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Abstract. Recently, Meder, Mayrhofer, and Waldmann [1,2] have pro-
posed a model of causal diagnostic reasoning that predicts an interfer-
ence of the predictive probability, Pr(Effect |Cause), in estimating the
diagnostic probability, Pr(Cause |Effect), specifically, that the interfer-
ence leads to an underestimation bias of the diagnostic probability. The
objective of the experiment reported in the present paper was twofold.
A first aim was to test the existence of the underestimation bias in in-
dividuals. Our results indicate the presence of an underestimation of
the diagnostic probability that depends on the value of the predictive
probability. Secondly, we investigated whether this bias was related to
the type of estimation strategy followed by participants. We tested two
main strategies: abductive inference and defeasible deduction. Our re-
sults reveal that the underestimation of diagnostic probability is more
pronounced under abductive inference than under defeasible deduction.
Our data also suggest that defeasible deduction is for individuals the
most natural reasoning strategy to estimate Pr(Cause |Effect).

Keywords: diagnostic inference, defeasible deduction, abduction, causal
Bayes nets

1 Diagnostic Reasoning

Causal inferences can go in two opposite directions. In so-called diagnostic rea-
soning, they go from Effect to Cause. Specifically, in this type of reasoning, one
? All supplementary information as well as all materials, data and scripts for the
statistical analyses can be downloaded from:
https://osf.io/7yc92/?view_only=57085866d97d48a4bbd75938d3b4a6af.
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estimates the probability of Cause given Effect, Pr(c | e). In so-called predictive
reasoning, causal inferences go from Cause to Effect; here the aim is to estimate
the probability of Effect given Cause, Pr(e | c). The present paper focuses on the
former type of reasoning. Diagnostic reasoning is emblematic not only in the
field of medicine, but also in our everyday lives. For example, we reason from
effects to causes when we try to understand why our car refuses to start or why
we failed the final year exam. Here, we focus on the most elementary type of
diagnostic inference, which involves a single cause–effect relation between two
binary events (i.e., events that either occur or do not occur).

In the experiment to be reported, we show that individuals’ reasoning corrob-
orates the predictions of the Structure Induction Model (SIM) recently proposed
by Meder, Mayrhofer, and Waldmann [1,2]. Whereas it is usually assumed that
diagnostic judgments should merely be a function of the empirical conditional
probability Pr(c | e), the SIM predicts that diagnostic inferences are also system-
atically affected by the empirical predictive probability Pr(e | c).

We generalize this result by showing that the influence of the predictive prob-
ability in the estimation of the diagnostic probability is effective whatever the
reasoning strategy followed by the participants. Two strategies have particularly
caught our attention: the estimate of Pr(c | e) by abduction, on the one hand, and
the estimate through defeasible deduction, on the other hand (see Section 3).

2 Estimate of Pr(c | e) via Causal Bayes Nets

Causal Bayes Nets (CBNs) are today the dominant type of model for formalizing
causal inferences [3,4,5,6,7]. Applied to basic diagnostic inferences, CBNs can
define basic causal structures with three parameters.

We first find Pc, which represents the cause base rate, considered here as the
prior probability of the cause. Knowledge of this parameter generally comes from
an external source, for instance, it could be reported by an expert. We then find
the causal power of the target causeWc. This is an unobservable parameter that
can only be estimated from the data provided by nature.1 Finally, to be fully
characterized, the network must be complemented by a nuisance parameter that
represents all possible alternative causes. Associated with the nuisance parameter
is Wa, which is analogues to Wc. It corresponds to the aggregate formed from
the causal power and the base rates of all possible alternative causes, and it
represents the probability that the effect is present while the target cause is
absent.

The activation function (noisy-OR type) of the causal network implies that
the effect can be generated independently by the target cause, or by the amalgam
of the alternative causes, or by these two variables simultaneously [3,8,10]. In

1 According to power PC theory [8], causal power represents the probability of a cause,
acting alone, to produce a effect: Wc =

(
Pr(e | c)−Pr(e |¬c)

)
/
(
1−Pr(e |¬c)

