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Abstract. In this work, convolutional neural network (CNN) is applied to 

classify the five types of Tuberculosis (TB) lung CT images. In doing so, each 

image has been segmented into rectangular patches with side width and high 

varying between 20 and 55 pixels, which are later normalised into 30x30 pixels. 

While classifying TB types, six instead of five categories are distinguished. 

Group 6 houses those patches/segments that are common to most of the other 

types, or background. In this way, while each 3D dataset only has less than 10% 

distinguishable volumes that are applied to perform the training, the rest remains 

part of the learning cycle by participating to the classification, leading to an au-

tomated process to differentiation of five types of TB. When tested against 300 

datasets, the Kappa value is 0.2187, ranking 5 among 23 submissions. However, 

the accuracy value of ACC is 0.4067, the highest in this competition of classifi-

cation of TB types. 
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1 Convolutional Neural Network (CNN 

1.1 A Subsection Sample 

Deep learning models refer to a class of computing machines that can learn a 

hierarchy of features by building high-level attributes from low-level ones [1, 2] , 

thereby automating the process of feature construction. One of these models is the 

well-known convolutional neural network (CNN) [2]. Consisted of a set of algorithms 

in machine learning, CNN comprises several (deep) layers of processing involving 

learnable operators (both linear and non-linear), and hence has the ability to learn and 

build high-level information from low-level features in an automatic fashion [3]. 

Stemming from biological vision processes, a CNN applies a feed-forward artificial 
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neural network to simulate variations of multilayer perceptrons whereby the 

individual neurons are tiled in such a way that they respond to overlapping regions in 

the visual field [4]. As a direct result, these networks are widely applied to image and 

video recognition. Specifically, CNNs have demonstrated as an effective class of 

models for understanding image content, proffering state of the art results on image 

recognition, segmentation, detection and retrieval. For example, when trained with 

appropriate regularization, CNNs can achieve superior performance on visual object 

recognition tasks without relying on any hand-crafted features, e.g. SIFT, SURF. In 

addition, CNNs have been shown to be relatively insensitive to certain variations on 

the inputs [5]. Significantly, recent advances of computer hardware technology (e.g., 

Graphics Processing Unit (GPU)) have propitiated the implementation of CNNs in 

representing images.  

Theoretically, CNN can be expressed in the following formulas. For 

example, for a set of training data , where image  is in three-dimension 

(inclusive of RGB channel as the 3rd dimension) and  the indicator vector of 

affiliated class of  the feature maps of an image, namely, , will be learnt 

based on CNN by solving Eq. (1). 

 

(1) 

 

Where  refers to a suitable loss function (e.g. the hinge or log loss) and  the 

selected classifier. 

To obtain these feature maps computationally, in a 2D CNN, convolution is con-

ducted at convolutional layers to extract features from local neighbourhood on the 

feature maps acquired in the previous layer. Then an additive bias is applied and the 

result is passed through a sigmoid function as formulated in Eq. (2) mathematically in 

order to obtain a newly calculated feature value  at position on the  fea-

ture map in the layer. 

 

 

 

(2) 

 

 

 

where the notations of those parameters in Eq. (2) are explained in Table 1. 

 

Table 1. Notations of parameters in Eq. (4). 

Parameter Notation Parameter 



3 

 hyperbolic tangent function  

 index over the set of feature maps in the 

 layer 
 

 bias for the feature map  in Eq. (1).  

 
value at the position (p, q) of the kernel 

connected to the kth feature map 
 

 2D position of a kernel  

 

 

As a result, CNN architecture can be constructed by stacking multiple layers of 

convolution and subsampling in an alternating fashion. The parameters of CNN, such 

as the bias  and the kernel weight  are trained using unsupervised approaches 

[6, 7].  

 

 

2. Datasets 

  

This work is to response to the challenge task of automatic detection of Tuberculosis 

(TB) types using datasets that is organised by ImageCLEF as put forward in [8, 9], 

part of CLEF conference to take place in Dublin [10, 11]. 

As explained in [8], data are collected for the evaluation of ImageCLEF tubercu-

losis competition with 500 datasets of 3D CT lung images (512x512xdepth) for train-

ing and further 300 for testing. Among 500 datasets there are 140, 120, 100, 80 and 

60 respectively for five TB types of for Infiltrative (type 1), Focal (type 2), Tubercu-

loma (type 3), Miliary (type 4) and Fibro-cavernous (type 5).  

For the training data, each 3D dataset firstly undergoes pre-processing stage, 

whereby those artefacts are removed, i.e., slices that contain little visual content will 

be excluded. In this way, each dataset includes slices between 100 and 170. Then 

upon each slice, patches of varying sizes are created based on the lung boundary is 

created from its mask file [12]. Figure 1 illustrates the pre-processing by depicting the 

montage of original dataset (top-left), segmented (top-right) and patches segmented 

from one slice (bottom) that contains at least 80% of lung contents, checked by its 

mask. 



  

 

Fig. 1. Data pre-processing stage. Top-left: original datasets; top-right: Segmented; bottom: 

patches from segmented slices. 

