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1 Introduction

A fundamental problem in Description Logics (DLs) is satisfiability, the problem of
checking if a given DL terminology T remains sufficiently unconstrained to enable at
least one instance of a given DL concept C to exist. It has been known for some
time that lazy unfolding is an important optimization technique in model building
algorithms for satisfiability [2]. It is also imperative for large terminologies to be
manipulated by an absorption generation process to maximize the benefits of lazy
unfolding in such algorithms, thereby reducing the combinatorial effects of disjunction
in underlying chase procedures [5]. In this paper, we propose a generalization of
the absorption theory and algorithms developed by Horrocks and Tobies [6, 7]. The
generalization, called binary absorption, makes it possible for lazy unfolding to be used
for parts of terminologies not handled by current absorption algorithms and theory.

The basic idea of binary absorption is to avoid the need to internalize (at least
some of the) terminological axioms of the form

(A1 uA2) v C,

where the Ai denote primitive concepts and C a general concept. This idea, cou-
pled with equivalences and another idea relating to “role absorptions” developed by
Tsarkov and Horrocks [8], makes it possible for an algorithm to absorb, e.g., the
definition

SPECIALCLIENT .= CLIENT u
(∃Buy.(EXPENSIVE t PROFITABLE)) u
(∃Recommend−.TRUSTEDCLIENT)

as the set of axioms



SPECIALCLIENT v CLIENT u
(∃Buy.(EXPENSIVE t PROFITABLE)) u
(∃Recommend−.TRUSTEDCLIENT)

EXPENSIVE v A1
PROFITABLE v A1

A1 v ∀Buy−.A2
CLIENT uA2 v A3

TRUSTEDCLIENT v ∀Recommend.A4
A3 uA4 v SPECIALCLIENT

in which the primitive concepts A1, A2, A3 and A4 are new internal primitive concepts
introduced by the absorption algorithm.

There is another reason that binary absorption proves useful, beyond the well-
documented advantages of reducing the need for internalization of general termino-
logical axioms. In particular, Palacios has explored the possibility of a tighter inte-
gration of conjunctive query optimization and DL consistency checking in which a
query is mapped to a concept in such a way that view integration becomes an auto-
matic consequence of an initial chase phase for optimization [4, 9]. When used for
such purposes, it becomes crucial for DL reasoners to support special case (and likely
incomplete) deterministic modes of model building. Binary absorption enables such
modes to incorporate reasoning about materialized views in a terminology, such as
SPECIALCLIENT above.

The organization of the paper is as follows. The next section is a review of the
basic definitions introduced by Horrocks and Tobies [6] for the notion of a DL, of
terminologies and satisfiability, and an important abstraction that relates to model
building algorithms for satisfiability: the notion of a witness. In Section 3, we define
binary absorptions, and give a related lemma that establishes an additional sufficiency
condition for correct binary absorptions. (Note that existing sufficiency conditions
given by Horrocks and Tobies [6, 7] for correct non-binary absorptions are inherited
in our formulation.) In Section 4, we present an absorption algorithm for binary
absorptions that derives from earlier procedures [1, 6, 7]. Our summary comments
follow in Section 5.

2 Preliminaries

The definitions and lemmas in this section are largely reproduced from Horrocks and
Tobies [7]. The main difference is in our formulation of a description logic immediately
following in which we have an additional stipulation that the logic includes the concept
forming operations of ALCI.

Definition 2.1. (Description Logic) Let L be a DL based on infinite sets of atomic
concepts NC and atomic roles NR. We identify L with the set of its well-formed con-
cepts and require L to be closed under sub-concepts and the concept forming operations
of dialect ALCI: we require that if NR contains R and L contains C1 and C2, then L
also contains ¬C1, C1 u C2, C1 t C2, >, ⊥, ∃R.C1, ∃R−.C1, ∀R.C1 and ∀R−.C1.



An interpretation I is a pair I = (∆I , ·I), where ∆I is a non-empty set and ·I
is a function mapping NC to subsets of ∆I and NR to subsets of ∆I ×∆I . Each L
is associated with a set Int(L) of admissible interpretations that (1) must be closed
under isomorphisms, and that (2) satisfies I ∈ Int(L) ⇔ I ′ ∈ Int(L) for any two
interpretations I and I ′ that agree on NR. Each L must also come with a semantics
that allows any I ∈ Int(L) to be extended to each concept C ∈ L in a way that satisfies
the following conditions:

(I1) the concept forming operations of ALCI are mapped in the standard way,
and

(I2) the interpretation CI of a compound concept C ∈ L depends only on the
interpretation of those atomic concepts and roles that appear syntactically in C.