)
. Given

that causes are never observed alone, this is a theoretical measure that can only be
estimated from data.
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Fig. 1. Competing causal structures postulated by the SIM. The figure on the left
hand side represents the structure S0 that lacks a connection between the Cause
of interest and the Effect. The effect can only be triggered by the alternative causes
(abbreviated here as “alt.”). This structure is characterized by only two parameters:
Pc and Wa. The figure on the right hand side represents the structure S1, which
introduces a causal relation between the cause of interest and the effect. S1 is more
complex than S0 because it is defined by three parameters: Pc, Wc, and Wa. Here, the
effect can be produced by the cause of interest, or by alternative causes, or by both
(activation function noisy-OR).

this context, Pr(c | e) is a function of the three parameters defined above, as
follows:

Pr(c | e) = 1− (1− Pc)× Wa

Pc ·Wc +Wa − Pc ·Wc ·Wa
. (1)

2.1 The Structure Induction Model

Meder et al.’s previously mentioned SIM builds on the CBN literature. In their
model, the diagnostic probability depends on the parameters Pc, Wc, Wa, but
also on the uncertainty concerning the causal structure itself. An individual in a
diagnosis situation is often uncertain about which world she inhabits. Figure 1
illustrates the situation in which she does not know whether she is in a world
where there is a causal connection between the cause of interest and the effect
(structure S1) or whether she is in a world where such a link does not exist
(structure S0). In such a situation, estimating the diagnostic probability follows
a three-step process:

1. Based on available data D, the first step consists in estimating, by Bayesian
inference, the said parameters for each structure, S0 and S1, separately. We
will call θ the set of parameters to be estimated. For S0, there will be a guess
of Pc and Wa (the value of Wc is set to 0). For the S1 structure, there will
be a guess of Pc, Wc, and Wa. The posterior probability distribution of the
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parameters for a structure Si is given by

Pr(θ |D ;Si) = Pr(D | θ ;Si) Pr(θ |Si)
Pr(D |Si)

, (2)

where the prior probabilities of the parameters, Pr(θ |Si), are assumed to
follow a Beta(1, 1) distribution. Under a noisy-OR hypothesis, the likelihood
of the data given the parameters values for a structure Si, Pr(D | θ ;Si), are
given by Equations 3 (structure S0) and 4 (structure S1):2

Pr(D | θ ;S0) = [(1− Pc)(1−Wa)]N(¬c, ¬e) · [(1− Pc)Wa]N(¬c, e) ·

[Pc(1−Wa)]N(c, ¬e) · [Pc Wa]N(c, e) ; (3)

Pr(D | θ ;S1) = [(1− Pc)(1−Wa)]N(¬c, ¬e) · [(1− Pc)Wa]N(¬c, e) ·

[Pc(1−Wc)(1−Wa)]N(c, ¬e) · [Pc(Wc +Wa −Wc.Wa)]N(c, e)
. (4)

2. The next step consists in estimating the probabilities of the causal structures
Si themselves. The calculation of these probabilities is carried out for each of
the structures S0 and S1 separately, on the basis of the available empirical
data D and the parameters estimated in the previous step. This leads to
the posterior probabilities of each structure under the data: Pr(S0 |D) and
Pr(S1 |D).3 These two conditional probabilities are given by

Pr(Si |D) = Pr(D |Si) Pr(Si)
Pr(D) , (5)

the probability of the data being given by

Pr(D) =
∑

i∈{0,1}

Pr(D |Si) Pr(Si). (6)

Pr(Si) is the prior probability of structure Si and it was set to 0.5 for both
structures. Pr(D |Si) is the likelihood of the data given the structure and
is computed by integrating over the likelihood functions of the parameters
(see Equations 3 and 4) under structure Si

Pr(D |Si) =
∫∫∫

Pr(D | θ ;Si) Pr(θ |Si) dθ, (7)

2 In these two equations, the terms c and e in the exponent N(c, e), which may also
occur negated, denote contingencies in the data about the target cause and the effect.
For example, N(¬c, e) denotes the number of cases where the cause is missing and
the effect present.

3 A weak empirical contingency between the Cause of interest and the Effect will
suggest that Pr(S0 |D) > Pr(S1 |D). A strong contingency between Cause and Effect
will instead suggest that Pr(S0 |D) < Pr(S1 |D).
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where Pr(θ |Si) denotes the joint prior probability over the structures’ pa-
rameters. For both structures, this probability is assume to follow a Beta(1, 1)
distribution.

