
On the Role of the GRAPH Clause in the
Performance of Federated SPARQL Queries

David Chaves-Fraga1, Claudio Gutierrez2, and Oscar Corcho1

1 Ontology Engineering Group, Universidad Politénica de Madrid
2 Computer Science Department & CIWS, Universidad de Chile

Abstract. Federated SPARQL queries give unified answers from mul-
tiple and distributed SPARQL endpoints. A good example may be the
collection of stops from different transport companies in the same city to
create a route planning application. The performance of the evaluation
of these types of queries is usually poor, a fact that makes difficult their
use in real-life applications that need good performance requirements.
In this paper we present a preliminary analysis on the improvement
that can be achieved by using the GRAPH clause in federated SPARQL
queries. The main goal is to reduce the search space of such queries
by setting the NAMED GRAPH to the graph pattern where the corre-
sponding patterns should be evaluated. We perform a preliminary com-
parison between a federated query and a rewriting that uses systemati-
cally the GRAPH clause. These experiments show that the inclusion of
the GRAPH clause may only improve performance of query evaluation
between 5% and 10%. These early findings suggest that, although the
GRAPH clause may indeed play a role in speeding up federated SPARQL
queries, hurdles are yet to be overcome when using the GRAPH clause
as named graphs are semantically ambiguous.

Keywords: SPARQL, federated queries, graph, performance

1 Introduction

In recent years several public SPARQL endpoints have been made available on
the Web containing billions of RDF triples that can be queried [4]. A way to query
multiple SPARQL endpoints with a single query is by building a federated query.
The definition of federated query is specified in the SPARQL 1.1 recommendation
[5] and its syntax, semantics and evaluation are described on [3].

While these queries are useful for this purpose, their main disadvantage is
their low performance, hence their use on real applications is limited. Other
approaches are being currently applied, like getting the data from APIs, doing a
manual data merge or joining data at the client side. Even so, federated queries
are still an interesting approach to query RDF data sources exposed via SPARQL
endpoints. Finding ways to improve their performance is one of the current
research topics in the field.

A SPARQL endpoint is conceptualized as shown in Figure 1: one default-
graph and from 0 to N NAMED GRAPHS. Each of these NAMED GRAPHS



contains a set of triples and has a unique identifier (URI). In a SPARQL query
it is possible to indicate the graph where a particular part of a query (e.g. a
pattern) will be evaluated completely or partially, by using the GRAPH clause
with the graph URI. We hypothesize that using this feature in a systematic form
may reduce the search space when evaluating federated SPARQL queries. The
goal of this paper is to add evidence to this claim.

Fig. 1. SPARQL endpoint graphical conceptualization

The paper is organized as follows: Section 2 presents some of the related
work on the conceptualization of SPARQL endpoints and federated queries. Sec-
tion 3 describes our proposal about systematically using the GRAPH clause in
federated queries. Section 4 shows a preliminary evaluation and presents some
conclusions and future areas of work to be explored.

2 Related work

In this section we describe related work on two topics. On the one hand, the
SPARQL endpoint conceptualizations; on the other hand, several optimizations
that have been proposed in the area of federated SPARQL queries.

The SPARQL endpoint conceptualization is not an easy task. Hernández
and Gutierrez [6] deal with current problems of the notion of the dataset in
SPARQL that is defined as a set {G0, (u1, G1), .., (un, Gn)} where G0 is called
default graph and each Gi is a RDF graph with an associated URI (ui). They
try to identify the possibilities and the constraints of a dataset in a (federated)
SPARQL query. There are further analysis on this topic in [2], in the specification
of SPARQL [5] and in the documentation of federated SPARQL [11].

There are several works in the literature on federated SPARQL queries that
try to optimize the performance of query evaluation [1][13], so as to make them
applicable to real cases. The current approach in federated SPARQL queries
deals essentially with the problem of source selection [14][12]. A different ap-
proach is detailed in [7], where the authors include the GRAPH clause in the
queries to support graph-level access during the source selection step. By using
the SERVICE clause in the queries the problem of source selection is auto-
matically solved, but other interesting problems show up, like the availability
of SPARQL endpoints in federated queries [4] or how to query heterogeneous
resources following W3C standards like R2RML [10].



3 Using GRAPH clauses in federated SPARQL queries

In this section we propose an approach to improve federated query evaluation by
systematically using the GRAPH clause to rewrite a query into a semantically
equivalent one.

