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Abstract. Recent results achieved by statistical approaches involving
Deep Neural Learning architectures suggest that semantic inference tasks
can be solved by adopting complex neural architectures and advanced
optimization techniques. This is achieved even by simplifying the rep-
resentation of the targeted phenomena. The idea that representation of
structured knowledge is essential to reliable and accurate semantic in-
ferences seems to be implicitly denied. However, Neural Networks (NNs)
underlying such methods rely on complex and beneficial representational
choices for the input to the network (e.g., in the so-called pre-Training
stages) and sophisticated design choices regarding the NNS inner struc-
ture are still required.
While optimization carries strong mathematical tools that are crucially
useful, in this work, we wonder about the role of representation of infor-
mation and knowledge. In particular, we claim that representation is still
a major issue, and discuss it in the light of Spoken Language capabilities
required by a robotic system in the domain of service robotics. The result
is that adequate knowledge representation is quite central for learning
machines in real applications. Moreover, learning mechanisms able to
properly characterize it, through expressive mathematical abstractions
(i.e. trees, graphs or sets), constitute a core research direction towards
robust, adaptive and increasingly autonomous AI systems.

Recent results achieved by statistical approaches involving Deep Neural Learn-
ing architectures (as in [1]) suggest that semantic inference tasks can be solved
by adopting complex neural architectures and advanced mathematical optimiza-
tion techniques, but simplifying the representation of the targeted phenomena.
The idea that representation of structured knowledge is essential to reliable and
accurate semantic inferences seems to be implicitly denied. As an example, the
application of Deep Neural Networks architectures in the context of Natural Lan-
guage Processing or Machine Translation is quite radical in this respect, since
the work presented in [2].

However, Neural Networks (NNs) underlying such methods rely on benefi-
cial representational choices for the input to the network (e.g., in the so-called
pre-training stages) and complex design choices regarding the NNs inner struc-
ture are still required ([3]). Moreover, some recent works suggest that optimal



hyper-parameterization of huge networks is possible, thus making the differences
between different architectures even less relevant (as discussed for example in
[4]). While optimization carries strong mathematical tools that are crucially use-
ful, in this work, we wonder here about the role of representation of information
and knowledge.

A large body of research on the integration of background knowledge with the
learning algorithms has been early carried out within the framework of Inductive
Logic Programming (ILP), presented in [5]. ILP is useful for logically encoding
background knowledge and extensions to standard ILP algorithms have been
proposed for encoding syntactic and semantic relational information of a knowl-
edge base in the kernel function, thus providing a unified, flexible treatment of
structured and non-structured data. More recently, in [6], the induction of set
of clauses in a First Order Inductive Learner has been integrated and used as
features in standard kernel methods. In this way, principled, theory-driven data
representations result in kernels that allow consistent inferences in SVM-based
classification and regression tasks.

In this work, we claim that representation is still a major issue, and discuss
it in the light of Spoken Language capabilities required by a robotic system in
the domain of service robotics. End-to-end communication processes in natural
language are challenging for robots for the deep interaction of different cognitive
abilities. For a robot to react to a user command like “Take the book on the
table” a number of implicit assumptions should be met to understand its possibly
ambiguous content. First, at least two entities, a book and a table, must exist in
the environment and the speaker expects the robot to be aware of such entities.
Accordingly, the robot must have access to an inner representation of the objects,
e.g. an explicit map of the environment. Second, mappings from words, i.e. lexical
references, to real world entities must be available. Grounding here [7] links
symbols (e.g. words) to the corresponding perceptual information.

Spoken Language Understanding (SLU) in interactive dialogue systems ac-
quires a specific nature, when applied in Interactive Robotics. Linguistic inter-
actions are context aware in the sense that both the user and the robot access
and make reference to the environment (i.e. entities of the real world). In the
above example, “taking” is the intended action whenever a book is actually on
the table, so that the book on the table refers to a unique semantic role, i.e.
to one entity playing an explicit role in the command (that is ”the book to be
taken actually located on a table”). On the contrary, the command may refer to
a “bringing” action, when no book is on the table and the book and on the table
correspond to different roles. Robot interactions need thus to be grounded, as
meaning must correspond to the physical world and interpretation is strongly in-
terlaced with what is perceived, as pointed out by psycho-linguistic theories [8].
As a consequence, a correct interpretation is more than a linguistically motivated
mapping from an audio signal (e.g. the spoken command) to a meaning repre-
sentation formalism compatible with a linguistic theory (e.g., semantic frames
as discussed in [9]). Correctness implies also physical coherence, as entities in



the environment must be known and the intended predicates must correspond
to (possibly known) actions coherent with the environment, too.