Definition 2.2. (TBox, Satisfiability) A TBox T for L is a finite set of axioms
of the form C1 v C2 or C1

.= C2 where Ci ∈ L. If T contains A v C or A
.= C for

some A ∈ NC, then we say that A is defined in T .
Let L be a DL and T a TBox. An interpretation I ∈ Int(L) is a model of T ,

written I |= T , iff CI
1 ⊆ CI

2 holds for each C1 v C2 ∈ T , and CI
1 = CI

2 holds for each
C1

.= C2 ∈ T . A concept C ∈ L is satisfiable with respect to a TBox T iff there is an
I ∈ Int(L) such that I |= T and such that CI 6= ∅.

A TBox T is called primitive iff it consists entirely of axioms of the form A
.= C

with A ∈ NC, each A ∈ NC appears in at most one left hand side of an axiom, and
T is acyclic. Acyclicity is defined as follows: A1 ∈ NC directly uses A2 ∈ NC if
A1

.= C ∈ T and A2 occurs in C; uses is the transitive closure of “directly uses”.
Then T is acyclic if there is no A ∈ NC that uses itself.

Model building algorithms for checking the satisfaction of a concept C operate by
manipulating an internal data structure (e.g., in the form of a node and edge labelled
rooted tree with “back edges”). The data structure “encodes” a partial description of
(eventual) interpretations I for which CI will be non-empty. Such a partial descrip-
tion will almost always abstract details on class membership for hypothetical elements
of ∆I and on details relating to the interpretation of roles. To talk formally about ab-
sorption and lazy evaluation, it is necessary to codify the idea of a partial description.
Horrocks and Tobies have done this by introducing the following notion of a witness,
of an interpretation that stems from a witness, and of what it means for a witness to
be admissible with respect to a given terminology.

Definition 2.3. (Witness) Let L be a DL and C ∈ L a concept. A witness W =
(∆W , ·W ,LW) for C consists of a non-empty set ∆W , a function ·W that maps NR to
subsets of ∆W ×∆W , and a function LW that maps ∆W to subsets of L such that:

(W1) there is some x ∈ ∆W with C ∈ LW(x),

(W2) there is an interpretation I ∈ Int(L) that stems from W, and

(W3) for each interpretation I ∈ Int(L) that stems from W, x ∈ CI if C ∈
LW(x).



An interpretation I = (∆I , ·I) is said to stem from W if ∆I = ∆W , ·I |NR = ·W , and
for each A ∈ NC, A ∈ LW(x) implies x ∈ AI and ¬A ∈ LW(x) implies x /∈ AI .

A witness W is called admissible with respect to a TBox T if there is an interpre-
tation I ∈ Int(L) that stems from W with I |= T .

The important properties satisfied by a witness are captured by the following lemmas
by Horrocks and Tobies [7].

Lemma 2.1. Let L be a DL. A concept C ∈ L is satisfiable w.r.t. a TBox T iff it has
a witness that is admissible w.r.t. T .

Lemma 2.2. Let L, C, T and W be a DL, a concept in L, a TBox for L and a witness
for C, respectively. Then W is admissible w.r.t. T if, for each x ∈ ∆W :

C1 v C2 ∈ T implies ¬C1 t C2 ∈ LW(x),
C1

.= C2 ∈ T implies ¬C1 t C2 ∈ LW(x) and
C1

.= C2 ∈ T implies C1 t ¬C2 ∈ LW(x).

3 Binary Absorptions

Our generalization of the notion of an absorption developed by Horrocks and Tobies [6,
7] is given as follows.

Definition 3.1. (Binary Absorption) Let L and T be a DL and a TBox, respec-
tively. A binary absorption of T is a pair of TBoxes (Tu, Tg) such that T ≡ Tu ∪ Tg

and Tu contains only axioms of the form A1 v C, the form ¬A1 v C or the form
(A1 uA2) v C, where A1 and A2 are primitive concepts occurring in NC.

