Modeling Data Warehouse Refreshment Process
as a Workflow Application

Mokrane Bouzegho'lf™ , Francoise Fabrét Maja Matulovic-Broqu@

®INRIA Rocquencourt, France

) Laboratoire PRiSM, Université de Versailles, France
Mokrane.Bouzeghoub@prism.uvsq.fr

two extreme data stores, we can find different other
Abstract stores depending on the requirements of OLAP
applications. One of these stores is the operational data

. L - store which reflects source data in a uniform and clean
This article is a position paper on the nature of the dat,

SO) Bepresentation. The corporate data warehouse (CDW)
warehouse refreshment which is often defined as a view ..« highly aggregated data and can be organized
maintenance problem or as a loading process. We w|

. to a multidimensional structure. Data extracted from
show that the refreshment process is more complex thafi.h, soyrce can also be stored in intermediate data

Ithedylew malntenanCt\aNproblem, and (Ij||ffer3n;. from thqpecipients. Obviously, this hierarchy of data stores is a
0? 'nﬁ] Process. € concigtua y h etine t ﬁ)gical way to represent the data flows which go from
refreshment process as a workflow whose activitige s rces to the data marts. All these stores are not

depend on the available products for data extractior,ecoqsarily materialized, and if they are, they can just
cleaning and integration, and whose coordlnatlorb

o . onstitute different layers of the same database.
events depend on the application domain and on the

required ql.Ja“ty N terms .Of data .fr(.EShn.eSSFigure 1 shows a typical data warehouse architecture.
Implementation of this process is clearly dlstlngwshthiS is a logical view whose operational
from its conceptual modelling. implementation receives many different answers in the
data warehousing products. Depending on each data
source, extraction and cleaning can be done by the
1. Introduction same wrapper or by distinct_ tools. Similarly data
reconciliation (also called multi-source cleaning) can

D housi . hnol hi be separated from or merged with data integration
ata warehousing Is a new technology WhICh i sources operations). High level aggregation can
provides software mfrastru_ctur_e for decision suppo e seen as a set of computation techniques ranging
systems and OLAP applications. Data warehous

llect data f h 4 distributed fom simple statistical functions to advanced data
collect data from heterogeneous and distriouted SoUrcesyLing algorithms. Customisation techniques may vary
This data is aggregated and then customized wi

AN o) m one data mart to another, depending on the way
respect to organizational criteria defined by OLAFyq ision makers want to see the elaborated data.
applications. The data warehouse can be defined as a

hierarchy of data stores which goes from source data to
the highly aggregated data (data marts). Between these

The copyright of this paper belongs to the paper’s authors. Permission to cogthe research presented in this paper is supported by the European
without fee all or part of this material is granted provided that the copies ar€¢ommission under the Esprit Prgram LTR project 'DWQ:
not made or distributed for direct commercial advantage. Foundations of Data Warehouse Quality'

Proceedings of the International Workshop on Design and

Management of Data Warehouses (DMDW'99)

Heidelberg, Germany, 14. - 15. 6. 1999

(S. Gatziu, M. Jeusfeld, M. Staudt, Y. Vassiliou, eds.)

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-19/

M. Bouzeghoub, F. Fabret, M. Matulovic-Broqué 6-1

@D) [EXTRACTION
T CLEANING
\l

EXTRACTION RECONCILIATION
CLEANING [~ | INTEGRATION
N
EXTRACTION
CLEANING

DATA o
SOURCES

4

-0

=

L

CUSTOMISATION

\

o L0

DATA
MARTS

Figure 1. Data warehouse architecture

The refreshment of a data warehouse is an
important process which determines the effective
usability of the data collected and aggregated from
the sources. Indeed, the quality of data provided to
the decision makers depends on the capability of the
data warehouse system to convey in a reasonable
time, from the sources to the data marts, the changes
made at the data sources. Most of the design
decisions are then concerned by the choice of data
structures and update techniques that optimise the
refreshment of the data warehouse.

