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Abstract—We investigate a small footprint cognitive archi-
tecture comprised of two reactive planner instances. The first
interacts with the world via sensor and behaviour interfaces.
The second monitors the first, and dynamically adjusts its
plan in accordance with some predefined objective function.
We show that this configuration produces a Darwinian mind,
yet aware of its own operation and performance, and able to
maintain performance as the environment changes. We identify
this architecture as a second-order Darwinian mind, and discuss
the philosophical implications for the study of consciousness. We
use the Instinct Robot World agent based modelling environment,
which in turn uses the Instinct Planner for cognition.

BIOLOGICALLY INSPIRED COGNITIVE ARCHITECTURES

From the 1950’s through to the 1980’s the study of em-
bodied AI assumed a cognitive symbolic planning model for
robotic systems — SMPA (Sense Model Plan Act) — the most
well known example of this being the Shakey robot project
[1]. In this model the world is first sensed and a model of the
world is constructed within the AI. Based on this model and
the objectives of the AI, a plan is constructed to achieve the
goals of the robot. Only then does the robot act. Although this
idea seemed logical and initially attractive, it was found to be
quite inadequate for complex, real world environments.

In the 1990’s Rodney Brooks and others [2] introduced
the then radical idea that it was possible to have intelligence
without representation [3]. Brooks developed his subsumption
architecture as a pattern for the design of intelligent em-
bodied systems that have no internal representation of their
environment, and minimal internal state. These autonomous
agents could traverse difficult terrain on insect-like legs, appear
to interact socially with humans through shared attention
and gaze tracking, and in many ways appeared to possess
behaviours similar to that observed in animals. However,
the systems produced by Brooks and his colleagues could
only respond immediately to stimuli from the world. They
had no means of focusing attention on a specific goal or
of executing complex sequences of actions to achieve more
complex behaviours. Biologically inspired approaches are still
favoured by many academics, although a wide gap exists
between existing implementations and the capabilities of the
human mind [4]. Today, the argument persists concerning
whether symbolic, sub-symbolic or hybrid approaches are best
suited for the creation of powerful cognitive systems [5]. Here
we concern ourselves more specifically with action selection
as a core component of any useful cognitive architecture.

From Ethology to Robots

Following in-depth studies of animals such as gulls in their
natural environment, ideas of how animals perform action
selection were originally formulated by Nico Tinbergen and
other early ethologists [6], [7]. Reactions are based on pre-
determined drives and competences, but depend also on the
internal state of the organism [8]. Bryson [9] harnessed these
ideas to achieve a major step forwards with the POSH (Parallel
Ordered Slipstack Hierarchy) reactive planner and the BOD
(Behaviour Oriented Design) methodology, both of which are
strongly biologically inspired. A POSH plan consists of a
Drive Collection (DC) containing one or more Drives. Each
Drive (D) has a priority and a releaser. When the Drive
is released as a result of sensory input, a hierarchical plan
of Competences, Action Patterns and Actions follows. POSH
plans are authored, or designed, by humans alongside the
design of senses and behaviour modules. An iterative approach
is defined within BOD for the design of intelligent artefacts —
these are known as agents, or if they are physically embodied,
robots.

Kinds of Minds

Daniel Dennett[10] elegantly outlines a high level ontology
for the kind of minds that exist in the natural world. At the
most basic level, the Darwinian mind produces ‘hardwired’
behaviours, or phenotypes, based on the genetic coding of
the organism. The Skinnerian mind is plastic, and capable
of ’ABC’ learning — Associationism, Behaviourism, Connec-
tionism. The Popperian mind runs simulations to predict the
effect of planned actions, anticipating experience. It therefore
permits hypotheses “to die in our head” rather than requiring
them to be executed in the world before learning can take
place. Finally the Gregorian mind (after the psychologist
Richard Gregory) is able to import tools from the cultural
environment, for example language and writing. Using these
tools enables the Gregorian mind, for example the human
mind, to be self-reflective.

