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Abstract

We address the task of entity-relationship (E-R) retrieval, i.e, given
a query characterizing types of two or more entities and relationships
between them, retrieve the relevant tuples of related entities. Answer-
ing E-R queries requires gathering and joining evidence from multiple
unstructured documents. In this work, we consider entity and rela-
tionships of any type, i.e, characterized by context terms instead of
pre-defined types or relationships. We propose a novel IR-centric ap-
proach for E-R retrieval, that builds on the basic early fusion design
pattern for object retrieval, to provide extensible entity-relationship
representations, suitable for complex, multi-relationships queries. We
performed experiments with Wikipedia articles as entity representa-
tions combined with relationships extracted from ClueWeb-09-B with
FACC1 entity linking. We obtained promising results using 3 different
query collections comprising 469 E-R queries.

1 Introduction

In recent years, we have seen increased interest in using online information sources to find concise and precise
information about specific issues, events, and entities rather than retrieving and reading entire documents and
web pages. Modern search engines are now presenting entity cards, summarizing entity properties and related
entities, to answer entity-bearing queries directly in the search engine result page. Examples of such queries are
“Who founded Intel?” and “Works by Charles Rennie Mackintosh”.

Existing strategies for entity search can be divided in IR-centric and Semantic-Web-based approaches. The
former usually rely on statistical language models to match and rank co-occurring terms in the proximity of the
target entity [1]. The latter consists in creating a SPARQL query and using it over a structured knowledge base
to retrieve relevant RDF triples [2]. Neither of these paradigms provide good support for entity-relationship
(E-R) retrieval, i.e., searching for multiple unknown entities and relationships connecting them. Contrary to
traditional entity queries, E-R queries expect tuples of connected entities as answers. For instance, “Ethnic
groups by country” can be answered by tuples <ethnic group, country>, while “Companies founded by the
creator of Star Wars” is expecting tuples of the format <company, George Lucas>. In essence, an E-R query can
be decomposed into a set of sub-queries that specify types of entities and types of relationships between entities.

Recent work in E-R search followed a Semantic-Web-based approach by extending SPARQL and creating an
extended knowledge graph [3]. However, it is not always convenient to rely on a structured knowledge graph
with pre-defined and constraining entity types. For instance, search over transient information sources, such as
social media [4] or online news [5], require more flexible approaches.
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We hypothesize that it should be possible to generalize the term dependence models to represent entity-
relationships and achieve effective E-R retrieval without entity type restrictions. We propose a novel IR-centric
approach using fusion-based design patterns for E-R retrieval from unstructured texts. We make the first step
in that direction by presenting an early fusion strategy that consists in creating meta-documents for entities and
entity-pairs (relationships) and then apply standard retrieval models.

In order to leverage information about entities and relationships in a corpus, it is necessary to create a
representation of entity related information that is amenable to E-R search. In our approach we focus on sentence
level information about entities although it can be applied to more complex methods for text segmentation.
We use Wikipedia entity articles and entity-pairs occurrences from ClueWeb-09-B data set with FACC1 text
annotations that refer to entities found in the text, including the variances of their surface forms. Each entity
is designated by its unique ID and for each unique entity instance we created entity documents comprising a
collection of sentences that contain the entity. These context documents are indexed, comprising the entity
index. The same is done by creating entity-pair documents and the entity-pair index. These two indices enable
us to execute E-R queries using an early fusion strategy with two different retrieval models, Language Models
and BM25. The approach was tested on a reasonably large-scale scenario, involving 4.1 million unique entities
and 71.7 M of entity pairs.

2 Related Work

Li et al. [6] were the first to study relationship queries for structured querying entities over Wikipedia text with
multiple predicates. This work used a query language with typed variables, for both entities and entity pairs,
that integrates text conditions. First it computes individual predicates and then aggregates multiple predicate
scores into a result score. The proposed method to score predicates relies on redundant co-occurrence contexts.

Yahya et al. [3] defined relationship queries as SPARQL-like subject-predicate-object (SPO) queries joined
by one or more relationships. They cast this problem into a structured query language (SPARQL) and extended
it to support textual phrases for each of the SPO arguments. Therefore it allows to combine both structured
SPARQL-like triples and text simultaneously.