There is a quiet great confusion in the literature
concerning data warehouse refreshment. Indeed, this
process is often either reduced to view maintenance
problem or confused with the data loading phase.
Our purpose in this paper is to show that the data
warehouse refreshment is a more complex than the
view maintenance problem, and different from the
loading process. We define the refreshment process
as a workflow whose activities depend on the
available products for data extraction, cleaning and
integration, and whose triggering events of these
activities depend on the application domain and on
the required quality in terms of data freshness.

The objective of the following sections is to
describe the refreshment process tasks and to
demonstrate how they can be organised as a
workflow. Section 2 arguments on differences

M. Bouzeghoub, F. Fabret, M. Matulovic-Broqué

between the refreshment process in one side and the
data loading and view maintenance in the other side.
Section 3 defines the generic workflow which
logically represents the refreshment process, with
examples of workflow scenarios. Section 4 defines
the semantics of the refreshment process in terms of
workflow design decisions. Section 5 concludes with
the summary of the main ideas in this position paper
and on some implementation issues.

2. View maintenance, data loading and
data refreshment

Data refreshment in data warehouses is generally
confused with data loading as done during the initial
phase or with update propagation through a set of
materialized views. Both analogies are wrong. The
following paragraphs argument on the differences
between data loading and data refreshment, and
between view maintenance and data refreshment.

Data loading vs. data refreshment

The data warehouseading phaseconsists in the
initial data warehouse instantiation, that is the initial
computation of the data warehouse content. This
initial loading is globally a sequential process of four
steps (Figure 2): (i) preparation, (ii) integration, (iii)
high level aggregation and (iv) customisation. The

6-2

first step is done for each source and consists in data
extraction, data cleaning and possibly data archiving
before or after cleaning. Archiving data in a history
can be used both for synchronisation purpose
between sources having different access frequencies
and for some specific temporal queries. The second
step consists in data reconciliation and integration,
that is cleaning multi-source cleaning of data
originated from heterogeneous sources, and
derivation of the base relations (or base views) of the
operational data store (ODS). The third step consists
in the computation of aggregated views from base
views. While the data extracted from the sources and
integrated in the ODS is considered as ground data
with very low level aggregation, the data in the
corporate data warehouse (CDW) is generally highly
summarised using aggregation functions. The fourth
step consists in the derivation and customisation of
the user views which define the data marts.
Customisation refers to various presentations needed
by the users for multidimensional data.

Customization

t
Update Propagation
T
History managemerijt
Integration
Phase Data
Reconciliation
T
History management
Preparation
Phase DataCleaning

Data Extraction

Figure 2: Data loading activities

The main feature of the loading phase is that it
constitutes the latest stage of the data warehouse
design project. Before the end of the data loading,
the data warehouse does not yet exist for the users.

M. Bouzeghoub, F. Fabret, M. Matulovic-Broqué

Consequently, there is no constraint on the response
time. But, in contrast, with respect to the data
sources, the loading phase requires more availability.

The data flow which describes the loading phase can
serve as a basis to define the refreshment process,
but the corresponding workflows are different. The
workflow of the refreshment process is dynamic and
can evolve with users’ needs and with source
evolution, while the workflow of the initial loading
process is static and defined with respect to current
user requirements and current sources.

The difference between the refreshment process
and the loading process is mainly in the following.
First, the refreshment process may have a complete
asynchronism between its different activities
(preparation, integration, aggregation and
customisation). Second, there may be a high level
parallelism within the preparation activity itself, each
data source having its own availability window and
its own strategy of extraction. The synchronization is
done by the integration activity. Another difference
lies in the source availability. While the loading
phase requires a long period of availability, the
refreshment phase should not overload the
operational applications which use the data sources.
Then, each source provides a specific access
frequency and a restricted availability duration.
Finally, there are more constraints on response time
for the refreshment process than for the loading
process. Indeed, with respect to the users, the data
warehouse does not exist before the initial loading,
so the computation time is included within the design
project duration. After the initial loading, the data
becomes visible and should satisfy user requirements
in terms of data availability, accessibility and
freshness.