However, perhaps the simple Darwinian mind might also
be arranged to monitor itself, and in some small and limited
sense to be aware of its own performance and act to correct
it. Bryson suggests that consciousness might assist in action
selection [11], and here we investigate whether action selection
achieved through reactive planning might parallel one of the
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Fig. 1: Screen shot of the Instinct Robot World in operation. Each robot is represented as a single character within the display. Robots are labelled with
letters and numbers to distinguish them. When a robot’s monitor plan becomes active the robot representation changes to the shriek character (!). The top
right section of the screen is used to control the robots and the plans they use. The bottom right section displays statistics about the world as it runs.

commonly accepted characteristics of consciousness; that is to
be self-reflective and regulating [12].

Instinct and the Robot World

The Instinct Planner [13] is a biologically inspired reactive
planner specifically designed for low power processors and
embedded real-time AI environments. Written in C++, it
runs efficiently on both ARDUINO and MICROSOFT VC++
environments and has been deployed within the R5 low cost
maker robot to study AI Transparency [14].

It’s unique features are its tiny memory footprint and
efficient operation, meaning that it can operate on a low
powered micro-controller environment such as ARDUINO.
Alternatively, as in this experiment, many planners can run
within one application on a laptop PC.

The Instinct Robot World is a new agent based modelling
tool, shown in Figure 1. This is an open source project and all
code and configuration files are available online 1. Each virtual
‘robot’ within the Robot World uses an Instinct Planner to
provide action selection. Strictly, since these virtual robots are
not physically embodied, we should refer to them as agents.
However, we have chosen to use ‘robot’ throughout, as intu-
itively these cognitive entities appear to be virtually embodied
within the Robot World, and this choice of language seems
more natural. In the final section of this paper we discuss

1http://www.robwortham.com/instinct-planner/

future work where we may realise physical embodiment of
this architecture.

The Robot World allows many robots to be instantiated,
each with the same reactive plan, or with a variety of plans.
The robots each have senses to sense the ‘walls’ of the
environment, and other robots. The reactive plan invokes
simple behaviours to move the robot, adjust its speed and
direction, or interact with robots that it encounters within the
world as it moves. Most importantly for this investigation, each
robot also has a second Instinct Planner instance. This planner
monitors the first, and is able to modify its parameters based
on a predefined plan.

The Instinct Robot World provides statistical monitoring
to report on the overall activity of the robots within the
world. These include the average percentage of robots that are
moving at any one time, the average number of time units
(ticks) between robot interactions, and the average amount
of time that the monitor planner intervenes to modify the
robot plan. We use the Instinct Robot World to investigate the
idea of Reflective Reactive Planning — one reactive planner
driving behaviour based on sensory input and predefined drives
and competences, and another reactive planner monitoring
performance and intervening to modify the predefined plan of
the first, in accordance with some higher level objective. This
simple combination of two Darwinian minds, one monitoring
the other, might also be considered to be a second-order
Darwinian mind.

Proceedings of EUCognition 2016 - "Cognitive Robot Architectures" - CEUR-WS 26

http://www.robwortham.com/instinct-planner/


ROBOT

Plan Manager

Reactive
Planner

Action
Selection

Behaviour 
LibrarySensor model

Internal 
Robot 
State

Plan
Monitor

WORLD

Reflective Reactive Planning - A 2nd Order Darwinian Mind

Plan model

Plan
Modifier

Plan StateMonitor Plan
Reactive Planner 

#1

#2

Fig. 2: Architecture of the second-order Darwinian mind. The robot is controlled by the Instinct Reactive Planner, as it interacts with the Sensor model and
Behaviour Library. In turn, a second instance of Instinct monitors the first, together with the Internal robot state, and dynamically modifies parameters within
the robot’s planner.The overall effect is a robot that not only reacts to its environment according to a predefined set of goals, but is also to modify that
interaction according to some performance measure calculated within the Plan model.

CONJECTURES

We expect that second-order Darwinian minds will out-
perform first order minds when the environment changes,
because the monitor planner is concerned with achieving
higher order objectives, and modifies the operation of the first
planner to improve its performance. We also hypothesise that
this architecture will remain stable over extended periods of
time, because by restricting ourselves to the reactive planning
paradigm we have reduced the number of degrees of freedom
within which the architecture must operate, and previous
work shows that first-order minds produce reliable control
architectures [14]. Finally, we expect that such a second-order
system should be relatively simple to design, being modular,
well structured and conceptually straightforward.