In the scope of relational databases, keyword-based graph search has been widely studied, including ranking
[7]. However, these approaches do not consider full documents as graph nodes and are limited to structured
data. While searching over structured data is precise it can be limited in various respects. To increase the recall
when no results are returned and enable prioritization of results when there are too many, Elbassuoni et al. [8]
propose a language-model for ranking results. Similarly, the models like EntityRank by Cheng et al. [9] and
Shallow Semantic Queries by Li et al. [6], relax the predicate definitions in the structured queries and, instead,
implement proximity operators to bind the instances across entity types. Yahya et al. [3] propose algorithms for
application of a set of relaxation rules that yield higher recall.

Web documents contain term information that can be used to apply pattern heuristics and statistical analysis
often used to infer entities as investigated by [10], [11] and [12]. In fact, early work by Conrad and Utt [10]
proposes a method that retrieves entities located in the proximity of a given keyword. They show that a fixed-size
window around proper-names can be effective for supporting search for people and finding relationship among
entities. Similar considerations of the co-occurrence statistics have been used to identify salient terminology, i.e.
keyword to include in the document index [11].

Existing approaches to the problem of entity-relationship (E-R) search are limited by pre-defined sets of
both entity and relationship types. In this work, we generalize the problem to allow the search for entities and
relationships without any restriction to a given set and we propose an IR-centric approach to address it.

3 Entity-Relationship Queries

E-R queries aim to obtain a ordered list of entity tuples TE = <Ei, Ei+1, ..., En> as a result. Contrary to entity
search queries where the expected result is a ranked list of single entities, results of E-R queries should contain
two or more entities. For instance, the complex information need “Silicon Valley companies founded by Harvard
graduates” expects entity-pairs (2-tuples) <company, founder> as results. In turn, “European football clubs in
which a Brazilian player won a trophy” expects triples (3-tuples) <club, player, trophy> as results.

Each pair of entities Ei, Ei+1 in an entity tuple is connected with a relationship R(Ei, Ei+1). A complex
information need can be expressed in a relational format, which is decomposed into a set of sub-queries that
specify types of entities E and types of relationships R(Ei, Ei+1) between entities. For each relationship query
there is one query for each entity involved in the relationship. Thus a E-R query Q that expects 2-tuples, is
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mapped into a triple of queries (QEi , QRi,i+1 , QEi+1), where QEi and QEi+1 are the entity types for Ei and
Ei+1 respectively, and QRi,i+1 is a relationship type describing R(Ei, Ei+1). For instance, “football players who
dated top models” with answers such as <Cristiano Ronaldo, Irina Shayk>) is represented as three queries
QEi = {football players}, QRi,i+1 = {dated}, QEi+1 = {top models}.

Consequently, we can formalize that a query Q contains a set of sub-queries QE = {QE1 , QE2 , ..., QEn} and
a set of sub-queries QR = {QR1,2 , QR2,3 , ..., QRn−2,n−1}. Automatic mapping of terms from a natural language
information need Q to queries QEi or QRi,i+1 is out of the scope of this work and can be seen as a problem of
query understanding [13]. We assume that the information needs are decomposed into constituent queries either
by processing the original query Q or by user input through an interface that enforces this structure Q = {QEi ,
QRi,i+1 , QEi+1}.

4 Early Fusion

E-R retrieval requires collecting evidence for both entities and relationships that can be spread across multiple
documents. Therefore, it is not possible to create direct term-based representations. Documents serve as bridges
between entities, relationships and queries. We propose an early fusion strategy specific to E-R retrieval that is
inspired on the early fusion design pattern for object retrieval [14]. Our design pattern basically can be thought
as creating a meta-document DEi for each entity, as well as, a meta-document DRi,i+1 for each entity-pair
(relationship). These meta-documents are created by extracting entity and entity-pairs contexts from the corpus
of raw documents. For each raw document D we extract entity or entity-pair occurrences and associated terms.

The relevance score for an entity tuple TE can then be calculated by summing the score of individual entity
meta-documents and entity-pairs meta-documents using standard retrieval models. Formally, the relevance score
of an entity tuple TE given a query Q is calculated by summing individual relationship and entity relevance scores
for each QRi,i+1 and QEi in Q, as follows:

score(TE , Q) =

n−1∑
i=1

score(DRi,i+1 , QRi,i+1)w(Ri,i+1, D) +

n∑
i=1

score(DEi , QEi)w(Ei, Ri,i+1)w(Ei, D) (1)

where w(Ri,i+1, D) is the raw document-relationship association weight, w(Ei, Ri,i+1) is the entity-relationship
association weight and w(Ei, D) is the raw document-entity association weight. In this work we use binary
associations weights indicating the presence/absence of an entity mention in a document, or a relationship.
However, other weight methods can be used. We also use a binary association weight for w(Ei, Ri,i+1) which
represents the presence of a relevant entity Ei to a sub-query QEi in a relationship Ri,i+1 relevant to a sub-query
QRi,i+1 .