“take the book on the table” 
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Fig. 1. Levels of representation in interactive robotics

While traditional SLU mostly relies on linguistic information contained in
texts (i.e., derived only from transcribed words), its application in Interactive
Robotics depends on a variety of other factors, including the perception of the
environment.

We can organize these factors into a layered representation as shown in Fig-
ure 1. First, we rely on the language level that governs linguistic inferences: it
includes observations (e.g. sequences of transcribed words) as well as the lin-
guistic assumptions of the speaker, here modeled through frame-like predicates
by which the inner lexicon can be organized. Similarly, evidences involved by
the robot’s perception of the world must be taken into account. The physical
level, i.e. the real world, is embodied in the physical perception level : we assume
that the robot has an image of this world where the existence and the spatial
properties of entities are represented. Such representation is built by mapping
the direct input of robot sensors into geometrical representations, e.g. metric
maps. These provide a structure suitable for anchoring the knowledge level. Here
symbols (i.e., knowledge primitives) are used to refer to real world entities and
their properties inside the domain level. This comprises all active concepts the
robot is aware of, as they are realized in a specific environment, that refer to
general knowledge (e.g. conceptual categories) it has about the domain. All this
information plays a crucial role during linguistic interactions. The integration of
topological, i.e. metric, information with notions related to the knowledge level
provides an augmented representation of the environment, called semantic map
[10]. In this map, the existence of real world objects can be associated to lexi-
cal information, in the form of entity names given by a knowledge engineer or
spoken by a user while pointing to an object, as in Human-Augmented Mapping
[11,12]. It is worth noticing that the robot itself is a special entity described at
this knowledge level: it does know its constituent parts as well as its capabilities,



that are the actions it is able to perform. In our case, we introduce an additional
level (namely platform level), whose information is instantiated in a knowledge
base called Platform Model. In this way, a comprehensive perceptual knowledge
level is made available, including both a model of the world and a model of the
robot itself.

While SLU for Interactive Robotics have been mostly carried out over the
evidences specific to the linguistic level, e.g., in [13,14,15], we argue that such
process should deal with all the aforementioned layers in an harmonized and
coherent manner. All linguistic primitives, including predicates and semantic
arguments, correspond to perceptual counterparts, such as plans, robot’s actions
or entities involved in the underlying events.

The positive impact of such layers of knowledge in the automatic interpre-
tation of robotic commands expressed in natural language has been presented
in [16], where the final interpretation process depends not only on the linguistic
information, but also on the perceptual knowledge level. This process is expected
to produce interpretations that coherently mediate among the world (with all
the entities composing it), the robotic platform (with all its inner representa-
tions and its capabilities) and the pure linguistic level triggered by a sentence.
To this end, a discriminative approach1 to SLU has been adopted. Grounded in-
formation is here directly injected within a structured learning algorithm, that is
SVM-HMM [17]. Such integration of linguistic and perceptual knowledge signifi-
cantly improves the quality and robustness of the overall interpretation process,
as up to a 38% of reduction in the relative error is observed ([16]). Integration
is achieved by feeding the learning algorithms with a representation where per-
ceptual knowledge extracted from a semantic map is made available through
explicit features: it derives from a grounding mechanism based on the evidences
triggered by linguistic references and distributional semantic similarity. More-
over, SVM classification based on multiple kernels is adopted to integrate the
different features.

Kernels introduce a second crucial issue in the role of representations in
machine learning method, in particular those applied to complex decision func-
tions: the readability of the resulting models. Understanding why a data-driven
method provided a specific answer will be crucial as this model will be integrated
in everyday life. This issue has been for example faced in the task of Automatic
Generation of Image caption [3]: an Attention-based model has been there used
to extend a Deep Learning architecture and focus on the image portion that
stimulated the generation of a particular caption. In semantic inference tasks
involving natural language, it will be crucial to understand the reason a text
triggered a particular output of a data-driven method: for example, in sentiment
analysis over Twitter, we should know which words in an input tweet are re-
sponsible to evoke the output sentiment class. We foster here the importance
of kernel methods [18]. They allow the application of learning algorithms over
discrete structures that directly express the linguistic information underlying

1 This method is implemented in the adaptive spoken Language Understanding For
Robots (LU4R) processing chain: http://sag.art.uniroma2.it/lu4r.html



input texts. As an example, the adoption of Tree Kernels [19] methods allows
to directly apply machine learning methods, such as Support Vector Machines,
over tree structures that are directly produced by a Syntactic Parser. The cogni-
tive role of trees in most syntactic theories implies that tree-kernel based feature
engineering is most closely related to human-like language learning and suggest
more natural generalization processes.