A binary absorption (Tu, Tg) of T is called correct if it satisfies the following con-
dition. For each witness W and x ∈ ∆W , if

(A1 uA2) v C ∈ Tu and {A1, A2} ⊆ LW(x) implies C ∈ LW(x),
A v C ∈ Tu and A ∈ LW(x) implies C ∈ LW(x),

¬A v C ∈ Tu and ¬A ∈ LW(x) implies C ∈ LW(x),
C1 v C2 ∈ Tg implies ¬C1 t C2 ∈ LW(x),
C1

.= C2 ∈ Tg implies ¬C1 t C2 ∈ LW(x) and
C1

.= C2 ∈ Tg implies C1 t ¬C2 ∈ LW(x),

(1)

then W is admissible w.r.t. T . A witness that satisfies (1) will be called unfolded.

The distinguishing feature of binary absorption is the addition of the first implication
in condition (1). This allows additional axioms in Tu to be dealt with in a deterministic
manner, as we illustrate in our introductory example. If a label of a node contains
neither primitive concept A1 nor A2, then nothing further is required. There is,
however, a new requirement for computing the intersection of sets of primitive concepts
during model building when a new primitive concept is added to a node. (For this
problem, we refer the reader to algorithms developed by Demaine, Lopez-Ortiz and
Munro [3].)

The next three lemmas by Horrocks and Tobies [7] hold without modification.



Lemma 3.1. Let (Tu, Tg) be a correct binary absorption of T . For any C ∈ L, C has
a witness that is admissible w.r.t. T iff C has an unfolded witness.

Lemma 3.2. Let T be a primitive TBox and Tu defined as

{A v C,¬A v ¬C | A
.= C ∈ T }.

Then (Tu, ∅) is a correct absorption of T .

Lemma 3.3. Let (Tu, Tg) be a correct absorption of a TBox T .

1. If T ′ is an arbitrary TBox, then (Tu, Tg ∪T ′) is a correct absorption of T ∪T ′.

2. If T ′ is a TBox that consists entirely of axioms of the form A v C, where
A ∈ NC and A is not defined in Tu, then (Tu ∪ T ′, Tg) is a correct absorption of
T ∪ T ′.

The main benefit of binary absorptions is that they allow the following additional
sufficiency condition for correct absorptions.

Lemma 3.4. Let (Tu, Tg) be a correct absorption of a TBox T . If T ′ is a TBox that
consists entirely of axioms of the form (A1 u A2) v C, where {A1, A2} ⊆ NC and
where neither A1 nor A2 is defined in Tu, then (Tu ∪ T ′, Tg) is a correct absorption of
T ∪ T ′.

Proof. Observe that Tu∪Tg ∪T ′ ≡ T ∪T ′ holds trivially. Let C ∈ L be a concept and
W be an unfolded witness for C w.r.t. the absorption (Tu ∪ T ′, Tg). From W, define
a new witness W ′ for C by setting ∆W ′

= ∆W , ·W ′
= ·W , and defining LW ′

to be the
function that, for every x ∈ ∆W ′

, maps x to the set

LW(x) ∪ {¬A1,¬A2 | (A1 uA2) v C ′ ∈ T ′, {A1, A2} ∩ LW(x) = ∅}
∪ {¬A1 | (A1 uA2) v C ′ ∈ T ′, A1 /∈ LW(x), A2 ∈ LW(x)}
∪ {¬A2 | (A1 uA2) v C ′ ∈ T ′, A1 ∈ LW(x), A2 /∈ LW(x)}.

It is easy to see that W ′ is also unfolded w.r.t. the absorption (Tu ∪ T ′, Tg). This
implies that W ′ is also unfolded w.r.t. the (smaller) absorption (Tu, Tg). Since (Tu, Tg)
is a correct absorption of T , there exists an interpretation I stemming from W ′ such
that I |= T . We show that I |= T ′ also holds. Assume I 6|= T ′. Then there is an
axiom (A1 u A2) v C1 ∈ T ′ and an x ∈ ∆I such that x ∈ (A1 u A2)I but x /∈ CI

1 .
By construction of W ′, x ∈ (A1 uA2)I implies {A1, A2} ⊆ LW ′

(x) because otherwise
{¬A1,¬A2} ∩ LW

′
(x) 6= ∅ would hold in contradiction to (W3). Then, since W ′ is

unfolded, C1 ∈ LW
′
(x), which, again, by (W3), implies x ∈ CI

1 , a contradiction.
Hence, we have shown that there exists an interpretation I stemming from W ′

such that I |= Tu ∪T ′ ∪Tg. By construction of W ′, any interpretation stemming from
W ′ also stems from W, hence W is admissible w.r.t. T ∪ T ′.



