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Abstract. In Conformance Checking, alignment is the problem of detecting and
repairing nonconformity between the actual execution of a business process, as
recorded in an event log, and the model of the same process. Literature proposes
solutions for the alignment problem that are implementations of planning al-
gorithms built ad-hoc for the specific problem. Unfortunately, in the era of big
data, these ad-hoc implementations do not scale sufficiently compared with well-
established planning systems. In this paper, we tackle the above issue by pre-
senting a tool, also available in ProM, to represent instances of the alignment
problem as automated planning problems in PDDL (Planning Domain Definition
Language) for which state-of-the-art planners can find a correct solution in a fi-
nite amount of time. If alignment problems are converted into planning problems,
one can seamlessly update to the recent versions of the best performing automated
planners, with advantages in term of versatility and customization. Furthermore,
by employing several processes and event logs of different sizes, we show how
our tool outperforms existing approaches of several order of magnitude and, in
certain cases, carries out the task while existing approaches run out of memory.

1 Significance to the BPM field

Process mining is a discipline that sits between data mining and process modeling and
analysis and, hence, can be considered one of the links between data science and pro-
cess science [1]. The idea of process mining is to discover, monitor and improve the
processes by extracting knowledge from the event logs that are stored in information
systems about how these processes are executed within organizations.

Within process mining, conformance checking verifies whether the observed behav-
ior stored in an event log is compliant with a process model that encodes how the pro-
cess is allowed to be executed to ensure that norms and regulations are not violated. The
notion of alignment [1, 2] provides a robust approach to conformance checking, which
makes it possible to exactly pinpoint the deviations causing nonconformity with a high
degree of detail. An alignment between a recorded process execution (log trace) and
a process model is a pairwise matching between activities recorded in the log (events)
and activities allowed by the model (process activities). Hence, in order to establish an
alignment between a process model and an event log there is the need to relate “moves”
in the log to “moves” in the model. However, it may be that some of the moves in the log
cannot be mimicked by the model and vice versa, resulting in the presence of deviations
between the model and the log.



In general, a large number of possible alignments exist between a process model
and a log trace, since there may exist manifold explanations why a trace is not con-
forming. It is clear that one is interested in finding the most probable explanation, i.e.,
one of the alignments with the least expensive deviations (i.e., optimal alignments [1,
2]), according to some function assigning costs to deviations. The work by Adriansyah
et al. [2] provides a technique to compute these optimal alignments, based on the A*
algorithm and ad-hoc heuristics. However, experiments (also reported in this paper)
show that their technique does not scale sufficiently. In the era of big data, scalable
approaches are desperately necessary, as also advocated by the IEEE Task Force in Pro-
cess Mining [3]: “In some domains, mind-boggling quantities of events are recorded.
[...] Therefore, additional efforts are needed to improve performance and scalability.”.

We believe that re-implementing standard planning algorithms, such as A*, for solv-
ing specific planning problems in an ad-hoc way is not ideal. First, ad-hoc implemen-
tations cannot compare in scalability with well-established planning systems. Second,
ad-hoc implementations prevent one from seamlessly plugging in new algorithms or
evaluate alternative heuristics. As a consequence, the possibility of evaluating differ-
ent alternatives is hampered; also, if the literature proposes new algorithms that clearly
overtake the existing ones for solving instances of the conformance checking problem,
a massive amount of work is needed to modify those ad-hoc implementations.

In order to facilitate the integration of different planning algorithms, in this paper
we present a tool that (i) allows to formulate the problem of computing optimal align-
ments as a planning problem in the standard Planning Domain Definition Language [4]
(aka PDDL), and (ii) employs state-of-the-art automated planners [5] to solve such a
problem. While the theoretical approach underlying the tool is discussed in [6], here we
discuss its architecture and report on the most interesting results from the experiments,
which show that our tool is versatile, allowing multiple planners to be integrated, and
scales better than existing approaches with larger models and event logs.

2 The Tool

The proposed tool is able to constructs an optimal alignment of an event log and a pro-
cess model [1,2]. To model business processes, we opted for Petri nets. The tool has
been developed both as a plugin of ProM, a framework to develop process-mining tech-
niques, and as a stand-alone standard Java application.’ The ProM version is available
in package PlanningBasedAlignment under a plugin named “Planning-based Alignment
of Event Logs and Petri Nets”. In the remainder, we mostly focus on the ProM version.
The alignment engine relies on two main architectural layers as shown in Fig. 1(a).