View maintenance vs. data refreshment

The propagation of changes during the
refreshment process is done through a set of
independent activities among which we find the
maintenance of the views stored in the ODS and
CDW levels. The view maintenance phase consists
in propagating a certain change raised in a given
source over a set of views stored at the ODS or
CDW level. Such a phase is a classical materialized
view maintenance problem except that, in data
warehouses, the changes to propagate into the
aggregated views are not exactly those occurred in
the sources, but the result of pre-treatments

6-3

performed by other refreshment activities such as
data cleaning and multi-source data reconciliation.

The view maintenance problem has been
intensively studied in the database research
community. Major work done in this area is
synthesized in [BFG+99] and [ThBo 99]. Most of
the references focus on the problems raised by the
maintenance of a set of materialized (also called
concrete) views derived from a set of base relations
when the current state of the base relations is
modified. The main results concern :
¢ The self-maintainability Results concerning the

self-maintainability are generalized for a set of

views : a set of view V is self-maintainable with
respect to the changes to the underlying base
relations if the changes may be propagated in
every views in V without querying the base
relations (i.e. the information stored in the
concrete views plus the instance of the changes
are sufficient to maintain the views).

e The coherent and efficient update propagation
Various algorithms are provided to schedule
updates propagation through each individual
view, taking care of interdependencies between
views, which may lead to possible
inconsistencies. For this purpose, auxiliary
views are often introduced to facilitate update
propagation and to enforce self-maintainability.

Results over the self-maintainability of a set of views
are of a great interest in the data warehouse context,
and it is commonly admitted that the set of views
stored in a data warehouse have to be globally self-
maintainable. The rationale behind this
recommendation is that the self-maintainability is a
strong requirement imposed by the operational
sources in order to not overload their regular
activity.

As stated in the previous section, research on
data warehouse refreshment has mainly focused on
update propagation through materialized views.
Many papers have been published on this topic, but a
very few is devoted to the whole refreshment process
as defined before. We consider view maintenance
just as one step of the complete refreshment process.
Other steps concern data cleaning, data
reconciliation, data customisation, and if needed data
archiving. In another hand, extraction and cleaning
strategies may vary from one source to another, as
well as update propagation which may vary from one
user view to another, depending for example on the
desired freshness for data. So the data warehouse

M. Bouzeghoub, F. Fabret, M. Matulovic-Broqué

refreshment process cannot be limited to a view
maintenance process.

To summarize the previous discussion, we can
say that a refreshment process is a complex system
which may be composed of asynchronous and
parallel activities that need a certain monitoring. The
refreshment process is an event-driven system which
evolves frequently, following the evolution of data
sources and user requirements. Users, data
warehouse administrators and data source
administrators may impose specific constraints as,
respectively, freshness of data, space limitation of
the ODS or CDW, and access frequency to sources.
There is no simple and unique refreshment strategy
which is suitable for all data warehouse applications,
for all data warehouse user, or for the whole data
warehouse lifetime.

3. The Refreshment process is a
workflow

A workflow is a set of coordinated activities
which might be manual or automated activities
performed by actors [Scha 98]. Workflow concepts
have been used in various application domains such
as business process modeling [HaCh 93],
cooperative applications modeling [CSCW 96]
[Lawr 97], and database transaction modeling
[AAE+ 95] [Bern 98]. Depending on the application
domain, activities and coordination are defined using
appropriate specification languages such as state-
chart diagrams and Petri nets [WoKr 93], or active
rules [CCPP 95]. In spite of this diversity of
applications and representation, most of the
workflow users refer more or less to the concepts
and terminology defined by the Workflow Coalition
[WFMC 95]. Workflow systems are supposed to
provide high level flexibility to recursively
decompose and merge activities, and allow dynamic
reorganization of the workflow process. These
features are typically useful in the context of data
warehouse refreshment as the activities are
performed by market products whose functionalities
and scope differ from one product to another.

