
Chichen-Itza II: a Semantic Framework for
Verification and Learning of Pipes and Filters

architectural pattern

Francisco-Edgar Castillo-Barrera1 and Carolina Medina-Ramirez2

1 Autonomous University of San Luis Potosi, San Luis Potosi SLP 78290, Mexico,
ecastillo@uaslp.mx

2 Metropolitan Autonomous University, Department of Electrical Engineering,
Mexico City, Mexico
cmed@xanum.uam.mx

Abstract. In software engineering, verification of architectural designs
is a task that requires a very high level of abstraction. In companies, ver-
ification techniques for architectural designs are difficult to integrate into
the standard software development process because it requires special-
ized expertise in an application domain. This paper describes a semantic
framework for verifying models and how it is used for learning of Pipes
and Filters Architectural Patterns (PFAP). Elements of this architecture
are seen as software components which are assembled among them and
each assembling implies a contract. Each contract is verified using seman-
tic web technologies based on the rules of PFAP. We show an example
of the verification of Voice over an IP model using an extended and new
version of the prototype called Chichen-Itza II to show the feasibility of
our approach.

Keywords: Ontology, Software Components, Contracts, Pipes and Fil-
ters Architectural pattern, VoIP, Verification, Assembling, SPARQL, Pel-
let OWL-DL Reasoner

1 Introduction

Len Bass, Paul Clements and Rick Kazman define Software Architecture [4]
as: “The software architecture of a program or computing system is the struc-
ture or structures of the system, which comprise software components, the ex-
ternally visible properties of those components, and the relationships among
them”. Software architecture is important in companies because it helps stake-
holders to understand different system characteristics that are affected by the
architecture [10]. As a result, the architect and stakeholders can make early de-
sign decisions about the system development, deployment and maintenance life.
Software architectures are classified in families called architectural patterns, also
called design patterns. An architectural pattern defines a lexicon of components
and connectors with rules on how they can be assembled. Patterns allow the
reuse of designs by giving solutions to frequently occurring problems. System

Antibes
Typewriter
22

LMonarca
Texto tecleado

Copyright © 2016 for this paper by its authors. Copying permitted for private and academic
purposes.

architectures are described by architecture description languages (ADLs) [18].
The first ADL was Acme, developed by the ABLE group at Carnegie Mellon
University, and Dave Wile at USC’s Information Sciences Institute [11]. After
that a visual tool called AcmeStudio (graphical editor for architectural designs)
was developed including Acme ADL. Other frameworks were developed such as
Aesop [8], C2 [16], Darwin [12], Jacal [14], and MetaH [19], for improving a bet-
ter understanding and communication among the stakeholders in the project. It
is important to note that they have to understand the architectural pattern used
in the system design. Moreover, the Semantic Web is an extension of the World
Wide which is a set of standards, a set of tools, and people that shares data [2].
Semantic Technology is another important concept in Computer Science which
its goal is to give semantics to data and it is supported by semantic tools [7]
such as (RDF, SPARQL, OWL, and others) that provide semantic information
about the meaning of words. Semantic Web Techniques are methods and tech-
niques based on semantic tools which allow us to also manipulate in which allow
the verification and learning of PFAP designs by applying semantic techniques
(Ontologies and SPARQL queries)formation. In this work, we propose a new ex-
tended and modified version of the semantic framework called Chichen-Itza [3].
With this technology, we want to mitigate the problem of verifying architectural
designs and improve the learning of this kind of projects based on Pipes and
Filters architectural pattern. We propose an approach for verifying the assem-
bling among elements of this architectural pattern using contracts of a required
interface that matches with the contract of a provided interface. We consider
that the use of a semantic matching approach (a pipe and filter ontology) could
help to detect interface incompatibility before the system is deployed. We cre-
ated a Voice over IP system architectural design based on Pipes and Filters
pattern for exemplifying our approach. The rest of the paper is structured as
follows. In Section 2 we present some related work. In Section 3 we presents
the Chichen-Itza Framework and its features. Section 4 describes the process of
verification used by Chichen-Itza and our semantic approach for verifying the
matching of Architectural Components. In Section 5 we show the feasibility of
our technique by describing an example building a Voice over IP (VoIP) system,
based on Pipes and Filters Architectural pattern. Section 6 describes how it is
possible to learn about this Architectural pattern and the Architectural design
that made it. Finally, in Section 6 we draw some conclusions and future work.