METHODS

Figure 2 shows the Reflective Reactive Planning architecture
implemented within the Instinct Robot World, and controlling
the behaviour of each robot within that world. The robot plan
has the following simple objectives, each implemented as an
Instinct Drive.

• Move around in the environment so as to explore it.
• Avoid objects i.e. the walls marked as ‘X’ in Figure 1.
• Interact when another robot is ‘encountered’ i.e. when

another robot is sensed as having the same coordinates
within the grid of the Robot World. This interaction
causes the robot to stop for 200 clock cycles or ‘ticks’.

While the robot is in the ‘Interacting’ state it is shown as
a shriek character (!) within the Robot World display. Once
the robot has interacted its priority for interaction decreases,
but ramps up over time. This may be likened to most natural
drives, for example mating, feeding and the need for social
interaction.

The Monitor Plan is designed to keep the robot exploring
when it is overly diverted from social interactions. It achieves
this by monitoring the time between interactions. If, over three
interactions, the average time between interactions reduces
below 1000 ticks, then the Monitor Planner reduces the priority
of the interaction Drive. After 1000 ticks the priority is reset to
its original level. We might use alternative intentional language
here to say that the Monitor Planner ‘notices’ that the robot is
being diverted by too many social interactions. It then reduces
the priority of those interactions, so that the robot is diverted
less frequently. After some time the Monitor Planner ceases
to intervene until it next notices this situation re-occurring.

The Robot World is populated with varying numbers of
robots (2, 3, 5, 10, 20, 50, 100, 200, 500, 1000), and for each
number the experiment is run twice, once with a monitor plan,
and once without. For each run, the environment is allowed
to run for some time, typically about 10 minutes, until the
reported statistics have settled and are seen to be no longer
changing over time.
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OUTCOMES

The results are most elegantly and succinctly presented as
simple graphs. Firstly, the average number of robots moving at
any one time within the world is shown in Figure 3. In both

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1 10 100 1000
Robots

Robots Moving in the World

No Monitor With Monitor

Fig. 3: This graph shows the average percentage number of robots that are
moving at any one time within the world, for a given total number of robots
in the world. It can be seen that the addition of the monitor plan maintains
more robots moving as the number of robots increases. Note the log scale for
robots in world.

cases, as the number of robots within the world increases,
the amount of time that the robot spends moving reduces.
However the Monitor Planner acts to reduce the extent of
this reduction from 60% to less than 20% over the full range
of two to a thousand robots within the world. Similarly, in
Figure 4 we see that as more robots are introduced into the
world, the average time between interactions naturally reduces.
However, the action of the Monitor Planner progressively
limits this reduction, so that with 1000 robots the time between
interactions is almost trebled, from 310 to 885 ticks per
interaction. Interestingly, in both these graphs we see smooth
curves both with and without the action of the monitor plan.
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Fig. 4: This graph shows the average time between robot interactions, both
with and without the monitor plan. The addition of the monitor plan reduces
the variance in interaction time as robot numbers vary. Again, note the log
scale.

The final graph, Figure 5 also shows a smooth, sigmoid like
increase in activation of the Monitor Planner as the number
of robots increases, plotted on a logarithmic scale.
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Fig. 5: This graph shows the average percentage number of robots whose
monitor plan is activated at any one time, for a given number of total robots
in the world. Note the log scale.

The Instinct Robot World was found to be a stable, reliable
platform for our experiments, and the results it achieved were
repeatable. The application is single threaded, and so uses only
one core of the CPU on the laptop PC on which it was run.
Nevertheless, it was possible to simulate 1000 robots with both
reactive planners active operating in the world at the rate of
70 clock cycles (ticks) per second.

DISCUSSION

From the results we can see that by using a second Instinct
instance to monitor the first, we can achieve real-time learning
within a tiny-footprint yet nevertheless symbolic cognitive
architecture. In addition, since this learning modifies param-
eters from a human designed plan, the learning can be well
understood and is transparent in nature. This contrasts strongly
with machine learning approaches such as neural networks
that typically learn offline, are opaque, and require a much
larger memory workspace. Despite the stochastic nature of
the environment, the performance graphs show smooth curves
over a wide range of robot populations.

