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Abstract. The Gene Ontology (GO) currently contains over 40,000
terms describing the locations, activities and processes of gene products.
Several millions of gene products have been annotated using the GO, and
these annotations are routinely used for multiple applications. However,
because of the di↵erence of granularity in the annotations, it is useful to
summarize GO annotations using GO slims. GO slims contain a subset
of the GO terms, providing a higher-level, broader overview of the on-
tology while abstracting the finer details. Compiling GO slims is a time
consuming process relying on manual human expertise, the process of
creating the slims is often poorly documented, and maintaining and up-
dating them can be di�cult. In this paper, we present a semi-automated
way to generate GO slims based on the annotation data available. We
applied the tool to two di↵erent use cases, one for data overview in the
newly released EBI Metagenomics pipeline, and one for gene-disease en-
richment analysis using the DisGeNET platform. The slim-o-matic tool
supports choosing the best terms for the slim, ensuring they are repre-
sentative of the dataset, and have the best coverage using the minimal
number of terms.
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1 Introduction

GO slims are subset of the Gene Ontology (GO)[1] which allow grouping at a
higher-level of annotations to lower level GO terms. When used for visualiza-
tion, GO slims employ only the main categories within the annotations, thereby
providing an overview of the dataset. When used for enrichment analysis, the
statistical power of the signal per slim term is greater than if signals to lower
classes were individually counted, which can provide greater insights [2]. While
several slims are available on the GO website [3], their development has been ad
hoc and based on empirical methods, relying on both an expert GO editor to
select the best GO terms and a domain expert to provide guidance and describe
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the dataset. To address this, and make the slim generation more transparent
and reproducible, the new slim-o-matic methodology was developed.

2 Methods

A 4 step pipeline has been implemented:

1. The GO term identifiers (IDs) and their frequencies in the dataset are
mapped to the current GO ontology file. The current label of the terms
is retrieved from the GO file, and a new annotation property ‘label with
counts’ is populated by concatenating the label and associated frequency for
each term. A new Web Ontology Language (OWL)[4] file is generated.

2. The newly generated OWL file is opened in the Protégé OWL editor [5]
and manually inspected. The data owner reviews the hierarchy and chooses
which higher-level terms maximize coverage of the annotations, using a fixed
number of terms and while retaining specificity for the particular dataset. A
list of slim term IDs is generated.

3. Based on the slim generated in 2., a script checks which of the original anno-
tations would be included or excluded from the result, to validate whether
any large count is falling outside of the chosen slim.

4. After iterations of steps 2 and 3, and once the data owner is satisfied with
the terms included in the newly generated slim, a mapping script is run. It
is based on map2slim [6], and generates a list of all terms in their dataset
mapped to a higher level ontology term from the slim.

All the code and files are available under our GitHub repository, https://

github.com/ebispot/slim-o-matic.

3 Results

We applied the slim-o-matic tool to two di↵erent use cases, one for dataset
overview in the newly updated EBI Metagenomics pipeline [7], and one for gene-
disease enrichment analysis using the DisGeNET [8] platform.

3.1 EBI metagenomics pipeline

The EBI Metagenomics is a resource for the analysis, archiving and browsing
of metagenomic and metatranscriptomic datasets, with the aim of providing
understanding of the microbial community composition and functional profile
of deposited samples. The number of sequences within these datasets can be
potentially vast, running into the 100s of millions, with similar numbers of an-
notations. Users therefore need to be able to visualize GO terms (assigned by
InterProScan [9]) in an easy and compact way. A metagenomics GO slim was
first created in 2012, built using 30 million annotations available at the time.
Since then, the EBI Metagenomics resource has expanded dramatically and cur-
rently contains 10s of billion annotations for taxonomically diverse sequences
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Fig. 1. A comparison of the annotations included when using the old (2012) slim, or
the new (2016), slim-o-matic generated one, on a sample from the EBI Metagenomics
dataset. Using the old GO slim, over 17% of terms are not mapped to a specific GO
term and are instead mapped to the higher level of the hierarchy, biological process.
By comparison, with the new GO slim only 2.7% of annotations are not assigned a
slim term. Both slims were run against an unseen before pipeline 3.0 dataset.