2 Related Work

In this research there are several involved areas: Architectural Description Lan-
guages (ADL), Semantic Frameworks, Verification of Contracts, Interface De-
scription Languages (IDL) and Learning using Semantic Web Technologies. In
the case of frameworks and ADL’s, the closest work found was Acme-Armani
[1] [11]. Acme-Armani is a graphical framework which defines its own ADL and
supports Pipe and Filter Architecture. Acme framework supports annotation of
architectural structure with arbitrary lists of properties and embodies the archi-

Antibes
Typewriter
23

tectural ontology, providing a semantically extensible language. However, this
framework never checks the architectural pattern and assembling using Seman-
tic Web Techniques, and neither focus on learning. Another graphical framework
system is Aesop [10], where users can develop environments with pattern-specific
architectural design. In this framework it is possible to check that compositions
of design elements satisfy the topological constraints of the pattern. But Aesop
does not check composition using Semantic Web Technologies and it is not fo-
cused on learning. In the field of Semantic Web Technologies we found the work
of Knight et al [15] about an Ontology-Based Framework for Bridging Learning
Design and Learning Content. In this paper authors emphasize the use of ontolo-
gies to capture all learning designs, learning objects, and the relations between
them, and show how this use of ontologies can result in tools that increase the
level of reusability.

3 Chichen-Itza II: a Semantic Framework

Chichen-Itza II is a semantic framework and graphic tool where systems based on
Pipes and Filters architectural pattern can be created and verified. We have used
the Jena API and the Java programming language along with the IDE NetBeans
7.0. One of the most important features of this framework is enabling knowledge
reuse in Pipes and Filters architectural designs using Semantic web techniques
[7]. This framework facilitates the process of learning about the system created
based on Pipes and Filters Architectural pattern during its assembling process.
Messages are displayed if the user tries to connect invalid components and ex-
plain how to correct them. Moreover, in this framework it is possible to study
the Pipes and Filters Architectural pattern (Components, Connectors and its
Rules of Assembling). Our main contributions are threefold. First, we devel-
oped and extended a new version of Chichen-Itza framework that allows us to
reuse the knowledge of models created based on Pipes and Filters Architectural
pattern. Second, our approach supports the assembling validation based on con-
tracts during the assembling components of the system and third, we provide
an environment in which people can learn about Pipes and Filters Architectural
patterns and the systems developed using this pattern. The process of verifi-
cation, within the Chichen-Itza framework, is done at a very high level, using
the ontologies information among the components of the Pipes and Filter Ar-
chitectural design to be assembled. Each component is represented in a graphic
way. That information, in the ontology populated and created, is evaluated and
after that the reasoner verify if it is correct. In addition, we capture this new
knowledge and it is saved in the ontology architectural models repository.

4 Verification process in Chichen-Itza II framework

The process to verify the assembling among Pipes and Filters components is easy
for an user who is building the system based on this pattern. He introduces his
model into the framework by means of a file or selecting its icon in a palette menu.

Antibes
Typewriter
24

Chichen-Itza II transforms its vocabulary (filters and pipes that the user needs
for building its system) from a text file into ontology instances. The components
instances created with classes defined in the Pipes and Filters Ontology are
associated with object and datatype properties. The verification process consists
of four steps, showed in Fig. 1. This process is described in the next sections.

Fig. 1. Verification process model in Chichen-Itza II framework

4.1 Step 1: Creating the CORBA-ADL-IDL Input file

CORBA(Common Object Request Broker Architecture) is a standard created
by the Object Management Group (OMG)[5] that enables software written in
different programming languages to work among themselves by means of their
interfaces. These interfaces are described using the Interface Definition Language
(IDL). For each component of the model to verify it is necessary to define a file
IDL with its interfaces written using the concepts, rules and properties defined by
the Pipes and Filters architectural pattern. It works at the same time as an ADL
(architecture description languages). For example, a Compressor component in
a Voice over IP system has an ADL-IDL file, and in this file the words domain,
subdomain, provided, interface and required are the keywords of the CORBA
IDL-ADL language. An example of this file is showed below.

module COMPRESSOR{

domain Voice_over_IP;

Antibes
Typewriter
25

subdomain Pipe_and_Filter_Architectural_pattern;

provided interface ICompressor{

long CodecAnalogToPCM();

int Compression();

int TransformPCMtoFrame();

int PortOutput();

};

required interface ICompressor{

void PortInput(in double data, in numport)

{ pre: numport > 0 .

pre: validClient(numport) == true.

post: bufferdata = bufferdata + data.