When the GRAPH clause is used in a SPARQL query, only triples saved
into that GRAPH clause will occur in the resulting SPARQL bindings. We want
to compare the performance between a federated SPARQL and a semantically
equivalent query that makes use of the GRAPH clause to direct the evaluation.
The definition of what is a graph pattern and its semantics and syntax can be
found in [9]. Clearly the main challenge here is to identify the graph patterns
that will only retrieve data from a unique GRAPH in the SPARQL endpoint.
In this preliminary report we will assume this hypothesis, because we would
like to show that it is actually possible to rewrite queries using this idea and
this method add efficiency in the evaluation. We are aware that the possibility to
identify this pattern is linked to information about sources. Once all the patterns
are identified, one can rewrite the query in order to direct precisely the pattern
evaluations to the relevant sources. The rationale behind this approach is that
our experience shows that in a query usually there are many graph patterns that
bind results from only one of the graphs in the SPARQL endpoint.

Fig. 2. Example our approach with DBpedia SPARQL endpoint

In Figure 2 we show graphically what does this approach mean for exam-
ples using the DBpedia SPARQL endpoint3. When evaluating a query with a
graph pattern (?s <dbo:person> ?o), the data returned will belong to the graph
<http://dbpedia.org>. Similarly, a pattern of the form (?s <wikidata:P646c>
?o) retrieves data only from graph <http://wikidata.org> in the same SPARQL
endpoint. Thus would be interesting to be able to explicit this information in the
query to be issued, so that the server can have more information and optimize
the retrieval.

An example of how this transformation from a standard query into on which
uses the GRAPH clause with this purpose is shown in the queries 1.1 and 1.2
below. The expectation is that the search space of a federated SPARQL query
will be reduced and hence performance of query evaluation will improve.

3 https://dbpedia.org/sparql



Listing 1.1. Federated query

SELECT ∗ WHERE {
SERVICE <S1> { GP1 }
SERVICE <S2> { GP2 }
SERVICE <S3> { GP3 }

}

Listing 1.2. Federated query with the
GRAPH clause

SELECT ∗
FROM NAMED <S1−G2>
FROM NAMED <S2−G3>
FROM NAMED <S3−G1>
WHERE {

SERVICE <S1> {
GRAPH <S1−G2> {GP1} }

SERVICE <S2> {
GRAPH <S2−G3> {GP2} }

SERVICE <S2> {
GRAPH <S3−G1> {GP3} }

}

4 Preliminary evaluation

We performed some preliminary experiments to test our approach. We built fed-
erated queries over multiple real SPARQL endpoints4,5,6,7 where their graph
patterns only retrieve data from one of the graphs of each SPARQL endpoint.
The queries were executed over the public real instances of the SPARQL end-
points. This first set of results, shown in Table 1, were obtained after 5 executions
per each query and approach. We computed the average of the executions in mil-
liseconds with the disabled cache on the browser. We also used a local Virtuoso
7.2.4 to send the queries over the real SPARQL endpoints.

SERVICE GRAPH

Q1 14630 13510

Q2 4360 3220

Q3 2880 1980

Q4 1690 1730

Q5 9120 8560
Table 1. Preliminary results

The results obtained after the experimentation reflect that a federated query
that includes the GRAPH clause does not improve relevantly the performance
of a federated query, as one could hypothesize. We only got an improvement
in the queries evaluation time between 5% and 10%. The reason of this is that
the conceptual information that a SPARQL endpoint provides about its graphs
is not the same as the physical storage organization. If a query over a public
SPARQL endpoint is made to list all the graphs of that SPARQL endpoint

4 https://dbpedia.org/sparql
5 https://kb.3cixty.com/sparql
6 http://data.linkedmdb.org/sparql
7 https://github.com/dachafra/federated-graph-queries



and their related triples (an example of DBpedia8 is provided) conceptually the
information that the user receives is that this number of triples are stored into
those graphs. The reality, however, is that usually all the triples are stored in
the same place and thus it does not make relevant difference the approach we
are proposing. As reflected on Virtuoso documentation9, it currently puts the
triples in a single table with the graph URI as a key part although they are
already working on an improvement to store triples in their graphs. Testing our
approach with this future improvement of Virtuoso (or other triple store that
includes this feature) could prove that including the GRAPH clause in federated
SPARQL queries improves their performance.

4.1 Conclusion: The role of the GRAPH clause in SPARQL

After this short experiment one could ask: What is the role of the GRAPH clause
in SPARQL? We know that it is useful from a semantic point of view, that is,
when a graph pattern matches triples that are saved in multiple graphs and
the user only wants the triples from one of them. But we have identified issues
that are not evident when using a GRAPH clause: (i) semantic ambiguity; (ii)
offers a view of how the data is conceptually ordered but not physically; (iii) is
a SPARQL clause that seems to not allow any type of optimization.

One of the important problems related with the graphs of a SPARQL end-
point is the correctness of their characterization. When an open data portal or a
controlled vocabulary is developed, the format of the URIs is highly structured.
Also, only by analysing the URI itself, one usually can get some interesting infor-
mation about what type of data they are storing10,11. If this feature were taken
into account at the moment of building the graphs of a SPARQL endpoint, it
might be useful for the users to have an idea of what type of triples are loaded
in each graph. In summary, the role of the GRAPH clause needs to be clarified
in order to be really useful as a construct of the language.