sampled from a wide range of di↵erent environments. Given the increase in size
and diversity of annotations, and to support the release of an updated v3.0
analysis pipeline, the metagenomics GO slim was rebuilt using the slim-o-matic
approach. Compared to the pre-existing slim, the new GO slim contains a few
more terms (171 vs 160), and provides vastly improved coverage (98 % vs 80%
overall). This increased coverage stems from the fact that using slim-o-matic, the
GO terms chosen better reflects the current content of the EBI metagenomics
(for example, more eukaryotic-derived sequences) and updates in the GO (such
as better representation of viral terms in 2015 [10]). Fig. 1 shows an excerpt of
the coverage comparison between the old and new GO slims.

3.2 DisGeNET

DisGeNET [8] is a discovery platform that integrates information about genes
and variants associated to human diseases. To facilitate the analysis and interpre-
tation of the data, DisGeNET supplies a variety of annotations describing genes,
variants, and diseases. Currently, the genes in DisGeNET are characterized with
their Panther protein class, and their top level Reactome pathway. Nevertheless,
46% of genes in DisGeNET have no Panther protein class, and almost 60% have
no Reactome pathway. Adding GO information increases the coverage of anno-
tations for protein-coding genes in DisGeNET to over 90%. However, the diverse
granularity of the GO terms, and the relatively high number of annotations per
gene is a hurdle to straightforward data interpretation. This is why, as a proof of
concept, the slim-o-matic tool was applied to the GO cellular component (GO
CC) subset of GO terms. As a result, more than 1,400 terms GO CC terms
were reduced to 60 slim GO terms, and the median number of annotations per
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gene decreased from 8 to 3. Additionally, an enrichment analysis per disease was
performed, to test whether the genes associated to each disease showed a pref-
erential distribution of cellular locations. DisGeNET diseases (curated subset)
were tested for an over representation of GO CC categories in the complete, and
slim set of GO terms. To ease the analysis of results, we grouped diseases by
broader categories that correspond to the MeSH classification of diseases [11].
The results for the complete GO set after multiple test correction contained over
500 diseases in 360 GO CC categories, while the slim GO set contained 334 dis-
eases in 47 categories. The results of the GO slim enrichment analysis show that
some types of neoplasms and complex cardiovascular diseases are associated to
proteins showing enrichment across all cellular compartments, while Mendelian
disease proteins tend to be more confined to one specific compartment. For in-
stance, Leigh disease and Coenzyme Q10 deficiency show an enrichment in the
mitochondria (both are mitochondrial diseases). Additionally, most nervous sys-
tem diseases, and mental disorders are enriched in proteins located in the plasma
membrane (receptors, channels, and transporters).

4 Discussion

Future development include investigating ways of creating disease-oriented slims,
where a term denoting process that might be involved in a disease pathophysiol-
ogy - such as angiogenesis - is chosen, and co-occurring annotations are fetched
from the GOA database with their counts. This can then be used as input to step
1. of the slim-o-matic tool, and allow semi-automated generation of slims focused
on specific clinical investigations. While the slim-o-matic method has been de-
veloped based on the GO, nothing in the implementation is actually GO-specific.
This means it could be applied to other resources, such as the Experimental Fac-
tor Ontology (EFO) [12], which currently contains just over 19,000 classes (and
increasing), therefore reaching the limits of manual usability, and applied to the
NHGRI GWAS catalog [13]. Finally, an interesting idea would be to try and fully
automate the slim generation, thereby making it completely reproducible. While
expert intervention may improve coverage and minimize number of terms, this
comes at a cost of both resource and time, and we are aiming at implementing
fully automated slim extraction from the Ontology Lookup Service (OLS) [14]
hosted resources to provide a one-click slim experience to users.

5 Conclusion

Slim-o-matic allows for easy, fast and semi-automated generation of slims based
on the underlying data. Consequently, slims have improved coverage over the
existing annotations, and can be regenerated on a regular basis as either the
dataset or the ontology evolve. As more and more ontologies reach a large size,
the ability to process their hierarchy semi-automatically and summarize their
content for visualization or enrichment analysis becomes critical.
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