Moreover, the model underlying the decision function for this class of meth-
ods, for example a classifier recognizing the target of a question in natural lan-
guage or the semantic role to be assigned to the argument of a linguistic predicate
([20,21]), depends only an a subset of training examples, the core that is crucial
for the final decision. The learning algorithm (e.g. a batch SVM) just assigns
non-zero weights to only those training examples at the frontier (i.e. the so-called
support vectors): these are the only ones that contribute to the final decision.
Notice that for this class of leaning algorithms, examples are directly selected
by the learning algorithm. They can be expected to reflect the implicit linguistic
knowledge used by the speaker to decide. The linguistic structures correspond-
ing to such selected core example set, i.e. the trees or subtrees corresponding to
the support vectors, provide important information to increase the readability
of the system behavior. Kernels corresponds thus to a straightforward learn-
ing method where a good trade-off between readability and accuracy is quite
naturally achieved.

In synthesis, adequate representations for many different aspects of human
knowledge appears still quite central for learning machines in real applications.
Although these give rise to very powerful and accurate inferences regarding un-
certain decisions, they are usually the side effects of complex design choices
regarding the task and the input representation: these are all but ontological as-
sumptions about the inference process and the background world model. How-
ever, complex learning mechanisms able to properly characterize the different
representational properties through expressive mathematical models (i.e. trees,
graphs or sets as in convolution kernels) exist and have already successfully
applied. They constitute a core research direction towards robust, adaptive and
increasingly autonomous AI systems whose models are readable and increasingly
expressive.
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10. Nüchter, A., Hertzberg, J.: Towards semantic maps for mobile robots. Robot.
Auton. Syst. 56(11) (2008) 915–926

11. Diosi, A., Taylor, G.R., Kleeman, L.: Interactive SLAM using laser and advanced
sonar. In: Proceedings of the 2005 IEEE International Conference on Robotics and
Automation, ICRA 2005, April 18-22, 2005, Barcelona, Spain. (2005) 1103–1108

12. Bastianelli, E., Bloisi, D.D., Capobianco, R., Cossu, F., Gemignani, G., Iocchi, L.,
Nardi, D.: On-line semantic mapping. In: Advanced Robotics (ICAR), 2013 16th
International Conference on. (Nov 2013) 1–6

13. Chen, D.L., Mooney, R.J.: Learning to interpret natural language navigation in-
structions from observations. In: Proceedings of the 25th AAAI Conference on AI.
(2011) 859–865

14. Matuszek, C., Herbst, E., Zettlemoyer, L.S., Fox, D.: Learning to parse natural
language commands to a robot control system. In Desai, J.P., Dudek, G., Khatib,
O., Kumar, V., eds.: ISER. Volume 88 of Springer Tracts in Advanced Robotics.,
Springer (2012) 403–415

15. Bastianelli, E., Castellucci, G., Croce, D., Basili, R., Nardi, D.: Effective and robust
natural language understanding for human-robot interaction. In: Proceedings of
ECAI 2014, IOS Press (2014)

16. Bastianelli, E., Croce, D., Vanzo, A., Basili, R., Nardi, D.: A discriminative ap-
proach to grounded spoken language understanding in interactive robotics. In:
Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intel-
ligence, IJCAI 2016, New York. (2016)

17. Altun, Y., Tsochantaridis, I., Hofmann, T.: Hidden Markov support vector ma-
chines. In: Proc. of ICML. (2003)

18. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge
University Press, New York, NY, USA (2004)

19. Collins, M., Duffy, N.: Convolution kernels for natural language. In: Proceedings
of Neural Information Processing Systems (NIPS’2001). (2001) 625–632

20. Croce, D., Moschitti, A., Basili, R.: Structured lexical similarity via convolution
kernels on dependency trees. In: Proceedings of EMNLP. (2011)

21. Croce, D., Moschitti, A., Basili, R., Palmer, M.: Verb classification using distri-
butional similarity in syntactic and semantic structures. In: 50th Annual Meeting
of the Association for Computational Linguistics, ACL 2012 - Proceedings of the
Conference. (2012) 263–272


	Structured Knowledge and Kernel-based Learning: the case of Grounded Spoken Language Learning in Interactive Robotics

