit Benchmark [9], the Berlin
SPARQL Benchmark [3], DBPBM[11], and the SP2Bench [14]. Specifically for
NoSQL approaches to RDF Mauroux [4] evaluated the performance for RDF
data workloads.

The results of this complementary work motivate the evaluation on a real-
world dataset. One big difference with this benchmark as opposed to WatDiv is
the federated nature of the data and the queries, the explicit focus on scalability
and the fact that the current queryset is rich in SPARQL features, while WatDiv
focuses on pure Basic Graph Patterns (BGPs).

The difficulty in selecting and optimizing RDF systems is also being ad-
dressed in two European H2020 projects: LDBC [2] and HOBBIT [12]. These
projects aim to create a platform to offer industry a unified approach for running
benchmarks related to their actual workloads.

1.2 Our Contribution

This paper demonstrates a methodology to evaluate RDF storage solutions on
a data and query set of choice. The goal of this work is to evaluate the ability of
today’s triple stores in terms of scalability with big biomedical data sources and
complex real-world queries. The pitfalls in the interpretation of the results are
highlighted and suggestions are formulated to circumvent them and draw the
right conclusions. Finally, a post-processing approach focusing on re-usability
and automation is developed.
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2 Benchmark dataset and queries

2.1 The DISQOVER platform

Ontoforce has designed a semantic search platform DISQOVER which integrates
over 110 Life Sciences data sources. Examples of these data are PubMed, Clin-
icalTrials.gov, NCBI Gene, National Drug Code, MedDRA, DrugBank, MeSH,
etc. DisQover comes with an interactive UI which allows the exploration of this
huge dataset without sacrificing low query latency. The combination of query
federation and interactivity is achieved by combining the use of triple store with
an indexing system in which different RDF datasets are combined into well cho-
sen aggregates by making use of an ETL preprocessing pipeline. To keep up
with the growing set of data sources in their product Ontoforce requires RDF
engines which are (i) fully SPARQL 1.1 compliant, (ii) are sufficiently mature
to operate in a production environment and (iii) allow their offering to further
scale out, thus requiring RDF solutions which support compression or horizontal
scalability.

2.2 Ontoforce Data Analysis

Table 1 contains global statistics about the benchmark dataset. The dataset is
only a fraction of the complete dataset used in DISQOVER which contains over
8 billion triples. It contains the graphs which are most relevant to the queries
in the operation mix. As shown in our prior work with WatDiv [6], datasets
exceeding 1 billion triples can pose serious challenges, to even state-of-the-art
enterprise RDF databases given modest hardware.

For every graph an additional graph is present containing the inferred triples.
The five largest graphs make up approximately 80% of the dataset size. These
graphs correspond to PubMed, ChEMBL, NCBI-Gene, DisGeNET and EPO,
with the PubMed already making up 60% of the data. Since the dataset is under
nondisclosure we provide some additional statistics in Fig. 1 to shed some light
on the data and help researchers create artificial benchmarks with similar dataset
properties.

Property Value Property Value
Number of distinct subjects 0.137B Number of triples 2.4B
Number of distinct predicates 1,782 Number of graphs 107
Number of distinct objects 0.287B Compressed (nq.gz) dataset 25GB
Number of distinct classes 2,434

Table 1. The combined statistics show the high demands of the datasets used by the
DISQOVER platform.
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Fig. 1. The number of instances per class (left) follows a long tail distribution: the
bulk of 2,000 classes has 1–100 instances, while the long tail contains 50 classes with
500K instances each. The median of the predicate distribution (right) occurs at 5,000
triples, while the outliers reveal that 50 predicates have over 10M triples each.

2.3 Ontoforce Query analysis

The benchmark query mix consists of 1,223 queries which are both complex and
diverse in term of SPARQL features. The queries are automatically generated
by the UI in the context of faceted browsing [8] making aggregation and filter
operations very common. The actual query formulation is not optimized towards
performance [10].

To provide the reader with some insights in the queries we used SPARQL.js
parser3, which converts SPARQL queries into JSON objects. This JSON struc-
ture is then used to generate a feature vector per query. We distinguish between
features related to the complexity of the query structure and features which cor-
respond to SPARQL keyword counts. In Figure 2, a series of features and their
occurrence distribution is shown which shed further light on the complexity of
the SPARQL patterns.

1. properties of the JSON tree representation such as the number of levels
(depth), the number of nodes (keys) and the length of the file (jsonLines);

2. properties of the query graph structure such as the amount of queries, BGPs
and the total amount of triple patterns;

3. the type of triple patterns.