In the following subsections, we show how the
refreshment process can be defined as a workflow
application. We illustrate the interest of this
approach buy the ability to define different scenarios
depending on user requirements, source constraints
and data warehouse constraints. We show that these
scenarios may evolve through the time to fulfill

6-4

evolution of any of the previous requirements and
constraints.

3.1. The workflow of the refreshment process

The refreshment process aims to propagate
changes raised in the data sources to the data
warehouse stores. This propagation is done through a
set of independent activities (extraction, cleaning,
integration, ...) that can be organized in different
ways, depending on the semantics one wants to
assign to the refreshment process and on the quality
he wants to achieve. The ordering of these activities
and the context in which they are executed define
this semantics and influence this quality. Ordering
and context result from the analysis of view
definitions, data source constraints and user
requirement in terms of quality factors. In the
following subsections, we will describe the
refreshment activities and their organization as a
workflow. Then we give examples of different
workflow scenarios to show how refreshment may be
a dynamic and evolving process. Finally, we
summarize the different perspectives through which
a given refreshment scenario should be considered.

Refreshment activities

The refreshment process is similar to the loading
process in its data flow but, while the loading
process is a massive feeding of the data warehouse,
the refreshment process captures the differential
changes hold in the sources and propagates them
through the hierarchy of data stores in the data
warehouse. The preparation step extracts from each
source the data that characterises the changes that
have occurred in this source since the last extraction.
As for loading, this data is cleaned and possibly
archived before its integration. The integration step
reconciliates the source changes coming from
multiple sources and adds them to the ODS. The
aggregation step recomputes incrementally the
hierarchy of aggregated views using these changes.
The customisation step propagates the summarized
data to the data martsAs well as for the loading
phase, this is a logical decomposition whose
operational implementation receives many different
answers in the data warehouse products. This logical
view allows a certain traceability of the refreshment
process. Figure 3 shows the activities of the
refreshment process as well as a sample of the
coordinating events.

Customization |

Temporal/external event

Before-Customization event

After-Propagation event

-~

Update Propagatipr ;

Temporal/external event

Before-Propagation event

History management

After-Integration event

_ |Data Integration —— Temporal/external event

—

After-Cleaning event

[Z| History management

Before-Integration event ’*

DataCleaning

A

=

Data Extraction

Temporal/external event

«
N ——

7~

Figure 3: The generic workflow for the refreshment process

M. Bouzeghoub, F. Fabret, M. Matulovic-Broqué

6-5

Coordination of activities

In workflow systems, activities are coordinated
by control flows which may be notification of
process commitment, emails issued by agents,
temporal events, or any other trigger events. In the
refreshment process, coordination is done through a
wide range of event types.

We can distinguish several event types which
may trigger and synchronize the refreshment
activities. They might be temporal events,
termination events (dashed lines in figure 3) or any
other user-defined event. Depending on the
refreshment scenario, one can choose an appropriate
set of event types which allows to achieve the correct
level of synchronization.

Activities of the refreshment workflow are not
executed as soon as they are triggered, they may
depend on the current state of the input data stores.
For example, if the extraction is triggered
periodically, it is actually executed only when there
are effective changes in the source log file. If the
cleaning process is triggered immediately after the
extraction process, it is actually executed only if the
extraction process has gathered some source
changes. Consequently, we can consider that the
state of the input data store of each activity may be
considered as a condition to effectively execute this
activity.

Within the workflow which represents the
refreshment process, activities may be of different
origins and different semantics, the refreshment
strategy is logically considered as independent of
what the activities actually do. However, at the
operational level, some activities can be merged
(e.g., extraction and cleaning), and some others
decomposed (e.g. integration). The flexibility
claimed for workflow systems should allow to
dynamically tailor the refreshment activities and the
coordinating events.

There may be another way to represent the
workflow and its triggering strategies. Indeed,
instead of considering external events such as
temporal events or termination events of the different
activities, we can consider data changes as events.
Hence, each input data store of the refreshment
workflow is considered as an event queue that
triggers the corresponding activity. However, to be
able to represent different refreshment strategies, this
approach needs a parametric synchronization

M. Bouzeghoub, F. Fabret, M. Matulovic-Broqué

mechanism which allows to trigger the activities at

the right moment. This can be done by introducing

composite events which combine, for example, data
change events and temporal events. Another
alternative is to put locks on data stores and remove
them after an activity or a set of activities decide to

commit. In the case of a long term synchronization

policy, as it may sometimes happen in some data
warehouses, this latter approach is not sufficient.