};

int connectRouter();

};

};

For each CORBA-ADL-IDL file created it has to be loaded in the framework
and transform into an n3 ontology. This is possible in Chichen-Itza because it
has a Compiler-Translator and the user only has to select in the main menu the
option “ADL-IDL Translator to n3”.

4.2 Step 2: Transforming Input file into a Populated Ontology

Ontologies are the key for Semantic Web goals [2]. An Ontology defines the ba-
sic terms used to describe and represent an area of knowledge (in this case a
PFAP), as well as the rules for combining terms and relations used to define
extensions to the vocabulary. Thus, ontologies define the vocabulary and the
meaning of that vocabulary. More specifically, an ontology is a formal repre-
sentation of knowledge with semantic content which allows the companies and
organizations understand and share information [13]. We propose an ontology
called OntoCorePipeFilter which has the minimum concepts (Pipe, Filter,
Port, Datasource, SinkData) which are required to build a PFAP Models. On-
toCorePipeFilter ontology was created for capturing and verifying information
about the input architectural models during the design of the system. This on-
tology consists of 19 classes, 10 Object Properties and 1 Datatype Property. For
each component of the input architectural model an instance is created. The
notation n3 is used by the ontology, because is a valid RDFS and OWL-DL
notation and language. The Ontology is showed in Figure 2 using the Chichen-
Itza framework. The ontology files obtained in the previous step have to be join
in a single project. This project is created by selecting the menu option ”Join
Ontologies in a Project” and in the same project the OntoCorePipeFilter
ontology has to be included.

Antibes
Typewriter
26

Fig. 2. Ontology classes, instances, object and datatype properties

4.3 Step 3: Ontology verification using The Pellet Reasoner

All instances created, properties (object and datatype) established among in-
stances, and blank nodes in the Ontology are checked by the Pellet reasoner
during the consistency verification process. A reasoner is a program which its
main task is checking the ontology consistency. It verifies if the ontology contains
contradictory facts, axioms or wrong properties among concepts. Besides, new
knowledge can be inferred after applied it. The most popular reasoners are Cere-
bra, FACT++, KAON2, Pellet, Racer, Ontobroker and OWLIM. Pellet [17] is
an open-source Java based OWL-DL reasoner. In our verification process we use
Pellet for checking the consistency of the ontology created. We select the Pellet
reasoner, because it gave an explanation when an inconsistency was detected.
Restrictions can be expressed into an ontology. For instance, the following code
verifies that one Pipe component has at least 2 ports.

:Pipe rdfs:subClassOf

[a owl:Restriction ;

owl:onProperty :hasPorts ;

owl:cardinality 2].

Antibes
Typewriter
27

Elements of the architectural pattern are subclasses of the Pipe and Filter
class. With this information the reasoner can validate members from different
architectural patterns. The property hasPortInput1 allows the reasoner to vali-
date the connection betwen Filter and Pipe.

:Pipe_and_Filter a owl:Class .

:Pipe rdfs:subClassOf :Pipe_and_Filter .

:hasPortInput1 a owl:ObjectProperty ;

rdfs:domain :Filter ;

rdfs:range :Pipe .

The disjointWith property allows to verify restrictions based on rules of the
architectural pattern. For example, a Pipe component is not a Filter component
and these two classes are different and are another example based on the rules of
architectural pattern. It is defining constraints for assembling Pipes with Tubes
only. Defining disjoint classes are also possible.

:Pipe rdfs:subClassOf :Pipe_and_Filter ;

owl:disjointWith :Filter .

4.4 Step 4: Semantic verification based on Contracts using SPARQL
queries

Semantic verification is the process which uses an Ontology and Semantic Tech-
nologies (SPARQL queries) to guarantee the correct construction of the system
with specific connections and outputs. The semantics of assembling the elements
of the architecture are described with object properties. An important aspect of
the Pipes and Filters elements to consider during the assembling is the Input
and Output connections by means of ports. A pipe element has one output and
one input port. The connection among elements are based on the output of one
using as input in other. The second step after the reasoner has checked the on-
tology project consistency is to apply a SPARQL query for validating the correct
connection. In our case, we have defined a query which describes the Voice Over
IP system connections. The query in SPARQL is showed below:

PREFIX : <http://www.ejemplo.org/#>

SELECT ?voiceAnalog ?voiceData ?voicePCM ?voiceAnalog2

WHERE

{ :datasource :hasOutputPort ?voiceAnalog.

:pipe1 :hasInputPort ?voiceAnalog.

:pipe1 :hasOutputPort ?voiceData.

:compressor :hasInputPort ?voiceData.