 

At present, two sizes of patches are fixed, including 30×30 and 50×50 pixels in an 

attempt to cover both small features of nodules and big characteristics of cavity, 

which are overlapping each other. As a result, each slice entails around 150 patches, 

leading to more than 1500 patches for each dataset being generated with 100 slices. 

Since more than 90% of patches are common among all five TB types, for each TB 

type, around 1000 to 2000 patches are selected, which demonstrate distinguishable 

visual features and are elaborated below. 

For classes 4 (Miliary) and 5 (Cavity), the visual features are apparent with wide-

spread dissemination of small spots (i.e. Mycobacterium tuberculosis) and 

dominating holes (cavities) respectively. However, for classes 1 to 3, visual features 

are not easily distinguishable. Therefore, the selection starts from background patch-

es. In another words, those patches with very similar visual appearances (background) 

are pulled together to form Class 6 for the training, leaving remaining ones assuming 

to be representative. It is very likely that those background patches contain infor-

mation from their individual classes, which does not appear to pose huge problems 
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since the results from classes 1 to 5 are considered when it comes to classification. 

class 6 do not contribute to the final classification results. The interesting fact is that 

about 20% individual patches in Class 6 have been classified into their own individual 

groups, i.e. Types 1 or 2 or 3 instead of Class 6. In summary, in addition to 5 classes 

to be categorised, class 6 is created to include those patches that appear to be common 

among the first 5 classes, which again contains about 1000 patches, which is illustrat-

ed in Table 2. Figure 2 exemplifies the five types of patches that are applied in the 

training, which are all normalised into 30x30 pixels. As discussed above, type 6 re-

mains an extra class to contain those common features shared between types 1 to 5 

with patches randomly selected from type 1 to 3, and 5 without type 4, this is because 

the outstanding features in type 4 with miliary TB spread nearly every slice. Since the 

patches in each class are randomly generated by computers and selected manually, it 

is more likely that many patches belong to both of the five classes and class 6, which 

should not cause too much concerns as the final decision making is based upon the 

probabilities obtained for the first 5 classes. In addition, the patches belong to each 

subject will stay together when dividing between training and test data.  

 

Table 2. The lists the number of patches in the training process. 

 1 2 3 4 5 6 

Training 2000 1000 1000 1500 1400 1000 

Testing 267 161 33 98 91 64 
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Fig. 2. The examples of patches in each class, which are applied for training. From top to bot-

tom, Types 1, 2, 3, 4, 5, and 6. 

 

3.  The Architecture of Deep Learning Convolution Neural Net-

work (CNN) with SVM 

 

The CNN network that has been designed for this task is built upon matConvNet 

package written using Matlab software1. Seven layers of CNN have been designed 

with input data of 30x30 pixels. The filter sizes for each layer are of (6,6), (4,4), (3,3), 

(2,2), (2,2), (3,3), and (1,1) respectively. At layer 6, instead of scoring features into 

one of the six classes using Softmax approach that applies cross-entropy loss interpret-

ing the scores as (unnormalised) log probabilities for each class, this study applies 

support vector machines (SVM) that adapts hinge loss to encourage the correct class 

to have a score higher by a margin than the other class scores. In this way, each class 

has a distinguishing boundary. For example, if a feature belongs to one of the two 

classes with probabilities of 0.51 and 0.49 respectively, the classification is not quite 

convincing. However, a score with a higher margin, e.g., 0.65, is more acceptable.  

Figure 3 illustrates the CNN architecture that is applied in this study. When those 

patches are stitched together for each individual subject, class 6 is ignored, i.e., only 

scores of first five classes are taken into consideration. In this way, computerised 

selection of patches is made possible to ensure that any kind of patch belongs to a 

group .  

                                                           
1 MatConvNet: http://www.vlfeat.org/matconvnet/. Retrieved in May 2017. 
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Fig. 3. The CNN network applied in this study. 

 

4.  Results 

 

Within the existing of 500 datasets that have known ground truth, with reference of 

patch-wise, the classification results are given in Table 3 in percentage with an overall 

classification rate of 96%. 

 

Table 3. Confusion matrix for Patch-wise accuracy. 

 

Class 1 2 3 4 5 6 

1 0.87 0.09 0.03 0 0.01 0 

2 0.02 0.96 0 0 0.01 0.01 

3 0 0.03 0.97 0 0 0 

4 0.04 0 0 0.96 0 0 

5 0.03 0 0 0.01 0.96 0 

6 0 0.04 0 0 0 0.96 

 



During the competition, 300 testing data were supplied at 2 and are ranked based 

on Kappa value 2. This work was ranked 5 out of 23 submissions with 0.2187 Kappa 

value whereas ACC value was the highest (0.4067), implying that the proposed patch-

based deep learning network has achieved averaged best accuracy results in the com-

petition.  

 

5.  Conclusion and Future directions 

 

While the overall classification appears to be reasonable, with 86.49% accuracy rate, 

the result for Type 1 only sustains 50%. Since the testing datasets only include 8 sub-

ject samples in this type, the remaining work is to evaluate the results from real test-

ing datasets when the ground truth is obtained. In order to obtain higher accuracy, it is 

recommended that medical knowledge should be embedded. Additionally, 3D seg-

ments should be also included to further enhance the characteristics that 3D datasets 

entail. 
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