The workflow agents

Two main agent types are involved in the
refreshment workflow: human agents which define
requirements, constraints and strategies, and
computer agents which process activities. Among
human agents we can distinguish users, the data
warehouse administrator, source administrators.
Among computer agents, we can mention source
management systems, database systems used for the
data warehouse and data marts, wrappers and
mediators. For simplicity, agents are not represented
in the refreshment workflow which concentrates on
the activities and their coordination.

3.2. Defining refreshment scenarios

To illustrate different workflow scenarios, we
consider the following example which concern three
national Telecom billing sources represented by
three relations S1, S2, and S3. Each relation has the
same (simplified) schema: (#PC, date, duration,
cost). An aggregated view V with schema (avg-
duration, avg-cost, country) is defined in a data
warehouse from these sources as the average
duration and cost of a phone call in each of the three
country associated with the sources, during the last 6
months. We assume that the construction of the view
follows the steps as explained before. During the
preparation step, the data of the last six months
contained in each source is cleaned (e.g., all cost
units are translated in Euros). Then, during the
integration phase, a base relation R with schema
(date, duration, cost country) is constructed by
unioning the data coming from each source and
generating an extra attribute (country). Finally, the
view is computed using aggregates (figure 4).

We can define another refreshment scenario with
the same sources and similar views. This scenario
mirrors the average duration and cost for each day
instead of for the last six months. This leads to
change the frequency of extraction, cleaning,
integration and propagation. Figure 5 gives such a

6-6

possible scenario. Frequencies of source extractions administrators. Source 3 is permanently available.
are those which are allowed by source

Customization «

- |Update Propagation |

BeforeQueryEvaluation

BeforeCustomization

History management

Afterintegration

EveryBeginingTrimester Data Integration

»
Ll

Beforelntegratio

S1 DataCleaning |q— S2 DataCleaning

I AfterArchiving

AfterBxtraction S2 History management

AfterExtraction

A
| S1 Data Extraction l_ S2 Data Extractio+ S3 Data Extracti%n
EveryEndTrimester EveryEndMonth

Figure 4: First example of refreshment scenario

M. Bouzeghoub, F. Fabret, M. Matulovic-Broqué 6-7

Customization

BeforeQueryEvaluation

A

BeforeCustomization

Update Propagation

BeforePropagation

P (Data Integration

Beforelntegratio

S1 DataCleaning

S2 DataCleaning

AfterExtraction

AfterExtraction

v

S1 Data Extraction

S2 Data Extractiof

S3 Data Extractid

=]

Every3Hours T

EveryHour

Figure 5: Second example of refreshment scenario

When the refreshment activities are long term
activities or when the DWA wants to apply
validation procedures between activities, temporal
events or activity terminations can be used to
synchronize all the refreshment process. In general,
the quality requirements may impose a certain
synchronization strategy. For example, if users desire
high freshness for data, this means that each update
in a source should be mirrored as soon as possible to
the views. Consequently, this determines the strategy
of synchronization: trigger the extraction after each
change in a source, trigger the integration, when
semantically relevant, after the commit of each data
source, propagate changes through views
immediately after integration, and customize the user
views in data marts.

Refreshment scheduling

The refreshment process can be viewed through
different perspectives :

¢ Client-driven refreshmentvhich describes part

of the process which is triggered on demand by
the users. This part mainly concern update

M. Bouzeghoub, F. Fabret, M. Matulovic-Broqué

propagation from the ODS to the aggregated
views. The on-demand strategy can be defined
for all aggregated views or only for those for
which the freshness of data is related to the date
of querying.

