
The notion delegation of tasks in Linked Data
through agents

Teófilo Chambilla1 and Claudio Gutierrez2

1 University of Technology and Engineering, tchambilla@utec.edu.pe,
2 DCC Universidad of Chile and CIWS cgutierr@dcc.uchile.cl

Abstract. In this exploratory research we study the computational
abilities of servers in the Linked Data network through agents that
cooperatively evaluate tasks via delegation. We show the feasibility of
developing lightweight systems of agents over the current Web infrastructure.
We design a simple delegation language, develop a lightweight software
(agent) to be installed over Web servers, and implement a study case
over actual Web data to show the viability of the proposal.

1 Introduction

In the Web environment, implementing the notion of delegation presents manifold
challenges. In this research we aim to show the feasibility of implementing the
notion of delegation over current Web protocols and languages by means of
simple reactive agent architectures.3 We present an exploratory study towards
leveraging the computational abilities of current servers in the network through
agents (using the notion of Multi-Agent Systems (MAS) [14]) that cooperatively
evaluate and perform tasks in Linked Data via delegation. We base our approach
in the work of Castelfranchi & Falcone [3].

A crucial aspect of our work is the need to develop agents that work over
today’s Web protocols. There is work in this direction. Communication agents
using the methods GET, POST and PUT of the HTTP communication protocol
has been recently studied by Abdelkader and Bergeret [13]. There, REST-agents
are presented, based on the combination of MAS framework concepts and the
principles of REST defined by Roy Fielding [7]. Also, Althagafi [1] proposes a
model of agents who follow the REST principles specifying the terms of the
agents by Communicative Acts of the FIPA architecture and the methods of the
HTTP communication protocol. Our approach is based on these works.

Our approach needs a specification language to code the different commands
involved in the delegation process. Our design of it is inspired in the work of
Doherty et al. [6]. They introduced a task specification language called Task
Specification Tree, which helps representing the delegation of tasks and that has
properties required for troubleshooting joint initiatives and adjustable autonomy
for distributed environments. Our task specification language is influenced by
this proposal.

3 This paper is a short report on the Master Thesis of the first author. The spanish
version is available at http://repositorio.uchile.cl/handle/2250/139150

II

2 A Formal Specification of Delegation on the Web

We formulate the delegation mechanism and identify the main characteristics
that may occur during the delegation in MAS in the environment of the Web.
By way of motivation, consider an organized group of Web servers A, B, C, D,
E and in each of them agents AgentA, AgentB , AgentC , AgentD and AgentE
respectively installed. A possible scenario of interaction of these agents is that
AgentA delegates a tasks to AgentB and AgentC , and both report the task
performed to AgentE , who centralizes and processes the results received from
them, to finally deliver the result to AgentD, who in turn can deliver the result
to AgentA or alternatively notify by a messaging system to the original user who
originated the task.

A prerequisite for the proper functioning of the scenario described would be
the existence of a software infrastructure of MAS so that agents can interact with
each other collaboratively. On the Web, a platform environment based entirely
on Web protocols allowing robust, secure and reliable interaction is required.
This platform should include at least the following capabilities: (1) The ability
to process the delegated task; (2) to subdelegate tasks to other actors; (3) to
combine the results received; (4) to reason about the results and determine if the
result is still necessary to delegate to another agent or the process is terminated;
(5) to put the results in the specified place.

For allowing the agents to develop their capacities it is needed a high level
of communication infrastructure between platforms. The Agent Communication
Language (ACL) [12] communication language established by FIPA would be the
most appropriate for it. On the other hand, an ideal platform for MAS would be
JAVA Agent DEvelopment Framework because it has as characteristic a good
communication infrastructure. However, although it supports HTTP protocol
communications, is not completely oriented to the Web. For this reason, we
develop and used platform called Agent Server [4], which is based entirely on
the Web and developed with features of a REST API. Agent Server incorporates
relevant information and functions for managing agents from the behavior and
life cycle point of view. The architecture of this platform includes the Message
Transport Protocol Module for reliable processing of messages, which uses the
ACL and managed by the methods of the HTTP communication protocol.
Likewise Agent Manager incorporates the module responsible for the management
of the platform and agents.