3. Finally for S0 and S1, from the structure’ parameters and from the posterior
probabilities of the structures, one calculates two diagnostic probabilities.
These probabilities are computed by integrating over the parameters’ values
weighted by their posterior probabilities:

Pr(c | e ;D,Si) =
∫∫∫

Pr(c | e ; θ, Si)
Pr(D | θ ;Si) Pr(θ |Si)

Pr(D |Si)
dθ, (8)

with
Pr(c | e ; θ, S0) = Pc, (9)

and
Pr(c | e ; θ, S1) = (Wc +Wa −WcWa)Pc

(Wc +Wa −WcWa)Pc + (1− Pc)Wa
. (10)

To obtain a single diagnostic probability Pr(c | e ;D), the diagnostic proba-
bilities for the two structures (see Equation 8) are weighted by the posterior
probabilities of the corresponding structure (see Equations 5 and 6) and
summed together:

Pr(c | e ;D) =
∑

i∈{0,1}

Pr(c | e ;D,Si) Pr(Si |D). (11)

This posterior probability will thus take into account both the uncertainty
concerning the parameters Pc, Wc, Wa, as well as the uncertainty related to
the causal structure.4

In the process that leads to the estimation of the ultimate diagnostic proba-
bility Pr(c | e ;D), the second step is crucial because it is the main source of the
predictions of the SIM (the influence on the diagnostic probability Pr(c | e ;D) of
the predictive probability Pr(e | c)). This step consists in determining the proba-
bility of each of the structures, knowing the data: Pr(Si |D), for i ∈ {0, 1}. Since
individuals have limited cognitive capacities [9,11] and do not have direct access
to the parameters of the structure (e.g., the causal power of the cause of interest
Wc is an unobservable parameter), they estimate Pr(Si |D) by examining the
contingencies between the Cause of interest and the Effect in the available data.
This examination will lead them to estimate the predictive probability Pr(e | c).
The calculation of this value functions as a kind of heuristic to approximate
Pr(Si |D) [12].

Thus, when Pr(e | c) is small, this suggests the absence of a link between
Cause and Effect. In this case, Pr(S0 |D) will be more salient than Pr(S1 |D).
Conversely, when Pr(e | c) is high, it will suggest the existence of a causal link
and Pr(S1 |D) will be more salient than Pr(S0 |D). This mechanism constitutes
4 See [2, p. 299] for more formal details involved in these three calculation steps.
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the main novelty of the SIM, and it predicts the influence of the predictive
probability on diagnostic judgments via the evaluation of the probability of the
causal structure.

2.2 Key Predictions of the Structure Induction Model

The dependence of the diagnostic probability on the predictive probability is
expected to introduce a bias in the estimation of the former. Specifically, the
prediction is that when the predictive probability Pr(e | c) is low, individuals
will tend to underestimate the diagnostic probability Pr(c | e) to a much greater
extent than when Pr(e | c) is high.

This phenomenon can be explained intuitively by considering the situation
in which an agent does not know which of the worlds S0 and S1 she inhabits.
If the empirical predictive probability Pr(e | c) is small, this suggests that there
may not be any link between Cause and Effect, in which case the agent will
tend to believe that she is in world S0. She will then be reluctant to attribute
diagnostic virtues to the Effect, which in turn will lead her to underestimate
the value of the diagnostic probability calculated from the data. On the other
hand, if Pr(e | c) is high, the agent will be inclined to believe that there is a causal
relationship between Cause and Effect, whence she is likely to conclude that she is
in world S1. In that case, the estimate of Pr(c | e) will more objectively reflect the
empirical diagnostic probability of the data. This assumption has been confirmed
empirically by Meder et al. [2]. In this study, we want to reproduce and generalize
their important finding by testing the evolution of the bias as a function of the
strategy that individuals use to estimate the diagnostic probability.

3 Diagnostic Reasoning Strategies: Abduction versus
Defeasible Deduction

The SIM specifies a rational computation procedure which links the diagnostic
judgments of two types of uncertainty (uncertainty about the parameters and
uncertainty concerning the causal structure). In the terminology of Marr [13],
this procedure is at the computational level of the cognitive system. However,
Meder et al. also showed that the execution of the rational calculation will have
consequences at the algorithmic (i.e., psychological) level, in particular, for the
influence of the predictive probability on diagnostic judgments. At the algorith-
mic level, however, the psychological mechanisms underlying the estimation of
the diagnostic probability itself have not been precisely described by these au-
thors. We aim to fill this lacuna by introducing the concept of estimation strategy
of the diagnostic probability.