Source-driven refreshmentich defines part of
the process which is triggered by changes made
in the sources. This part concerns the
preparation phase. The independence between
sources can be used as a way to define different
preparation strategies, depending on the sources.
Some sources may be associated with cleaning
procedures, others not. Some sources need a
history of the extracted data, others not. For
some sources, the cleaning is done on the fly
during the extraction, for some others after the
extraction or on the history of these changes.
The triggering of the extraction may be also
different from one source to another. Different
events can be defined, such as temporal events
(periodic or fixed absolute time), after each
change detected on the source, on demand from
the integration process.

6-8

¢ ODS-driven refreshmenvhich defines part of
the process which is automatically monitored by
the data warehouse system. This part concerns
the integration phase. It may be triggered at a
synchronization point defined with respect to the
ending of the preparation phase. Integration can
be considered as a whole and concerns all the
source changes at the same time. In this case, it
can be triggered by an external event which
might be a temporal event or the ending of the
preparation phase of the last source. The
integration can also be sequenced with respect
to the termination of the preparation phase of
each source, that is extraction is integrated as
soon as its cleaning is finished. The ODS can
also monitor the preparation phase and the
aggregation phase by generation the relevant
events that triggers activities of these phases.

In the very simple case, one of the two first
approaches is used as a single strategy. In a more
complex case, there may be as much strategies as the
number of sources or high level aggregated views. In
between, there may be, for example, four different
strategies corresponding to the previous four phases.
For some given user views, one can apply the client
driven strategy (pull strategy), while for other views
one can apply the ODS-driven strategy (push
strategy). Similarly, some sources are solicited
through a pull strategy while other apply a push
strategy.

The strategy to choose depends on the semantic
parameters but also on the tools available to perform
the refreshment activities (extraction, cleaning,
integration). Some extraction tools do also the
cleaning in the fly while some integrators propagate
immediately changes until the high level views.
Then, the generic workflow in Figure 3 is a logical
view of the refreshment process. It shows the main
identified activities and the potential event types
which can trigger them.

4. Semantics of the refreshment process

As we have seen in the previous examples of
scenarios, the view definition is not sufficient to fix
the semantics of the refreshment process. Indeed, the
query which defines a view does not specify whether
this view operates on a history or not, how this
history is sampled, whether the changes of a given
source should be integrated each hour or each week,
and which data timestamp should be taken when
integrating changes of different sources. The view

M. Bouzeghoub, F. Fabret, M. Matulovic-Broqué

definition does not include specific filters defined in
the cleaning process, such as choosing the same
measure for certain attributes, rounding the values of
some attributes, or eliminating some confidential
data. Consequently, based on the same view
definitions, the refreshment process may produce
different results depending on all these extra-
parameters which have to be fixed independently,
outside the queries which define the views.

The result of a query against view V occurring at
time t depends on two main parameters associated
with the refreshment strategy implemented by the
data warehouse. First, it depends on the change
extraction capabilities of each source. For instance,
changes in source S1 can be extracted as soon as
they occurred, while changes in source S2 can be
captured only during the last night of the month. This
determines the availability of the changes from a
source, and hence impacts the data freshness. It also
impacts the data coherence because time
discrepancies may occur in the view: the average
may incorporate fresh data from S1 and old data
from S2. Second, it depends on the time needed to
compute the change to the view from the changes to
the sources.

In fact, the two previous parameters may be
repeated as many times as there are intermediate
storages between the sources and the view. For
instance, suppose that the result of the preparation
step is stored. The availability parameter
characterizes the moment at which the integration
process is capable of accessing the result of a
preparation step. Thus, if each result is only
available at the end of the month then the integration
can only be performed at that time and the view will
consequently only reflect changes that occurred in
the sources once per month.

Another parameter influences the result of a
query against V. It characterizes the actualization of
the data contained in each source. For instance,
source S1 can be updated at the end of every week
while source S2 is updated two days before the end
of every month. If a query is posed against V at the
end of the second week of a month, the effect of the
phone calls that occurred since the beginning of the
month in the country associated with source S2, will
not be possibly reflected by V, and hence by the
result of the query. Thus, the value of this parameter
determines the difference that may exist between the
state of the view reflected by the data warehouse and
the state of the view in the real world. Because this

6-9

parameter is fixed and out of the control of the data
warehouse application (it is actually part of the
source operational applications), we do not consider
it.