The core of the MAS is the notion of action, which codes the basic capabilities
of the system. In the following we introduce the miminal actions that agents
should have to implement the delegation process:

– Exec(Expr,Mdata) The agent that has this action implemented should have
the ability to run a task. This action is composed of Expr that represents a
particular expression (for example, an SPARQL expression, an SQL expression),
and Mdata that is the metadata that is required for the implementation of
the action (for example it can be either a constraint).

– PutTo(Agents,R) The agent that has this action implemented has the
ability to make and/or deliver a result obtained after performing an action

III

Exec(·) to an agent that can be specified initially, or could be the one that
initiated a task or a third party that is on a different platform but within
the same domain. In this action, Agents represents the agent receiving the
result and R represents the result obtained.

– Join(Ri, ..., Rn) The agent that has this action implemented has the ability
to unite the results received and integrate them into one. This actions parameters
Ri, ..., Rn represent the results received.

The process of delegation requires agents that might specify arguments and
communicate data in a structured manner. The parameters can be about the
nature of information search, basic negotiation, or simply express tasks that the
agent must perform. The degree of allocation of those parameters will reflect
the degree of delegation. We use the notion of performatives defined in the
Speech Acts Theory presented by Austin [2]. In the ACL the performatives are
denoted as Communicative Acts and is expressed as a query, recommendation
or call. For our current model we only consider the performatives QUERY IF,
REQUEST and INFORM. The choice of these is due to the simplicity of their
implementation.

In order to define a formal semantics, we start from the Communicative Act
S-Delegate(), described by Doherty et al. [5]. Their setting is oriented towards
completely reactive agents, that is, agents with very simple reasoning capabilities
and under the restrictions of the HTTP communication protocol. The following
expression represents represents Communicative Act of the FIPA Architecture:

S-Delegate(AgentA, AgentB , performative(τ,Mdata)).

This means that the AgentA delegates the task τ to AgentB , using the FIPA
performatives. This means that the following conditions must be fulfilled: All
agents have the same capabilities, that is, the same actions are implemented in all
agents; All agents exhibit the list of actions implemented; The agents belonging
to the same domain know of the existence of other agents and therefore know
their location; At the same domain all agents have the necessary permissions to
perform an action.

The actual behavior of MAS relies in a relevant manner in the specifation
of the interaction protocol between participants to ensure interoperability and
safety of participants. The protocol describes the interaction between AgentA
and AgentB and is developed in the following two phases: Phase 1. The AgentA
checks the list of actions that are implemented in AgentB . To do this, the
performatives QUERY IF (to query the actions to develop) and INFORM (for
the result of the query) are used; Phase 2. If the received result satisfies the list
of actions to be developed, AgentA plays the role of the delegator agent that
delegates the task τ and AgentB plays the role of contractor agent. To do this,
the performatives REQUEST and INFORM are used. By means of REQUEST
the task τ is sent to the contractor agent AgentB , who is committed to execute
the task. Once it finishes the execution, sends a conclusion message by means of
INFORM to AgentA, in order that the delegator does not wait indefinitely.

IV

3 NautiLOD Distributed Execution

In the literature there are different approaches to address the navigation on
the Linked Open Data (LOD). Among them is the language NautiLOD [9, 11],
a declarative language designed to specify navigation patterns in LOD. This
language is based on regular expressions on predicates RDF intertwined with
tests of the type ASK SPARQL queries issued on the RDF resources present at
each node (server) this is implemented by SWPORTAL [10] and SWGET [8].
Both SWPORTAL and SWGET are currently implemented in a centralized form,
depending to process a NautiLOD expression on a central node that makes the
succesive requests to different Endpoints using only the GET method of the
HTTP protocol.

In our case study we develop a fully distributed version using agents. For this,
four servers have been configured in the Microsoft Azure platform in which we
replicated the SPARQL Endpoints dbpedia.org, freebase.org, geonames.org and
yago.org respectively and agents A, B, C and D installed on each server. Each
of these agents has implemented a NautiLOD Engine, which allows to process
NautiLOD expressions and delegating tasks if it were necessary.

To illustrate, let us show how the following query, described in the literature [9]
performs: “Starting from DBpedia, find cities with fewer than 15000 persons,
along with their aliases, in which musicians,currently living in Italy, were born”.

This expression becomes an ASK query interlaced with a FILTER which
allows evaluating triples that meet the pattern established. The agent expression
takes the form ::putTo(AgentC, ::exec(EXP)) which will be interpreted
by the players involved. The putTo(·) action indicates that the result will be
delivered to AgentC after executing the exec(EXP) action where EXP is the
NautiLOD expresssion.