The problems presented generate different lines for future research, such as
creating a federated benchmark that includes the SERVICE and GRAPH clauses
and do the evaluation in a controlled environment, applying our approach to
other triple stores or carrying out semantic equivalence between open data portal
and a SPARQL endpoint. It would also be very useful to develop a way for
automatically linking unique graph patterns with their pertained graphs in a
SPARQL endpoint using an index or other current solutions like Loupe[8]. This
problem is reflected in some inconsistencies between the specification and real-
life implementations. For example, although the syntax of federated SPARQL
1.1 does not allow to include GRAPH clauses in a federated query, Virtuoso and
Apache Jena can execute the approach presented in this note.

8 https://github.com/dachafra/federated-graph-queries/blob/master/DBpediaGRAPHS.csv
9 https://virtuoso.openlinksw.com/rdf/

10 http://ec.europa.eu/transport/facts-fundings/statistics/pocketbook-2013 en
11 http://ec.europa.eu/eurostat/web/products-datasets/-/rail go quartal



Acknowledgements. The research leading to this paper has been partially done
in the context of the FP7 Marie Curie IRSES SemData project (http://www.semdata-
project.eu/), grant agreement No PIRSES-GA-2013-612551, and it is also sup-
ported by the 4V Spanish national project (TIN2013-46238-C4-2-R) .

References

1. Maribel Acosta, Maria-Esther Vidal, Tomas Lampo, Julio Castillo, and Edna Ruck-
haus. Anapsid: an adaptive query processing engine for SPARQL endpoints. The
Semantic Web–ISWC 2011, pages 18–34, 2011.

2. Renzo Angles and Claudio Gutierrez. SQL nested queries in SPARQL. In AMW,
2010.

3. Carlos Buil-Aranda, Marcelo Arenas, Oscar Corcho, and Axel Polleres. Federat-
ing queries in SPARQL 1.1: Syntax, semantics and evaluation. Web Semantics:
Science, Services and Agents on the World Wide Web, 18(1):1–17, 2013.

4. Carlos Buil-Aranda, Aidan Hogan, Jürgen Umbrich, and Pierre-Yves Vandenbuss-
che. SPARQL web-querying infrastructure: Ready for action? In International
Semantic Web Conference, pages 277–293. Springer, 2013.

5. Steve Harris, Andy Seaborne, and Eric Prudhommeaux. SPARQL 1.1 query lan-
guage. W3C recommendation, 21(10), 2013.

6. Daniel Hernández and Claudio Gutierrez. Disentangling the notion of dataset in
SPARQL. In Alberto Mendelzon International Workshop on Foundations of Data
Management, page 213, 2015.

7. Yasar Khan, Muhammad Saleem, Aftab Iqbal, Muntazir Mehdi, Aidan Hogan,
Axel-Cyrille Ngonga Ngomo, Stefan Decker, and Ratnesh Sahay. Safe: policy aware
SPARQL query federation over RDF data cubes. In Proceedings of the 7th Inter-
national Workshop on Semantic Web Applications and Tools for Life Sciences,
Berlin, Germany, December 9-11, 2014., 2014.

8. Nandana Mihindukulasooriya, Raúl Garćıa-Castro, and Miguel Esteban-Gutiérrez.
Linked data platform as a novel approach for enterprise application integration. In
Proceedings of the Fourth International Conference on Consuming Linked Data-
Volume 1034, pages 146–157. CEUR-WS. org, 2013.

9. Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and complexity
of SPARQL. ACM Transactions on Database Systems (TODS), 34(3):16, 2009.

10. Freddy Priyatna, Carlos Buil Aranda, and Oscar Corcho. Applying SPARQL-DQP
for federated SPARQL querying over google fusion tables. In Extended Semantic
Web Conference, pages 189–193. Springer, 2013.

11. Eric Prudhommeaux, Carlos Buil-Aranda, et al. SPARQL 1.1 federated query.
W3C Recommendation, 21, 2013.

12. Muhammad Saleem and Axel-Cyrille Ngonga Ngomo. Hibiscus: Hypergraph-based
source selection for SPARQL endpoint federation. In European Semantic Web
Conference, pages 176–191. Springer, 2014.

13. Muhammad Saleem, Axel-Cyrille Ngonga Ngomo, Josiane Xavier Parreira, He-
lena F Deus, and Manfred Hauswirth. Daw: Duplicate-aware federated query pro-
cessing over the web of data. In International Semantic Web Conference, pages
574–590. Springer, 2013.

14. Maria-Esther Vidal, Simón Castillo, Maribel Acosta, Gabriela Montoya, and
Guillermo Palma. On the selection of SPARQL endpoints to efficiently execute
federated SPARQL queries. In Transactions on Large-Scale Data-and Knowledge-
Centered Systems XXV, pages 109–149. Springer, 2016.