For computing both score(DRi,i+1 , QRi,i+1) and score(DEi , QEi) any retrieval model can be used. In this
work we run experiments using Dirichlet smoothing Language Models (LM) and BM25. Considering, LM the
scores can be computed as follows:

scoreLM (DRi,i+1 , QRi,i+1) =

|QRi,i+1 |∑
j=1

log

 tfqj ,DRi,i+1 + µR
cfR

qj

|CR|

|DRi,i+1 |+ µR

 (2)

scoreLM (DEi , QEi) =

|QEi |∑
j=1

log

 tfqj ,DEi + µE
cfE

qj

|CE |

|DEi |+ µE

 (3)

where qj is a term of a sub-query, tfqj ,DRi,i+1 or tfqj ,DEi is the frequency of a term in the meta-document

DRi,i+1 or DEi , Cf the frequency of the term in the entire collection of either entities or relationships (entity-
pairs) and µ is the Dirichlet prior for smoothing. Using BM25, the score is computed as summation over query
terms, as follows:

scoreBM25(DRi,i+1 , QRi,i+1) =

|QRi,i+1 |∑
j=1

tfqj ,DRi,i+1 (K1 + 1)

tfqj ,DRi,i+1 +K1(1− b+ b |DRi,i+1 |
avg(DRi,i+1 )

IDF (qj) (4)
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scoreBM25(DEi , QEi) =

|QEi |∑
j=1

tfqj ,DEi (K1 + 1)

tfqj ,DEi +K1(1− b+ b |Ei|
avg(DEi )

IDF (qj) (5)

where IDF (qj) is computed as
N−n(qj)+0.5
n(qj)+0.5 with N as the number of meta-documents on the respective

collection and n(qj) the number of meta-documents where the term occurs.

5 Experimental Setup

5.1 Test Collections

We ran experiments with a total of 469 E-R queries aiming for 2-tuples of entities as results. We leave experimen-
tation with longer E-R queries (e.g. 3-tuples) for future work. Relevance judgments consist of pairs of entities
linked to Wikipedia.

Query sets for E-R retrieval are scarse. Generally entity retrieval query sets are not relationship-centric [3].
To the best of our knowledge there are only 3 test collections specifically created for E-R retrieval: ERQ [6],
COMPLEX [3] and RELink [15]. Neither ERQ nor COMPLEX provide complete relevance judgments and
consequently, we manually evaluated each answer in our experiments.

ERQ consists of 28 queries that were adapted from INEX17 and OWN28 initiatives. Twenty two of the
queries express relationships, but already have one entity instance named and fixed in the query (e.g. “Find
Eagles songs”). Only 6 queries ask for pairs of unknown entities, such as “Find films starring Robert De Niro
and please tell directors of these films.”.

COMPLEX queries were created with a semi-automatic approach. For a specific domain in a knowledge
graph, a pivot entity is selected based on prior domain popularity. A chain of 2-4 entities connected to the
entity is created based on a number of facts connecting to the pivot table. A set of different chains from several
domains was given to human editors to formulate E-R queries answered by the entities in each chain. The query
set contains 70 queries from which we removed 10 that expect 3-tuples of entities. COMPLEX consists of pure
relationship-centric queries for unknown pairs of entities, such as “Currency of the country whose president is
James Mancham “Kings of the city which led the Peloponnesian League.” and “Who starred in a movie directed
by Hal Ashby?”.

RELink queries and relevance judgments were also created with a semi-automatic approach. A sample of
relational tables from Wikipedia was used as input to human editors for manually creating E-R queries. Columns
from selected tables represent entity types and the table structure implies one or more relationships among the
entities. Relevance judgments are automatically collected from each table. RELink comprises 600 queries aiming
2-tuples and 3-tuples of entities from which we use the subset of 381 queries aiming for pairs of related entities
as results.