4 A Binary Absorption Algorithm

In this section, we present a two-phase algorithm for generating binary absorptions
that derives from the absorption algorithm for the FaCT system outlined in earlier
work [1, 6, 7]. Our algorithm also incorporates role absorption, similar to the work
of Tsarkov and Horrocks [8]. The notable differences in our algorithm happen in the
second phase during which

• an opportunity for unary absorption now has a very low priority,

• binary absorption replaces unary absorption in becoming a high priority, and

• primitive concepts are introduced by the procedure to enable further binary
absorptions and to absorb existential role restrictions.

The algorithm is given a TBox T containing arbitrary axioms, and proceeds by con-
structing four TBoxes, Tg, Tprim, Tuinc, and Tbinc, such that: T ≡ Tg ∪ Tprim ∪ Tuinc ∪
Tbinc, Tprim is primitive, Tuinc consists only of axioms of the form A1 v C, and Tbinc

consists only of axioms of the form (A1 uA2) v C, where {A1, A2} ⊆ NC and neither
A1 nor A2 are defined in Tprim. Here, Tuinc contains unary absorptions and Tbinc

contains binary absorptions.
In the first phase, we move as many axioms as possible from T into Tprim. We

initialize Tprim = ∅ and process each axiom X ∈ T as follows.

1. If X is of the form A
.= C, A is not defined in Tprim, and Tprim∪{X} is primitive,

then move X to Tprim.

2. If X is of the form A
.= C, then remove X from T and replace it with axioms

A v C and ¬A v ¬C.

3. Otherwise, leave X in T .

In the second phase, we process axioms in T , either by simplifying them or by
placing absorbed components in either Tuinc or Tbinc. We place components that can-
not be absorbed in Tg. To ease axiom manipulation, we introduce a set representation.
We let G = {C1, . . . , Cn} represent the axiom > v (C1 t . . . t Cn). When removing
an axiom from T , we automatically convert it to a set G. Similarly, when adding G
to T , we automatically convert it out of set notation. Details are as follows.

1. If T is empty, then return the binary absorption

({A v C,¬A v ¬C | A
.= C ∈ Tprim} ∪ Tuinc ∪ Tbinc, Tg).

Otherwise, remove an axiom G from T .

2. Try to simplify G.

(a) If there is some ¬C ∈ G such that C is not a primitive concept, then add
(G∪NNF(¬C) \ {¬C} to T , where the function NNF(·) converts concepts
to negation normal form. Return to Step 1.



(b) If there is some C ∈ G such that C is of the form (C1uC2), then add both
(G ∪ {C1}) \ {C} and (G ∪ {C2}) \ {C} to T . Return to Step 1.

(c) If there is some C ∈ G such that C is of the form C1 t C2, then apply
associativity by adding (G∪{C1, C2}) \ {C1 tC2} to T . Return to Step 1.

3. Try to partially absorb G.

(a) If {¬A1,¬A2} ⊂ G, (A3uA4) v A1 ∈ Tbinc, and A2 is not defined in Tprim,
then do the following. If there is an axiom of the form (A1 u A2) v A′

in Tbinc, add G ∪ {¬A′} \ {¬A1,¬A2} to T . Otherwise, introduce a new
internal primitive concept A′, add (G∪{¬A′})\{¬A1,¬A2} to T , and add
(A1 uA2) v A′ to Tbinc. Return to Step 1.

(b) If {¬A1,¬A2} ⊂ G, and neither A1 nor A2 are defined in Tprim, then do
the following. If there is an axiom of the form (A1 uA2) v A′ in Tbinc, add
G∪{¬A′}\{¬A1,¬A2} to T . Otherwise, introduce a new internal primitive
concept A′, add (G ∪ {¬A′}) \ {¬A1,¬A2} to T , and add (A1 u A2) v A′

to Tbinc. Return to Step 1.
(c) If ∀R.C ∈ G, then do the following. Introduce a new internal primitive

concept A′ and add both ¬C v ∀R−.A′ and (G ∪ {¬A′}) \ {∀R.C} to T .
Return to Step 1.

(d) If ∀R−.C ∈ G, then do the following. Introduce a new internal primitive
concept A′ and add both ¬C v ∀R.A′ and (G ∪ {¬A′}) \ {∀R−.C} to T .
Return to Step 1.

4. Try to unfold G. If, for some A ∈ G (resp. ¬A ∈ G), there is an axiom A
.= C

in Tprim, then substitute A ∈ G (resp. ¬A ∈ G) with C (resp. ¬C), and add G
to T . Return to Step 1.

5. Try to absorb G. If ¬A ∈ G and A is not defined in Tprim, add A v C to Tuinc

where C is the disjunction of all the concepts in G \ {¬A}. Return to Step 1.