The previous discussion has shown how the
refreshment process can depend on some parameters,
independently of the choice of materialized views,
and how these parameters impact on the semantics of
the process. It also shows that building an efficient
refreshment strategy with respect to application
requirements (e.g. data freshness, computation time
of queries and views, data accuracy) depends on
various parameters related to:

e source constraints(e.g. availability windows,
frequency of change),

e anddata warehouse system limifs.g. storage
space limit, functional limits).

Finally the main lesson drawn from the previous
examples and discussion is :

The operational semantics of the refreshment
process can be defined as the set of all design
decisions that contribute to provide to the users
relevant data, fulfilling the quality requirements

Some of these design decisions are inherited from
the design of the initial loading, others are specific to
the refreshment itself. The first design decisions
inherited from the design of the initial loading may
concern the view definition, the structure of the data
flow which is between the sources and the data
marts. The second design decisions inherited from
the design of the initial loading are the semantics of
the loading activities, that is cleaning rules,
integration rules, etc.

The design decisions which are specific to the

refreshment semantics are those that determine :

« the moment when each refreshment task takes
place in the global process

e the way the different refreshment tasks are
synchronized

¢ the way the shared data is made visible for the
corresponding tasks

These design decisions are specified by defining :

e The decomposition of the refreshment process in
elementary tasks (e.g. cleaning of some specific
source, partial integration of two given changes
originated from two different sources, detection
and cleaning in a unique task for another
source).

M. Bouzeghoub, F. Fabret, M. Matulovic-Broqué

Ordering of these tasks.

e The events initiating the tasks. The events put
the rhythm into the refreshment process, and,
depending on this rhythm, the freshness and the
accuracy of the data may be quiet different.

5. Implementation issues

With respect to the implementation issues,
different solutions can be considered. The
conceptual definition of the refreshment process by
means of a workflow, leads naturally to envision an
implementation under the control of a common
workflow system in the market, provided that this
latter one supplies event types and all features
needed by the refreshment scenario. Another solution
we have preferred in [BFM+ 98] consists in using
active rules which should be executed under a certain
operational semantics. The rationale behind our
choice is the flexibility and the evolutivity provided
by active rules. Indeed the refreshment strategy is not
defined once for all; it may evolve with the user
needs, which may result in the change of the
definition of materialized views or the change of
desired quality factors. It may also evolve when the
actual values of the quality factors slow down with
the evolution of the data warehouse feeding or with
the technology used to implement it. Consequently,
in order to master the complexity and the evolutivity
of the data warehouse, it is important to provide a
flexible technology which allows to accommodate
this complexity and evolutivity. This is what active
rules meant to provide. A prototype has been
developed and demonstrated in the context of the

DWQ european research project on Data
warehouses. However, active rules cannot be
considered as an alternative to workflow

representation. Workflow is a conceptual view of the
refreshment process, while actives rules are
operational implementation of the workflow.

6. Concluding remarks

This paper has presented an analysis of the
refreshment process in data warehouse applications.
We have demonstrated, that the refreshment process
cannot be limited neither to a view maintenance
process nor to a loading process. We have shown
through a simple example, that the refreshment of a
data warehouse can be conceptually viewed as a
workflow process. We have identified the different
tasks of the workflow and shown how they can be
organized in different refreshment scenarios, leading

10

to different refreshment semantics. We have
highlighted design decisions impacting over the
refreshment semantics and we have shown how the
decisions may be related to some quality factors such
as data freshness and to some constraints such as
source availability and accessibility.

References

[AAE+ 95] Alonso, G., Agrawal, D., El Abadi, A.,
Kamath, M., Gunther, R., Mohan, C., Advanced
Transaction Models in Workflow Context, IBM
Research Report, RJ 9970, IBM Research
Division, 1995

[AGW 97] B.Adelberg, H. Garcia-Mollina, and J.
Widom. The STRIP Rule System For Efficiently
Maintaing Derived Data In Proc. of ACM
SIGMOD International Conference on
Management of DataTucson, Arizona, USA,
1997.