Bruner, Goodnow, and Austin [14, p. 54] defined the concept of strategy in
a very general way as a pattern of decisions in the acquisition, retention, and
use of information to achieve specific objectives. Siegler and Jenkins [15, p. 11]
clarified this idea further and defined strategies as sets of procedures or possible
methods put in place by individuals to accomplish a given cognitive task.
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Various results suggest that individuals can estimate the diagnostic proba-
bility by following essentially different inferential strategies. In two experiments,
Stilgenbauer and Baratgin [16] showed that individuals preferred to follow an
abductive strategy to estimate Pr(c | e) when the causal rule “If cause then
P(effect)” was made sufficiently plausible (the operator P has the intended
meaning “there is a chance that”). In that kind of situation, participants’ di-
agnostic inferences followed a probabilistic Affirming the Consequent schema
(henceforth ACp). This pattern of inference is also often recognized as the basic
pattern of abduction [17,18,19]:

effect
If cause then P(effect)
P(cause)

Stilgenbauer and Baratgin [16] further showed that individuals came to prefer
estimating the diagnostic probability via a defeasible deduction type of reasoning
when the plausibility of the rule “If cause then P(effect)” decreased. In that
kind of case, individuals tended to reason in accordance with defeasible Modus
Ponens (henceforth MPd; see [20,21,22]):

effect
If effect then P(cause)
P(cause)

There is much evidence supporting the thought that ACp and MPd are the
two major strategies used in diagnostic reasoning. For example, Patel and Groen
[23] showed that medical students naturally form rules of the form “If cause
then P(effect)” to evaluate the likelihood of a disease (Cause) from a set
of symptoms (Effect), that, in other words, their novice participants engaged
in abductive reasoning. By contrast, more experienced doctors were found to
typically construct “If effect then P(cause)” rules to arrive at a diagnosis.
Similarly, in the field of legal reasoning, Prakken and Renooij [24] showed that
it is formally possible to follow a purely abductive strategy on the one hand and
a strategy which uses defeasible deduction schemes on the other hand to trace
the causes in a legal case.

4 Experimental Study of Diagnostic Reasoning Strategies
for Estimating Pr(c | e)

4.1 Predictions

The objective of this research is to test the predictions of the SIM, taking into
account the strategies of diagnostic reasoning followed by participants.5 As pre-
5 This experiment is an extension of Chapter 6 of Jean-Louis Stilgenbauer’s doctoral
thesis [25].



8 Jean-Louis Stilgenbauer et al.

viously explained, the SIM predicts an influence on the diagnostic probability
Pr(c | e) of the predictive probability Pr(e | c), a phenomenon that leads in prac-
tice to an underestimation bias of the diagnostic probability. We assume that
the bias will be more pronounced for abductive estimates than for estimates ob-
tained via defeasible deduction, given that abduction requires to construct a rule
of type “If cause then P(effect),” which is related to the predictive proba-
bility Pr(e | c).6 In this type of situation, Pr(e | c) should become more salient
to participants, and since this value is connected to the underestimation bias
predicted by the SIM, we expect to see here the clearest evidence of interference
with the diagnostic estimate.

4.2 Participants

There were 114 participants in this experiment. All were French native speakers,
studying at IPC Paris (Faculty of Philosophy and Psychology). Of these partici-
pants, 27 were male (M = 20.3, sd = 1.5) and 87 female (M = 20.5, sd = 2). We
eliminated 17 subjects from the protocol: 8 because they left the experiment too
early, and 9 because the latency of their responses was too high (over 3 minutes).

4.3 Materials

To test the impact of predictive probability on diagnostic probability estimates,
we created four diagnostic reasoning situations, keeping empirical Pr(c | e) con-
stant at 0.75 while varying empirical Pr(e | c) across the situations; specifically,
Pr(e | c) ∈ {0.1, 0.3, 0.6, 0.9}. In each situation, participants were asked to es-
timate Pr(c | e). All participants were exposed to the four diagnostic reasoning
contexts, which were presented in an order randomized per participant (within-
subjects factor). On the basis of the SIM, we predicted that participants would
tend to estimate Pr(c | e) below the empirical probability of 0.75, and that their
estimates would depend on the value of Pr(e | c).