This relatively simple experiment also provides further fuel
for the fire concerning the philosophical discussion of the
nature of consciousness. Critics may say that when we use
the intentional stance [15] to describe the behaviour of the
Monitor Planner as ‘noticing’ something, we are merely using
metaphor. They might argue that there is in fact no sentience
doing any noticing, and in fact the only ‘noticing’ that is
happening here is us noticing the behaviour of this human
designed mechanism, which itself is operating quite without
any sentience and certainly without being conscious [16].
But that is to miss the point. We are not claiming that this
architecture is conscious in the human or even significant
sense of the word, merely that our architecture is inspired
by one aspect of how biological consciousness appears to
operate. However, having shown that this architecture can
indeed provide adaptive control, and drawing on the knowl-
edge that gene expression produces behaviours which can
be modelled using reactive planning, we might also consider
whether consciousness in animals and humans may indeed
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arise from complex hierarchical mechanisms. These mecha-
nisms are biologically pre-determined by genetics, and yet in
combination yield flexible, adaptive systems able to respond
to changing environments and optimise for objective functions
unrelated to the immediate competences of preprogrammed
behavioural responses. This is not to argue for some kind of
emergence [17], spooky or otherwise, but more simply to add
weight to the idea that the ‘I’ in consciousness is nothing more
than an internal introspective narrative, and such a narrative
may be generated by using hierarchical mechanisms that notice
one another’s internal states, decision processes and progress
towards pre-defined (phenotypic) objectives.

We could certainly envisage a much grander architecture,
assembled at the level of reactive planners, using maybe
hundreds or thousands of planners each concerned with certain
objectives. Many of these planners may be homeostatic in
nature, whilst others would be concerned with the achievement
of higher level objectives. We must remember that planners
merely coordinate action selection, and say nothing about how
sensor models may be formed, nor how complex behaviours
themselves may be implemented. However, all dynamic archi-
tectures need some kind of decision centric ‘glue’ to bind them
together, and reactive planning seems to be a useful candidate
here, as evidenced by practical experiment and biological
underpinning.

Machine transparency is a core element of our research. We
have shown elsewhere [14] that reactive planners, particularly
the Instinct Planner, are able to facilitate transparency. This is
due to the human design of their plans, and the ability to gather
meaningful symbolic information about internal system state
and decision processes in real-time as the planner operates.
This ability to inspect the operation of the architecture may
assist designers in achieving larger scale cognitive imple-
mentations. Equally importantly, transparency is an important
consideration for users and operators of intelligent systems,
particularly robots, and this is highlighted in the EPSRC
Principles of Robotics [18].

The human brain does not run by virtue of some elegant
algorithm. It is a hack, built by the unseeing forces of
evolution, without foresight or consideration for modularity,
transparency or any other good design practice. If we are
to build intelligent systems, the brain is not a good physical
model from which we should proceed. Rather, we should look
at the behaviours of intelligent organisms, model the way in
which these organisms react, and then scale up these models
to build useful, manageable intelligent systems.

Whilst our Reflective Reactive Planner is a very simple
architecture, it does share many of the characteristics cited for
architectures that are worthy of evaluation, such as efficiency
and scalability, reactivity and persistence, improvability, and
autonomy and extended operation [19]. We hope that our
work with reactive planners might strengthen the case for
their consideration in situations where decision centric ‘glue’
is required.

CONCLUSIONS AND FURTHER WORK

We have shown that a second-order Darwinian mind may
be constructed from two instances of the Instinct reactive

planner. This architecture, which we call Reflective Reactive
Planning, successfully controls the behaviour of a virtual robot
within a simulated world, according to pre-defined goals and
higher level objectives. We have shown how this architecture
may provide both practical cognitive implementations, and
inform philosophical discussion on the nature and purpose of
consciousness.

The Instinct Robot World is an entirely open source plat-
form, available online. We welcome those interested in agent
based modelling, cognitive architectures generally, and reac-
tive planning specifically, to investigate these technologies
and offer suggestions for new applications and further work.
One possibility might be to apply this architecture to the
Small Loop Problem [20], a specific challenge for biologically
inspired cognitive architectures.

We continue to develop robot applications for the Instinct
Planner, together with the Instinct Robot World. We are inves-
tigating the use of a small robot swarm to build a physically
embodied version of this experiment. To this end, we are
currently working with the University of Manchester’s Mona
robot2.
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