[BeNe 98] Berstein, P., Newcomer, E., Principles of
Transaction Processing, Morgan Kaufmann
Publ., 1998.

[BFM+ 98] Bouzeghoub, M., Fabret, F., Matulovic,
M., Simon, E., "A toolkit Approach for
developing efficient and customizable active rule
systems”, DWQ Technical report, October 1998.

[BFM+ 99] Bouzeghoub, M., Fabret, F., Galhardas,
H., Matulovic, M., Pereira, J., Simon, E., "Data
Warehouse Refreshment”, in Fundamentals in
Data Warehouses, Chapter 4, M. Jarker et al
(edts), Springer, 1999.

[BMF+ 97] Bouzeghoub, M., Fabret, F., Llirbat, L.,
Matulovic, M., Simon, E., "Designing data
warehouse refreshment system", DWQ
Technical report, October 1997.

[CGL+ 96] L.Colby, T. Griffin, L. Libkin, I. S.
Mumick, and H. Trickey. Algorithms for
Deferred View Maintenance. IRroceedings of
SIGMOD, Montreal, Canada, 1996.

[ChD 97] S. Chaudhuri, U. Dayahn Overview of
Data Warehousing and OLAP Technology
SIGMOD Record, Vol. 26, No. 1, March 1997

[CCPP 95] Casati, F., Ceri, S., Pernici, B., Possi, G.,
Conceptual Modeling of Workflows, Proceed. Of
the Internat. Conf. On Object Oriented and

M. Bouzeghoub, F. Fabret, M. Matulovic-Broqué

Entity-Relationship Approach, Austr. Springer,
1995.

[CSCW 96] ACM 1996 Conference on Computer-
Supported Cooperative Work — Cooperating
Communities (Proceedings). Ackerman, M.S.
(ed.), ACM, Boston, MA, November 1996.

[HaC 93] Hammer, M., Champy, J., Reengineering
the Corporation, a Manifesto for Business
Revolution, Harper, New-York, 1993.

[JaVv 97] M. Jarke, M. Vassiliou: Foundations of
data warehouse quality: an overview of the DWQ
project. Proceedings 2nd International
Conference on Information Qualitgambridge,
Mass, 1997

[Lawr 97] Lawrence, P. (ed.), Workflow Handbook,
Wiley and WfMC, 1997.

[Sch 98] Schael, T., Workflow Management Systems
for Process Organisations, Second edition,
Springer, 1998.

[ThBo 99] Theodoratos, D., Bouzeghoub, M., Data
Currency Quality Factors in Data Warehouse
Design, Proceed. of the International Workshop
on Design and Management of Data Warehouses
(DMDW'99), Heidelberg, Germany, June 1999.

[WAN 98] Wang, R. Y., "A product perspective on
total data quality management", Com. [ZGJ+ 95]
Yue Zhuge, Hector Garcia-Molina, Joachim
Hammer, and Jennifer Widom. View
maintenance in a warehousing environment. In
Proc. of the ACM SIGMOD Int. Conf. on
Management of Data, pages 316-327, 1995.

[WoKr 93] Woetzel, G., Kreifelts, T., The use of
Petri nets for modeling workflow with the
Domino system. Proceed. of the Workshop on
Computer Supported Cooperative Work, Petri
nets and Related Formalisms. Chicago, 1993.

[WFEMC 95] WFMC-TC-1003 (The Workflow
Management Coalition), The Workflow
Reference Model, version 1.1, January 1995.

[2GJ+ 95] Zhuge, Y., Garcia-Molina, H., Hammer,
J., Widom, J., View Maintenance in a
warehousing environment, Proceedings of the
ACM SIGMOD Int. Conf. On Management of
Data, P 316-327, 1995.

11

M. Bouzeghoub, F. Fabret, M. Matulovic-Broqué

12