The reasoning situations were medical cases in which there were imaginary
viruses (Cause) that could infect people. An infected person might or might not
develop a characteristic symptom (Effect). Each situation was introduced using
a population-based stimulus that summarized a set of observations. The example
6 There is a wealth of evidence showing that people tend to interpret the proba-
bility of an indicative conditional, Pr(If A, then C), as the conditional probability
Pr(C |A); see, e.g., [26,27,28]. Admittedly, the conditional we are considering is not
“If cause then effect,” whose probability will, for most people, equal Pr(e | c),
but rather “If cause then P(effect),” whose probability will, by the same token,
equal Pr(Pe | c), which is not necessarily equal to Pr(e | c). But, first, we are only
claiming that “If cause then P(effect)” makes Pr(e | c) salient, and that it can
do by making Pr(Pe | c) salient (given the similarity between the two expressions).
Second, although the two conditional probabilities are formally distinct, anyone who
has taught a course in modal logic knows that people have a tendency to collapse
iterated or even mixed modalities. As a result, many may fail to distinguish between
Pr(e | c) and Pr(Pe | c) in the first place [29].
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Fig. 2. Stimulus for empirical Pr(e | c) = 0.1 and empirical Pr(c | e) = 0.75. The green
smileys on the left are infected by the virus (called Igorusphère in this example). They
represent people who have developed the characteristic symptom (nausea, in this case).
The yellow smileys in the center represent infected people without the characteristic
symptom. Finally, the green smiley on the right represents an uncontaminated person
with the symptom.

in Figure 2 shows the stimulus corresponding to the values Pr(e | c) = 0.1 and
Pr(c | e) = 0.75. The other three stimuli were defined by the following probability
pairs: Pr(e | c) = 0.3 and Pr(c | e) = 0.75; Pr(e | c) = 0.6 and Pr(c | e) = 0.75; and
Pr(e | c) = 0.9 and Pr(c | e) = 0.75.

To test the impact of reasoning strategy (ACp/MPd) on estimates of Pr(c | e),
we created four non-overlapping groups of participants (between-subjects fac-
tor). Each group was encouraged to estimate the diagnostic probability through
a particular type of reasoning. In addition, we created a situation of “free” rea-
soning to determine the spontaneous and natural estimates of the participants.
Participants were randomly assigned to one of four groups:

1. In the first group, participants were encouraged to reason in accordance
with the abductive schema ACp. To this end, we introduced with the stimuli
the following conditional rule: “If cause then P(effect).” The Cause is
a fictitious virus and the Effect is its characteristic symptom. For example,
with the material shown in Figure 2, the following rule appeared at the top
of the picture: If a patient is infected with the Igorusphère, there
is a chance that the patient has nausea.

2. In the second group, the participants were encouraged to reason in accor-
dance with the defeasible Modus Ponens schema (MPd). Now, at the top of
the picture, there appeared the default rule: “If effect then P(cause).”
For the example of Figure 2, the specific instance was: If a patient has
nausea, there is a chance that the patient has been infected
with the Igorusphère.

3. In the third group, no rules were proposed, leaving participants completely
free to estimate Pr(c | e) in whichever way they preferred. For each stimulus,
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an accompanying sentence merely emphasized the existence of an associa-
tion between Cause (disease) and Effect (the symptom). In this group, we
first introduced the disease and only then the symptom. With Figure 2 ap-
peared the sentence: There is a chance that Igorusphère infection
is associated with nausea.

4. The fourth group was like the third—so this was also a free reasoning group—
except that the order in which disease and symptom were introduced was
reversed. For example, the sentence that now went with the situation de-
picted in Figure 2 was: There is a chance that nausea is associated
with Igorusphère infection.

4.4 Procedure

The experiment was implemented on the SoSci Survey website (https://www.
soscisurvey.de/). Participants were recruited via a group email. Once connected
to the experiment, they were informed that they were supposed to answer all four
questions. It was emphasized that their answers should be spontaneous and pro-
vided fairly quickly. Then, participants were asked to provide some demographic
information: gender, age, native language, type and level of the university course.
After this information had been recorded, the general experimental instructions
were presented. In each of the four situations, participants were asked to esti-
mate Pr(c | e), for the relevant c and e. More specifically, in each situation a new
patient with the characteristic symptom of the virus displayed in the stimulus
was presented to the participants. They were then asked to assess the chances
that this new patient had been infected by the virus. Participants were asked to
give their responses on a scale from 0% to 100%, which appeared beneath the
stimulus, with the cursor initially set at the 0% end of the scale.