5.2 Data and Indexing

We aim to answer E-R queries without specific or pre-defined entity or relationship types. Therefore we use
unstructured texts mentioning entities and relationships between entities to create our indices. We use a dump
of English Wikipedia from October 2016 and the ClueWeb-09-B1 collection combined with FACC1[16] text span
annotations with links to Wikipedia entities (via Freebase). The entity linking precision and recall in FACC1
are estimated at 85% and 70-85%, respectively [16].

For our experiments we create two main indices: one for entity extractions and one for entity pairs (relation-
ships) extractions. For a given Wikipedia article representing an entity we index each sentence and consider it
as an entity occurrence extraction in the entity index. The Wikipedia dump used contains 4.1M entities. We use
ClueWeb-09-B corpus with FACC1 annotations to extract relationship occurrences using an Open Information
Extraction method like [17]. We look for co-occurring entities in the same sentence of ClueWeb-09-B and we
extract the separating string, i.e., the context of the relationship connecting them. We obtained 418M entity
pairs extractions representing 71M unique entity-relationships. We ran our experiments using Lucene and made
use of GroupingSearch for grouping extractions by entity and entity pair on query time.

1http://www.lemurproject.org/clueweb09/
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5.3 Retrieval Method

We adopted a two stage retrieval approach. First, queries QEi ,QEi+1 are submitted against the entity index
and QRi,i+1 is submitted against the entity-pair index. Initial sets of top 20K results grouped by entity or
entity-pairs, respectively, are retrieved using Lucene’s default search settings. Second, the score functions of
the specific retrieval model are calculated for each set, using an in-house implementation. This process is easily
parallelized. The final ranking score for each entity-pair is then computed using the early fusion strategy equation
for score(TE , Q).

We do not optimize the Dirichlet priors µE and µR in language models and set them equal to the average
entity and relationships extractions length, respectively. The same happens with K1 and b in BM25, set to
default values of 1.2 and 0.75, respectively. Evaluation scores are reported on the top 100 entity-pair results.

6 Results

Table 1: Results of early fusion strategy using LM and BM25 on different query collections.

ERQ
MAP P@10 NDCG@10 MRR

LM 0.1345 0.081 0.1468 0.1810
BM25 0.1254 0.089 0.1563 0.1596

COMPLEX
MAP P@10 NDCG@10 MRR

LM 0.1455 0.0567 0.1702 0.1437
BM25 0.1223 0.049 0.1497 0.1416

RELink
MAP P@10 NDCG@10 MRR

LM 0.0221 0.0084 0.0254 0.0260
BM25 0.0229 0.0078 0.0247 0.0255

We present the results of our experiments in Table 1. We report scores of four different retrieval metrics:
Mean Average Precision at 100 results (MAP), precision at 10 (P@10), normalized discounted cumulative gain
at 10 (NDCG@10) and mean reciprocal rank (MRR). The first observation is concerning the retrieval model
(LM vs BM25). On ERQ, LM shows higher MAP and MRR while BM25 has higher scores for metrics at top 10
results (P@10 and NDCG@10). Although results of both retrieval models are similar, LM outperforms BM25 for
every metric on COMPLEX query collection. BM25 has higher MAP on RELink but it is lower on the remaining
metrics.

The second observation is concerned with the RELink results which are far lower for both retrieval models
on all metrics. The RELink collection is by far the largest collection from the 3, comprising a total of 381
queries. It contains several queries regarding dates. For instance, the query “Find australian films of 1981 and
their directors.” returns several entity-pairs comprising australian films and directors of those films but not
from 1981. The most common relationship query QR in this collection is “located in” which is a very frequent
relationship string in our entity-pair index. We hypothesize that returning 20k entity-pairs on the first passage
might result insufficient for RELink as it reduces the search space. In the future, we will further experiment
with higher number of results.

7 Concluding Remarks

Work reported in this paper is concerned with expanding the scope of entity-relationship search methods to
enable search over large corpora with flexible entity types and complex relationships. We have presented an
early fusion strategy for fusion-based E-R retrieval. We anticipate that such strategy can be used as flexible
baseline for further experimentation. For the sake of simplicity and clarity, we have reported on the basic E-R
retrieval comprising a single relationship between two entities. In future work, we will report experiments with
multiple relationships, as well as, an alternative late fusion strategy for E-R retrieval.
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