The Design Layer provides a wizard-based GUI that assists the process designer in:
(i) the import of existing event logs and Petri nets stored in external repositories; (ii) the
customization of a cost function on legal alignment moves to define the severity of a
deviation*; (iii) the specification of the initial/final marking of the Petri net under anal-
ysis, and (iv) the selection of a search heuristic within an available repertoire. The tool
supports the standards XES (eXtensible Event Stream) and PNML (Petri Net Markup
Language) for respectively storing and analyzing event logs and Petri nets.

3 The stand-alone version of the tool can be downloaded at https://goo.gl/ZK9Frb
* The computation of the optimal alignment is based on this cost function: we want to minimize
the cost of the alignment’s moves.
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(a) Architecture of the tool.

(c) Projections of alignment moves on the Petri net.

Fig. 1. Architecture of the tool and some screenshots of the GUI as visualized in the ProM plugin.

The Encoding & Planning Layer is in charge of translating the input specifications
in PDDL format, which is readable by any state-of-the-art planner, and performing
the alignment task. Specifically, starting from a Petri net /N and an event log L to be
aligned, the PDDL Encoder builds, for each log trace oy, € L, (i) a PDDL domain file
Pp, which encodes the domain propositions needed to capture the structure of N and to
monitor the evolution of its marking, and three classes of planning actions that represent
“alignment” moves: synchronous moves (associated with no cost), model moves and
log moves; and (ii) a PDDL problem file Pr, which includes a number of constants
required to properly ground all the domain propositions in Pp; in our case, constants
will correspond to the place and transition instances involved in IV. Secondly, we define
the initial state of Pg, to capture the exact structure of the specific log trace o, of interest
and the initial marking of N. Thirdly, we encode the goal condition of P to represent
the fact that N is in the final marking and o has been completely analyzed. At this
point, for any trace of the event log (i.e., for any of the generated planning problems) a
state-of-the-art planner is invoked. With such inputs, the planner synthesizes a plan to
reach the final goal from the initial state, i.e., a sequence of alignment moves (each of
which is a planning action) that establish an alignment between oy, and N .

The ProM version is integrated with the FAST-DOWNWARD planning framework [7]
to find optimal alignments of event logs and process models. FAST-DOWNWARD is a
progression planner that uses hierarchical decompositions of planning tasks for com-



10% noise 20% noise 30% noise

Petri net| Existing Fast |SymBA-2*| SPM&S | Existing Fast |SymBA-2*| SPM&S | Existing Fast  |SymBA-2*
Size |Approach|Downward Approach|Downward Approach|Downward
25 25.85 84.79 685.35 812.44 4.8 86.21 692.97 814.04 | 56.87 88.87 699.42 | 816.05
36 11.71 94.13 767.05 950.25 19.24 92.78 785.14 | 956.19 28.6 92.67 793.13 | 959.25
68 112.85 | 130.68 | 1,413.85 | 1,722.13 | 164.92 | 134.57 | 1,418.51 |1,779.17 | 278.31 144.99 1,419.5 |1,808.61
95 77.56 123.65 | 2,048.84 |2,431.35| 119.89 | 12578 | 2,049.14 | 2,445.66 | 168.32 | 126.82 | 2,053.92 |2,483.98
115 638.52 | 205.47 | 2,280.84 |2,787.31| 966.34 | 384.26 | 2,291.91 |2,817.29|1,987.12| 716.68 | 2,352.81 |2,868.77
136 304.62 | 178.66 | 2,752.28 |3,282.23 | 465.97 | 182.88 | 2,765.14 |3,300.87 | 578.63 | 187.17 | 2,775.46 |3,317.48
175 - 18,759.91 | 5,909.46 | 6,546.87 - 84,195.41| 6,092.93 | 6,837.57 - 1.71 - 10° | 6,259.99 |7,182.13
263 - 2,343.92 | 11,960.84 |13,289.56 — 13,524.63 | 12,044.67 |13,744.92 - 30,582.11 | 12,194.09 |14,075.09

SPM&S

Table 1. Comparison of the experimental results with different planners and with the existing
approach of [2], using different models while varying the amount of noise. The values refers to
the average time (in ms.) to compute the alignment of a log trace and a process model.

puting its heuristic function, called the causal graph heuristic, which approximates
goal distances by solving a hierarchy of “local” planning problems. To produce op-
timal alignments, FAST-DOWNWARD uses a best-first search in first iteration to find a
plan and a weighted A* search to iteratively decreasing weights of plans.