6. If none of the above are possible (G cannot be absorbed), add G to Tg. Return
to Step 1.

Termination of our procedure can be established by a straightforward counting
argument involving concept constructors in T . We now prove the correctness of our
algorithm using induction. We use the following four lemmas in our induction step.
The first two lemmas prove, in combination, that both Step 3(a) and Step 3(b) of
our algorithm is correct. The last two lemmas prove Step 3(c) and Step 3(d) correct
respectively.

Lemma 4.1. Let T1, T2, and T denote TBoxes, C ∈ L an arbitrary concept, and A a
primitive concept not used in C or T . If T1 is of the form

T1 = T ∪ {(C1 u C2 u C3) v C4},

then C is satisfiable with respect to T1 iff C is satisfiable with respect to

T2 = T ∪ {(C1 u C2) v A, (A u C3) v C4}.



Proof. First we prove the if direction. Assume C is satisfiable with respect to T1. For
each interpretation I such that I |= T1 and CI 6= ∅, we extend to an interpretation I ′
such that I ′ |= T2 and CI′ 6= ∅. First, set I ′ = I. For each x ∈ ∆I such that x ∈ CI

1

and x ∈ CI
2 , add x to AI′

. Then, I ′ |= T2.
For the only if direction, assume C is satisfiable with respect to T2. For each

interpretation I ∈ Int(L) such that I |= T2 and CI 6= ∅, we show that I |= T1. The
proof is by contradiction. Assume I 6|= T1. It must be the case that (C1 u C2 u
C3) v C4 ∈ T1 does not hold, since the rest of T1 is a subset of T2. Therefore, there
exists x ∈ ∆I such that x ∈ CI

1 ∩ CI
2 ∩ CI

3 , and x /∈ CI
4 . But, in this case either

(C1 u C2) v A ∈ T2 or (A u C3) v C4 ∈ T2 must not hold. A contradiction.

The following lemma proves that instead of introducing a new primitive concept
every time we execute Step 3(a) (or Step 3(b)) of our algorithm, we may instead reuse
a previously introduced primitive concept. We use H to denote an arbitrary axiom.

Lemma 4.2. Let T1, T2, and T denote TBoxes, C ∈ L an arbitrary concept, A a
primitive concept not used in C or T , and A1, A2, primitive concepts introduced by
Step 3(a) (or Step 3(b)) of our algorithm modified such that a new primitive is always
introduced. If T1 is of the form

T1 = T ∪ {(C1 u C2) v A1, (C1 u C2) v A2},

then C is satisfiable with respect to T1 iff C is satisfiable with respect to

T2 = {(C1 u C2) v A} ∪ {H where A is substituted for A1 and A2 | H ∈ T }.

Proof. First we prove the if direction. We have two cases.

• Let I be an interpretation such that I |= T1, CI 6= ∅, and AI
1 = AI

2 . We
construct an interpretation I ′ from I such that I ′ |= T2 and CI′ 6= ∅. First, set
I ′ = I. Then, set AI′

= AI
1 and remove any references to A1 and A2 in I ′.

• Let I be an interpretation such that I |= T1, CI 6= ∅, and AI
1 6= AI

2 . We
construct an interpretation I ′ from I such that I ′ |= T1, CI′ 6= ∅, and AI

1 = AI
2 .

For x ∈ ∆I such that x ∈ AI
1 ∪ AI

2 and x 6∈ AI
1 ∩ AI

2 , we show that we can
remove x from either AI

1 or AI
2 so that x /∈ AI

1 ∪AI
2 without causing any axiom

in T1 to fail to hold. Without loss of generality, assume x ∈ AI
1 and x 6∈ AI

2 . If
x ∈ C1 and x ∈ C2, then we have a contradiction. Otherwise, we remove x from
AI

1 . Since either x 6∈ CI
1 or x 6∈ CI

2 , the axiom (C1 u C2) v A1 holds. No other
axiom in T1 has A1 on the right hand side, therefore removing x from AI

1 does
not cause any other axiom to fail to hold. Since the above is true for all x such
that x is in only one of AI

1 and AI
2 , we may remove individuals from AI

1 and AI
2

until AI
1 = AI

2 . Then the first case applies.

Now we prove the only if direction. Let I be an interpretation such that I |= T2 and
CI 6= ∅. We construct an interpretation I ′ from I such that I ′ |= T1 and CI′ 6= ∅.
First set I ′ = I. Then, set AI′

1 = AI′
2 = AI . Due to the construction of T2, I ′ |= T1

and CI′ 6= ∅.