The execution of the NautiLOD expression uses delegation as follows: (1)
AgentA starts the processing of the NautiLOD expression and it obtains the first
description (for example, D(dbp:Rome)) and looks for URIs having dbp:hometown
as a predicate and getting as result those that satisfy this pattern; (2) There
are several URIs belonging to other Endpoints, but according to the initial
expression our interest are only URIs belonging to the Endpoint geonames.org.
AgentA communicates with AgentB to send the NautiLOD expression by a
message ACL expressed as Communicative Act of type msg(AgentA, AgentB ,
REQUEST (PutTo(AgentC , Exec(Expr,Mdata))) whereAgentC represents the
agent receiver and Expr represents the new NautiLOD expression, and Mdata
represents the metadata. When the request reaches to AgentB , it evaluates the
new NautiLOD expression with a reasoning similar to the one of the initial
agent; (3) AgentB has to check if the query can be satisfied, that is, whether this
city has less than 15K habitants. AgentB at geonames.org contacts directly the
AgentC to send the result (for example, the URI geo:Solarolo) by type messages
ACL msg(AgentB , AgentC , REQUEST (Result(Ri))); (4) Optionally, AgentC
notifies the result of the task direct to the email of the requesting user.

V

4 Conclusions

The design of a specification language for the delegation of tasks in the environment
of the Web (really in Linked Open Data) poses several challenges. The work
presented here shows the feasibility of implementing a lightweight system of
agents using current Web infrastructure (communication protocols, LOD system
of distributed data, and available proposals of navigational languages).

At first sight it may seem this as a simple excercise or example. But it
development needs: (1) developing a lightweight agent infrastructure (with a
basic communication language) that follows basic standards in the Agent field
(and thus, able to be further extended); (2) using only Web protocols (particularly
HTTP) and to make it scalable; (3) to have power to be able to implement over
it a complex navigational language like NautiLOD. To integrate these tasks in
a modula fashion is by no means a trivial endeavor.

References

1. A. H. H. Althagafi. Designing a framework for restful multi-agent systems. Master’s
thesis, Department of Computer Science, University of Saskatchewan, 2012.

2. J. L. Austin. How to do things with words, volume 367. Oxford Univ. Press, 1975.
3. C. Castelfranchi and R. Falcone. Towards a theory of delegation for agent-based

systems. Robotics and Autonomous Systems, 24(3):141–157, 1998.
4. T. Chambilla. Agent Server Platform. https://github.com/tchambil/

agent-server, 2015. [Online; accessed 01-March-2017].
5. P. Doherty, F. Heintz, and D. Landén. A delegation-based architecture for

collaborative robotics. In Agent-Oriented Software Engineering XI, pages 205–247.
Springer, 2011.

6. P. Doherty, F. Heintz, and D. Landén. A distributed task specification language
for mixed-initiative delegation. In Principles and Practice of Multi-Agent Systems,
pages 42–57. Springer, 2012.

7. R. Fielding. Representational state transfer. Architectural Styles and the Design
of Netowork-based Software Architecture, pages 76–85, 2000.

8. V. Fionda, C. Gutierrez, and G. Pirró. Semantically-driven recursive navigation
and retrieval of data sources in the web of data, 2011.

9. V. Fionda, C. Gutierrez, and G. Pirró. Semantic navigation on the web of data:
specification of routes, web fragments and actions. In Proceedings of the 21st
international conference on World Wide Web, pages 281–290. ACM, 2012.

10. V. Fionda, C. Gutierrez, and G. Pirro. The swget portal: Navigating and acting
on the web of linked data. Web Semantics: Science, Services and Agents on the
World Wide Web, 26:29–35, 2014.

11. V. Fionda, G. Pirrò, and C. Gutierrez. N auti lod: A formal language for the web
of data graph. ACM Transactions on the Web (TWEB), 9(1):5, 2015.

12. T. FIPA. Fipa communicative act library specification. Foundation for Intelligent
Physical Agents, http://www. fipa. org/specs/fipa00037/SC00037J. html (30.6.
2004), 2008.

13. A. Gouäıch and M. Bergeret. Rest-a: An agent virtual machine based on rest
framework. In Advances in Practical Applications of Agents and Multiagent
Systems, pages 103–112. Springer, 2010.

14. M. Wooldridge. An introduction to multiagent systems. John Wiley & Sons, 2009.