When a plan (i.e., an optimal alignment) satisfying the goal is found, the Translator
component makes it available through the GUI. Fig. 1(b) shows the optimal alignments
for the road-traffic management process and respective event log (see, e.g.,[8]).” Here,
we leverage on the visualization developed for [8]: Each sequence of triangles refers to
an optimal alignment of a trace with respect to the model. Each triangle is a different
alignment move; the color of the move depends on its type: moves in the log, moves
in the model or moves in both are colored in yellow, purple and green respectively.
Each sequence is also associated with a number that identifies the fitness score of the
specific trace. In addition, together with the alignment moves, when all the traces of a
log have been analyzed, the tool produces several statistics to evaluate the quality of
the alignments (e.g., the average cost of the alignment, the percentage of dirty traces in
the log, etc.). Fig. 1(c) shows a screenshot of the tool where alignments are projected
onto the process model. Each activity is associated with a color that reflects its degree
of conformance, namely the fraction of log and model moves wrt. all moves for that
activity. Red and white transitions indicate a degree O or 1 of conformance, respectively.
Intermediate shades of red and yellow represent in-between values.

3 Maturity

Our tool was validated with several combinations of real-life and synthetic event logs
and processes. We refer to [6] for a thorough discussions of the experimental test bed
and of the results. Here, for the sake of space, we focus on the results on the synthetic
process models and event logs. Specifically, we artificially generated eight process mod-
els of increasing sizes in form of Petri nets to evaluate the scalability of the approach
and, for each Petri net, we automatically generated event logs (containing 1000 traces
each) with increasing amount of noise. In the remainder, an event log with X% of noise
indicates that, starting from an event log where each trace is conforming, an event is
swapped with the next event in the trace with a probability of X%. This swapping gen-
erally causes the trace to be no more conforming.

5 The log is available at https://doi.org/10.1007/s00607-015-0441-1



The experiments with the synthetic process models are summarized in Table 1. Each
row refers to a different Petri net. For each row, the first column indicates the size of the
Petri net in term of number of transitions; the subsequent 12 columns refer to the aver-
age time to alignment and event log trace with the respective process model when the
corresponding event log contain 10%, 20% and 30% noise. For each amount of noise,
we compared the result of the existing ad-hoc approach by Adriansyah et al. [2] with
the results obtained by our tool. We ran our tool using its built-in planner, i.e., FAST-
DOWNWARD, and two further external well-known state-of-the-art planners — SymBA-
2* and SPM&S® — that provide searching algorithms that guarantee the optimality of
the returned alignments. The results show that the existing ad-hoc approach is faster
with models of small sizes and/or when using event logs with smaller amount of noise.
Conversely, our approach is faster with larger models. In particular, it seems that, gen-
erally speaking, FAST-DOWNWARD performs better with middle-size models whereas
SymBA-2* works better with very large models. The existing approach by Adriansyah
et al. [2] is confirmed not to sufficiently scale when event logs and process models
become very large. As a matter of fact, when testing with the two largest models, the
existing approach was not able to align every log trace with the corresponding model
and was running out of memory, even though we were using a i7 CPU machine with
16 GBs of RAM. Conversely, tracking the memory consumption, all of three employed
planners were never using more than 4 GBs of RAM. Even when the existing approach
was able to carry out the alignment tasks, it could do it significantly slower. As an
example, compare the results for the model with 115 activities and an event log with
30%: On average, the existing approach requires 1987 ms per trace, versus 716 ms for
FAST-DOWNWARD. A saving of 1.2 seconds per trace means that, to align all traces of
an event log with, e.g., 100000 traces (not uncommon in real-world case studies), the
use of FAST-DOWNWARD would allow us to save 120000 seconds: 83.3 hours.
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