:compressor :hasOutputPort ?voicePCM.

:pipe2 :hasInputPort ?voicePCM.

:pipe2 :hasOutputPort ?voicePCM.

:router :hasInputPort ?voicePCM.

:router :hasOutputPort ?voicePCM.

:pipe3 :hasInputPort ?voicePCM.

:pipe3 :hasOutputPort ?voicePCM.

:decompressor :hasInputPort ?voicePCM.

:decompressor:hasOutputPort ?voiceAnalog2.

Antibes
Typewriter
28

:pipe4 :hasInputPort ?voiceAnalog2.

:pipe4 :hasOutputPort ?voiceAnalog2.

:datasink :hasInputPort ?voiceAnalog2.

}

Of course, all this process is transparent to the user. He does not need to know
anything about ontologies, reasoners or SPARQL queries, only the manager of
the ontology system has to know about that. We could think that SPARQL is
the version of SQL for ontologies. Besides, we can use variables in the queries,
constraints, filtering information, logic operators, if statements and more. Each
N3-triple (each line after) is linked by variables which begin with a question
mark. For example ?voiceAnalog and ?voiceData are variables. The same name
of a variable imply the same value to look for in the query. We can execute and
edit queries in Chichen-Itza framework because the Jena API allows us to use
SPARQL queries in our framework programmed in Java language. The last step
when the ontology project has been verified, consists of saving it in the repository
of ontology projects. It is important to note that this repository increases the
reuse of these ontology projects and decreases the time in the development of
future models based on the same architectural pattern. This being an economic
benefit to companies. In our example, the code included in the core ontology is
using N3-triples notation. In the code above, there are mainly two properties:
hasOutputPort and hasInputPort. First, the triple is formed by a component
instance from the architectural pattern (in this case called :datasource), second
the name of the property hasOutputPort, third a variable and finishes with a
period.

5 Building a Voice over IP (VoIP) system, based on
Pipes and Filters Architecture pattern

Voice over Internet Protocol (VoIP), is a technology for the delivery of voice calls
using a broadband Internet connection. This system can be assembled in mod-
ules that follow the Pipes and Filters configuration [20]. The basic elements of
this system are: a Codec Analog to PCM conversion, a Compression algorithm
and Converter PCM to Frame, a Modem or Router to connect with Internet
Network, a Decompression algorithm, Converter Frame to PCM and finally a
Codec PCM to Analog conversion [6]. Each element is a software component
which is assembled using contracts [9]. In Pipes and Filters Architectural pat-
terns these components are represented by a Filter which connect them with
the next component by means of a Pipe. In addition, the Speaker data source
and the Listener data sink components are connected at the ends. The users can
click on any images of the system assembled and the pop-up window is open to
explain the characteristics of it. This configuration and pop-up windows opened
are shown in Figure 3.

Antibes
Typewriter
29

Fig. 3. Pipes and Filters Architecture for Voice over IP

6 Learning in Chichen-Itza II framework

The information of components from the architectural design is saved in a re-
postory. It contains the populated and annoted ontology with information about
the system created. During the assembling process it is possible to know the in-
formation from each component which has been assembled by only giving a click
over it. The next code shows the corresponding SPARQL query executed by
retrieving the information from the component.

:router a :Filter ;

rdfs:label "Filter router" ;

rdfs:comment "1 Router is a Filter.";

rdfs:comment "2 A router is a networking device that forwards";

rdfs:comment "3 data packets between computer networks.";

rdfs:comment "4 Routers perform the traffic directing functions";

rdfs:comment "5 on the Internet.".

PREFIX : <http://www.ejemplo.org/#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

Antibes
Typewriter
30

SELECT ?Router WHERE

{

:router rdfs:comment ?Router .

}ORDER BY ?Explain

Information about each component, represented as an instance in the ontol-
ogy, can be annoted by the ”comment” tag.

Fig. 4. Learning Filter components from OntoCorePipeFilter Ontology.

7 Conclusions and future work

Semantic Web Techniques in organizations and companies based on Ontologies,
Reasoners and semantic Queries are possible by means of core ontologies, rea-
soners, and SPARQL queries. Ontologies are usually expressed in a logic-based
language (Description-Logic). Core Ontologies give more expressive meaning,
maintaining computability, do not require the validation of experts or apply
a complex methodology for its construction. This core ontology for Pipes and
Filters architectures increases the reuse of it and decreases the time in the de-
velopment of future circuits. The use of a core ontology of Pipes and Filters
Architectural Patterns allows us to validate a design based on this architecture
and we can verify the correct assembling of its components using the Pellet
reasoner and a SPARQL query with semantics in comparison with a classic
SQL query. The queries on the ontology are simple and easy to do for all users
whereas a classic SQL query in a database requires computational knowledge.
In this paper we have presented an extended and new version of the prototype
called Chichen-Itza II and described Semantic Web Techniques used for verifying
the Architectural Design based on Pipes and Filters architectural pattern. We
illustrate this through a VoIP example.