The large amount of queries with over 10 triple patterns is noteworthy, while
the Watdiv query templates4 contain 3 up to 10 patterns maximally. The preva-
lence of unbound triples reveals how the DISQOVER queries are built: starting
from general queries where additional selectivity is introduced by ad hoc intro-
duction of FILTER statements. Most of these FILTER ?x = <...> queries can be
manually removed by replacing the corresponding ?x variable in the triple pat-
terns. Other FILTER operations contain an IN operator followed by a long series
of possible values for a variable, which could be rewritten as complex unions.
Half of the queries are COUNT DISTINCT queries, furthermore most keywords are
present, their effect on query runtimes will be studied in Fig. 5.

3
https://www.npmjs.com/package/sparqljs

4
http://dsg.uwaterloo.ca/watdiv/basic-testing.shtml
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Fig. 2. The range of depths (left) indicate many queries are nested, jsonLines shows
that some queries are very long (mostly caused by FILTER IN). 25% of the queries
contain more than 10 triple patterns (center), but most of these are completely un-
bound (???), or only have a predicate (?p?) (right).

3 Methodology

The selected RDF storage solutions should be capable of serving in a production
environment with Life Sciences data. Important criteria here are the maturity of
the solutions and the ability to handle Big Data while offering full SPARQL 1.1
compliance. The following setups were used in the benchmarks, we also introduce
a shorthand notation for the different benchmark runs:

– Single-node references: Virtuoso 7.2.41 (V1) and Blazegraph 2.0.0 (Bla1)
single-node setups.

– Vertical Scalability : is analyzed by scaling down the reference Virtuoso node
to a 32GB machine (V1 32).

– Compression: Jena Fuseki is used as a SPARQL endpoint on top of com-
pressed HDT files - one per graph (Fu1).

– Query federation: V1 was used for individual endpoints and a separate in-
stance ran FluidOps FedX 3.2 with a Virtuoso Adapter. Two setups were
tested: one with a single endpoint to measure the overhead of the federation
software (Fl1) and one with 3 endpoints (Fl3).

– Horizontal scaling : Virtuoso’s enterprise offering includes support for a sharded
cluster, which we tested in a 3 node setup (V3).

The hardware for the benchmarks was selected out of the AWS on-demand
instance offer as follows5:

– r3.2xlarge (8 vCPU, 61 GB RAM) for the triple stores and for FedX.
– c3.2xlarge (8 vCPU, 15 GB RAM) to run the benchmark client.
– r3.xlarge (4 vCPU, 30 GB RAM) for the scaled down V 32.

Multiple independent simulations were run to improve the confidence in our
results for some set-ups, in the notation these are distinguished by using a sim-
ulation id, for example V3 0.

5
https://aws.amazon.com/ec2/instance-types/
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A PAGO (Pay-as-you go) license was used for Virtuoso6. Blazegraph7 was
installed manually with the quad index8 enabled. All stores were configured to
make use of the available memory and CPU. Fuseki was configured to keep half
of the HDT graphs in memory, which was the maximum feasible given the system
memory. SPARQL Query Benchmarker9 was configured to run 1 single-threaded
warmup run and one multithreaded run with 5 concurrent threads. Each thread
runs an operation mix with all queries in a randomized order, the query timeout
was set to 20 minutes.

4 Results

The dataset and query properties indicate that the DISQOVER dataset will
challenge existing RDF databases. In the results section (i) we investigate the
ability of the different solutions to ingest the big dataset and to survive a multi-
threaded stress test with complex queries; by diving into the logs (ii) we show
which errors occur and if the queries are solved correctly; and finally (iii) we
analyse the features of the most time consuming queries.

4.1 Database Survival during Ingest- and Stress-Testing

A benchmark consists of a data ingest phase and a query execution phase. For
V1 3 concurrent bulk loaders were used which finished after 4h11m. Scaling
down to V1 32 also impacted the bulk loader which now required 11h15m. In
the clustered setup V3, 9 bulk loaders were run and every graph was stored
only on one of the nodes, this process finished in 4h35m. The Flu simulations
used Virtuoso as SPARQL endpoint with the data manually distributed, with
a single node hosting the PubMed dataset (60%) and the other two nodes each
containing approximately 20% of the data. Bla1 took 7d12h38m to complete the
ingestion. For Fu1 the data needs to be compressed to an HDT file per graph. A
high memory machine (256GB RAM) was used to complete this task which was
only possible when converting the N-Quads to Turtle format before running the
HDT in memory algorithm which took 15h23m to complete. The time to build
all index files required by each HDT file, about 1h, must be added to the total
for Fuseki. The benchmarker software only generates runtime information upon
completion of a run. Therefore the benchmarker logs were analysed to find the
last successful query per query thread for every simulation, the results of which
can be seen in Fig. 3.