4.5 Results

The results are summarized in Figure 3. A repeated measures analysis of vari-
ance (ANOVA) was carried out on the estimates of Pr(c | e) recorded in the
free reasoning groups 3 and 4. There was no order effect related to the terms
virus/symptoms and symptoms/virus: F (1, 46) = 0.083, p > .05. Accord-
ingly, we merged the data from groups 3 and 4 for the remainder of the analysis.

Impact of predictive probability. A repeated measures ANOVA revealed a
main effect of the within-subjects factor predictive probability. The estimates
of diagnostic probability Pr(c | e) were found to depend on the predictive prob-
ability value Pr(e | c). The graph shows the Pr(c | e) estimates to increase (and
to approximate the empirical diagnostic probability Pr(c | e) = 0.75) as the pre-
dictive probability values Pr(e | c) increase. The effect was highly significant:
F (3, 276) = 27.27, p < .001.
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Fig. 3. Mean of diagnostic probability estimates Pr(c | e) performed under defeasible
deduction, free reasoning, and abduction (error bars indicate standard errors). The
diagnostic empirical probability fixed by the stimuli was constant throughout the ex-
periment: Pr(c | e) = 0.75. It is represented on the graph by the dotted horizontal line.
Conversely, the predictive empirical probability Pr(e | c) varied for the four different
stimuli: Pr(e | c) ∈ {0.1, 0.3, 0.6, 0.9}.

Impact of estimation strategy. The ANOVA also showed a main effect of
the between-subjects factor diagnostic probability estimation strategy. The ef-
fect was significant: F (2, 92) = 3.44, p < .05. Multiple comparisons with Bon-
ferroni correction showed that the Pr(c | e) estimates under defeasible deduction
did not vary significantly from estimates made in the free reasoning condition
(p > .05). However, Pr(c | e) estimates made under abduction did vary signifi-
cantly from estimates made under defeasible deduction (p < .01) as well as from
estimates made under free reasoning (p < 0.05). The graph shows that Pr(c | e)
estimates were more strongly underestimated compared to the empirical value
Pr(c | e) = 0.75 under abductive strategy than under defeasible deduction and
free reasoning.

Interaction between predictive probability and estimation strategy.
The statistical analysis did not reveal any interaction between the predictive
probability Pr(e | c) and the diagnostic estimation strategy: F (6, 276) = 0.17,
p > .05.
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4.6 Discussion

Our results are clear evidence that participants systematically underestimated
Pr(c | e), and that this bias was strongly related to the predictive empirical prob-
ability Pr(e | c). For small values of Pr(e | c), the underestimation of Pr(c | e) was
maximal, and it decreased as the predictive probability increased. This result
is important because it strongly supports the key calculation step of the causal
structure probability Pr(Si |D) that was expected in light of Meder, Mayrhofer,
and Waldmann’s Structure Induction Model (SIM).

Our data also show that the best estimates of Pr(c | e) were given under
defeasible Modus Ponens and under free reasoning (there was no significant
difference between these two conditions). This result suggests that defeasible
deduction is the natural inference mode to estimate the diagnostic probability. In
any case, diagnostic estimates made through abduction deviated much more from
the empirical value Pr(c | e) = 0.75. This confirms our initial hypothesis: when
the salience of predictive probability Pr(e | c) is increased by the introduction of
a causal rule of the form “If cause then P(effect),” the underestimation bias
predicted by the SIM gets worse.

Jointly, these results shed interesting new light on the reasoning process
underlying defeasible Modus Ponens in causal contexts. In our opinion, this
reasoning can be considered as an elementary form of inference to the best ex-
planation [30,38] because the major premise of the MPd schema (If effect
then P(cause)) is an explanation-evoking rule or evidential rule which, accord-
ing to Pearl [32], suggests the activation and search for explanation. Coupled
with the operating principle of the SIM—in particular the computation step
of Pr(Si |D)—this inference tends to support the significant role played by ex-
planatory considerations in the process of determining the diagnostic estimate
[33,34,35].

In this work, we only tested a minimal type of explanatory consideration,
one corresponding to the predictive probability Pr(e | c). In actuality, however,
people may well exploit more complex predictive probability-based measures,
such as Popper’s measure [36] or Good’s [37].7 Whether this is so, we leave as a
topic for future research.
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