Lemma 4.3. Let T1, T2, and T denote TBoxes, C ∈ L an arbitrary concept, A a
primitive concept not used in C or T , and R a role. If T1 is of the form

T1 = T ∪ {∃R.C1 v C2},

then C is satisfiable with respect to T1 iff C is satisfiable with respect to TBox

T2 = T ∪ {C1 v ∀R−.A,A v C2}.

Proof. First we prove the if direction. Assume C is satisfiable with respect to T1.
For an interpretation I ∈ Int(L) such that I |= T1 and CI 6= ∅, we extend I to an
interpretation I ′ such that I ′ |= T2 and CI′ 6= ∅. First set I ′ = I. For each x ∈ ∆I

such that x ∈ (∃R.C1)I ∩ CI
2 , we add x to AI′

. Then, I ′ |= T2 and CI′ 6= ∅.
Now we prove the only if direction. Assume C is satisfiable with respect to T2.

For each interpretation I ∈ Int(L) such that I |= T2 and CI 6= ∅, it is also the case
that I |= T1. The proof is by contradiction. Assume I 6|= T1. It must be the case that
axiom ∃R.C1 v C2 does not hold as all other axioms in T1 are also in T2. Then there
exists x ∈ ∆I such that x ∈ (∃R.C1)I and x /∈ CI

2 . However, this implies that there
exists y ∈ ∆I such that (x, y) ∈ RI and y ∈ C1. From axiom C1 v ∀R−.A, it must
be the case that x ∈ AI . From axiom A v C2, it must be the case that x ∈ CI

2 . A
contradiction.

Lemma 4.4. Let T1, T2, and T denote TBoxes, C ∈ L an arbitrary concept, A a
primitive concept not used in C or T , and R a role. If T1 is of the form

T1 = T ∪ {∃R−.C1 v C2},

then C is satisfiable with respect to T1 iff C is satisfiable with respect to TBox

T2 = T ∪ {C1 v ∀R.A,A v C2}.

The proof of this lemma is similar to that of Lemma 4.3.

Theorem 4.1. For any TBox T , the binary absorption algorithm computes a correct
absorption of T .

Proof. The proof is by induction on the number of iterations of our algorithm. We
define an iteration to end when we return to Step 1. We abbreviate the pair

({A v C,¬A v ¬C | A
.= C ∈ Tprim} ∪ Tuinc ∪ Tbinc, Tg ∪ T )

as T and claim that this pair is always a correct binary absorption.
Initially, Tuinc, Tbinc, and Tg are empty, primitive axioms are in Tprim, and the

remaining axioms are in T . By Lemma 3.1, Lemma 3.2, Lemma 3.3, and Lemma 3.4,
T is a correct binary absorption at the start of our algorithm.

Assume we just finish iteration i and now perform iteration i+1. By our induction
hypothesis, T is a correct binary absorption. We have a number of possible cases.



• If we perform Step 3(a) or Step 3(b) then iteration i + 1 is finished. Due to the
ordering of Step 3(a) and Step 3(b), newly introduced primitive concepts are
absorbed first. Therefore, a newly introduced primitive concept only appears on
the right hand side of an axiom once and Lemma 4.1 and Lemma 4.2 apply. We
conclude that T is a correct binary absorption.

• If we perform Step 3(c), then iteration i + 1 is finished and by Lemma 4.3, T is
a correct binary absorption.

• If we perform Step 3(d), then iteration i + 1 is finished and by Lemma 4.4, T is
a correct binary absorption.

• If we perform any of Steps 1, 2, 5, or 6, then T is a correct binary absorption
at the end of iteration i + 1. This is because Steps 1, 2, 5, and 6 use only
equivalence preserving operations.

After the final iteration of our algorithm, T is a correct binary absorption by
mathematical induction.

5 Summary

We have proposed a simple and straightforward generalization of the absorption theory
and algorithms pioneered by Horrocks and Tobies [6, 7]. Called binary absorption, the
basic idea is to allow terminological axioms of the form

(A1 uA2) v C

to qualify for lazy unfolding in model building satisfaction procedures for description
logics. An important issue for future work is to evaluate the efficacy of our binary
absorption algorithm on real-world problems. Our immediate plans in this direction
are to measure the reductions in the number of disjunctions in comparison to (basic)
absorption for publicly accessible OWL DL ontologies.
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