Some complications arose in between the loading and the benchmark phase
with some of the Virtuoso runs. For V1 32 the store went offline on 3 sepa-
rate occasions after initiating the benchmark client. In the third occasion we

6
https://aws.amazon.com/marketplace/pp/B011VMCZ8K/ref=srh_res_product_title?ie=UTF8&sr=0-5&
qid=1455494788712

7
https://www.blazegraph.com/product/

8
https://wiki.blazegraph.com/wiki/index.php/Configuring_Blazegraph#Quads_Mode

9
http://sourceforge.net/p/sparql-query-bm/wiki/Introduction/
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Fig. 3. Only the Virtuoso instances managed to succesfully complete the benchmark
(6× 1, 223 queries), with the exception of 2 V3 simulations. Fu1 crashed after having
completed most of the warmup run (1×1, 223), Bla1 was shut down after a week while
still in the warmup run. Fl3 could hardly complete any queries.

waited for the transaction logs to be fully replayed before starting the bench-
mark. The PAGO instance has a limit of 10 user sessions which must be used for
both querying and bulk loading. For this reason the Virtuoso simulations were
restarted after the ingest phase with the HTTP threads increased to 10 (except
for V3 2, 1 bulkloader). This restart did not immediately succeed.

4.2 Error Frequency and Types

The query event stream generated from the benchmarker logs contains informa-
tion about the type of errors, the number of results and the query runtime. Upon
comparing the number of results for every query we discovered that this can
be very different between simulations. Careful analysis showed that the bench-
marker results file is incorrect in case a query is not always successful. Query
failures – with 0 results – for example modify the average number of results,
while omitting these cases is more intuitive. The query event stream allowed
us to filter out the successful queries per thread and compare the number of
results per query. The latter was always identical between the threads of a single
database but in between systems the results can differ, an important observation
which is often overlooked by focusing exclusively on the runtimes.

In Fig. 4 we show both the error frequency and the correctness. Correctness
is defined as having the maximal number of results compared to other simula-
tions. We used V1 in pairwise comparisons and with the exception of 2 queries
(Flu1) the results are always correct. DISQOVER results can be obtained by
using both a triple store or an indexing system as the backend, the results are
consistent in case of V1 and the alternate system. For the two incorrect results
V1 returned 1,048,576 which seems to be an upper boundary, while V1 was
explicitly configured not to limit the results. Fu1 returns more results for the
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Fig. 4. Error frequency per query (color) and query correctness (bar width) for the
different benchmark runs. V1 32 and V3 2 seem to be very successful at first sight
but for half of the successful(!) queries it is shown that the number of results is incorrect
(0). V3 0 is thus the most reliable V3 simulation.

queries targeting a specific graph but upon closer inspection this reveals an error
in the HDT graph implementation. Incorrectly, these queries query the default
union graph.

4.3 In-depth Analysis based on Query Features

In this section we study the properties of the queries with respect to errors and
runtimes. Three important observations can be made:

– The problematic queries for V1 and V3 are in general queries which are
complicated along all query features, i.e. have a high frequency of the dif-
ferent SPARQL keywords. The feature values are in general 1 to 2 standard
deviations above the average query.

– The queries successfully solved by Fu1 and Bla1 are queries which are less
complicated than the average query, they correspond to BGP queries with
hardly any SPARQL operators.

– A runtime comparison cannot be considered reliable. For example for the
V1 32 simulation 80% of the correct queries are COUNT DISTINCT queries
for which we cannot verify whether the actual counts are correct since they
were not logged by SPARQL query benchmarker. (only the number of results
per query are counted)

In Fig. 5 we sorted all queries by descending execution time, a second axis
shows the actual runtimes which drop from 15 minutes 10 seconds in the first
100 queries. The runtime of a single multi-threaded query mix is 4h04m. As
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Fig. 5. Occurrence of SPARQL keywords per query (averaged). The extremum for
query 100 to 150 is indicates that queries with a lot of FILTERs and UNIONs are
among the most challenging ones, yet the left hand side contains queries with a higher
number of OPTIONAL and GROUP keywords and the resultset sorted.

mentioned in section 3, this plot gives an idea about the occurrence frequency
of certain SPARQL keywords.

We took slices of 25 or 50 queries and calculated for each the average feature
vector the values of which are plotted. This immediately shows that the COUNT

DISTINCT queries are the most challenging. The frequency of FILTER operators
is a bad indicator for complexity, V1’s query optimizer most likely eliminates
most of these, FILTER IN is a better indicator. The combination of OPTIONAL,
GROUP and ORDER poses the biggest challenge. Note that query features alone
cannot fully predict runtime complexity, the graph structure of the data also
plays an important role.

5 Conclusions and Future Work

Complex SPARQL queries in combination with a big RDF dataset are a real
challenge for most RDF solutions. In depth analysis of the query results leads to
the recommendation of adding more diagnostics to ascertain proper operation of
RDF stores, an upgrade and extension of the SPARQL benchmarker to better
deal with errors and counts is desirable. Scientific claims about the runtimes
of the different engines are premature but current evaluation does show that
sharded parallelisation is the most promising for truly big RDF.
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