Antibes
Typewriter
31

8 Acknowledgments

This study was partially supported by different grants from Mexico’s PRODEP
and CONACYT.

References

1. Abi-Antoun, M., Aldrich, J., Garlan, D., Schmerl, B., Nahas, N., Tseng, T.: Model-
ing and implementing software architecture with acme and archjava. In: Proceed-
ings of the 27th international conference on Software engineering. pp. 676–677.
ACM (2005)

2. Berners-Lee, T., Hendler, J., Lassila, O., Others: The semantic web. Scientific
American 284(5), 34–43 (2001)

3. Castillo-Barrera, F.E., Medina-Ramı́rez, C., Durán-Limón, H.A., Gayo, J.E.L.,
Sadjadi, S.M.: Verifying the behavioral contracts among components by means
of semantic web techniques. In: Proceedings of the International Conference on
Software Engineering Research and Practice (SERP). p. 1. The Steering Com-
mittee of The World Congress in Computer Science, Computer Engineering and
Applied Computing (WorldComp) (2012)

4. Clements, P.C.: Software architecture in practice. Ph.D. thesis, Software Engineer-
ing Institute (2002)

5. CORBA, O., Specification, I.: Object management group (1999)

6. Davidson, J., Peters, J., Gracely, B.: Voice over IP fundamentals. Cisco press (2000)

7. Davies John, Stunder Rudi, W.P.: Semantic web technologies trens and research
in ontology-based systems (2006)

8. Di Nitto, E., Rosenblum, D.: Exploiting adls to specify architectural styles induced
by middleware infrastructures. In: Proceedings of the 21st international conference
on Software engineering. pp. 13–22. ACM (1999)

9. Duran-Limon, H., Meda-Campaña, M.E., Sapien-Aguilar, A.L., Piñón-Howlet,
L.C.: Un marco de trabajo de una fábrica de software para el reuso del diseño
arquitectónico y de componentes de software (2008)

10. Garlan, D., Allen, R., Ockerbloom, J.: Exploiting style in architectural de-
sign environments. SIGSOFT Softw. Eng. Notes 19(5), 175–188 (Dec 1994),
http://doi.acm.org/10.1145/195274.195404

11. Garlan, D., Monroe, R., Wile, D.: Acme: an architecture description interchange
language. In: CASCON First Decade High Impact Papers. pp. 159–173. IBM Corp.
(2010)

12. Gomaa, H., Farrukh, G.: Composition of software architectures from reusable archi-
tecture patterns. In: Proceedings of the third international workshop on Software
architecture. pp. 45–48. ACM (1998)

13. Gómez-Pérez, A., Fernández-López, M., Corcho, O.: Ontological engineering with
examples from the areas of knowledge management,e-commerce and the semantic
web (2003)

14. Kicillof, N., Yankelevich, D.: Detecting and solving architectural problems with
jacal

15. Knight, C., Gasevic, D., Richards, G.: An ontology-based framework for bridging
learning design and learning content. Educational Technology & Society 9(1), 23–
37 (2006)

Antibes
Typewriter
32

16. Oreizy, P., Medvidovic, N., Taylor, R.N., Rosenblum, D.S.: Software architecture
and component technologies: Bridging the gap. In: Proceedings of the Workshop
on Compositional Software Architectures (1998)

17. Parsia, B., Sirin, E.: Pellet: An owl dl reasoner. In: In Proceedings of the Interna-
tional Workshop on Description Logics (2004)

18. Shaw, M., Clements, P.: The golden age of software architecture. IEEE Software
23(2), 31–39 (March 2006)

19. Vestal, S., Binns, P.: Scheduling and communication in metah. In: Real-Time Sys-
tems Symposium, 1993., Proceedings. pp. 194–200. IEEE (1993)

20. Zave, P.: Audio feature interactions in voice-over-ip. In: Proceedings of the 1st
international conference on Principles, systems and applications of IP telecommu-
nications. pp. 67–78. ACM (2007)

Antibes
Typewriter
33

Antibes
Typewriter

