127

A workflow cloud management framework with
process-oriented case-based reasoning

Eric Kibler and Mirjam Minor

Goethe University, Business Information Systems, Robert-Mayer-Str. 10,
60629 Frankfurt, Germany
ekuebler@cs.uni-frankfurt.de,
minor@cs.uni-frankfurt.de

Abstract. Workflow execution in the cloud is a novel field for process-
oriented case-based reasoning (PO-CBR). In contrast to traditional PO-
CBR approaches where the focus is usually on single workflow instances,
an entire set of workflow instances is considered that are currently run-
ning on cloud resources. While traditional methods such as running a
workflow management tool monolithically on cloud resources lead to
over- and under-provisioning problems, other concepts include a very
deep integration, where the options for changing the involved workflow
management tools and clouds are very limited. In this work, we present
the architecture of WFCF, a connector-based integration framework for
workflow management tools and clouds to optimize the resource utiliza-
tion of cloud resources for workflow by Case-Based Reasoning. Experi-
ence reuse contributes to an optimized resource provisioning based on
solutions for past resource provisioning problems. The approach is illus-
trated by a real sample workflow from the music mastering domain.

1 INTRODUCTION

Resource provisioning for workflow execution is a well known issue in work-
flow management. It has been solved for on-premise systems by load balancing
components, for instance. However, in cloud computing, resources are provided
on-demand. Thus, workflow management in the cloud has to deal with scalable
resources. Standard load balancing approaches are not capable to deal with this.
Novel business concepts for workflow execution in the cloud emerge. One of
these concepts is workflow as a Service (WFaaS) as introduced by [17,9]. The
Workflow Management Coalition [18] defines a workflow as “the automation of
a business process, in whole or part, during which documents, information or
tasks are passed from one participant to another for action, according to a set
of procedural rules”. A task, also called activity, is defined as “a description of
a piece of work that forms one logical step within a process. An activity may be
a manual activity, which does not support computer automation, or a workflow
(automated) activity. A workflow activity requires human and/or machine re-
sources(s) to support process execution” [18]. The idea of WFaaS is to execute
activities within a cloud. A cloud vendor [3] is a company that offers services

Copyright © 2017 for this paper by its authors. Copying permitted for private and
academic purpose. In Proceedings of the ICCBR 2017 Workshops. Trondheim, Norway

in the cloud, for example the execution of a workflow. However, the vendor is
not always a cloud provider. Even if renting the required cloud resources by a
third party provider, the vendor is responsible for maintaining the service level
agreements (SLA) for the own costumers. An SLA defines agreements between
the provider and the customer about different aspects of the quality of service.
For example, an SLA can be specified for the execution time of the workflow.
To prevent an SLA violation, the vendor may rent more resources than required
(over-provisioning) but this will reduce the profit. On the other hand, if the
vendor rents less resources than required (under-provisioning) this can lead to
violations of the SLA. Violations of an SLA create high costs and a loss of
reputation [16]. Thus, the optimal management of resources is an important as-
pect for cloud computing [6] in general and, particularly, for WFaaS vendors. It
is challenging to find a good balance between over- and under-provisioning of
resources [4]. A straight-forward solution to provide resources is the static way.
This means, the system does not adjust itself to a changing situation. Obviously,
this will lead to under- or over-provisioning [16]. A more dynamic approach is
preferable. Existing approaches range from rather simple, rule-based solutions,
such as observing the number of open connections to a cloud resource [14] to
sophisticated, algorithmic solutions [15].

Knowledge and experience management methods [7] provide an alternative solu-
tion approach focusing on the reuse of experience. In this paper, we investigate
Case-based reasoning (CBR) as a method for optimizing the provisioning of cloud
resources by experience reuse. This work is an extended version of the approach
we introduced in ICCBR 2014 [13]. We will introduce the architecture of WFCF
(Workflow Cloud Framework) a connector-based integration framework for work-
flow management tools and clouds that aims to optimize the resource utilization
of cloud resources for workflows by means of CBR. WFCF follows a shallow inte-
gration approach, i.e. it is independent of the chosen workflow management tools
and cloud systems. The idea is to have a set of WFCF components that are in-
dependent of the workflow management tools and cloud systems. A tool-specific
set of connectors interacts with the actually used tools and system. Further, we
will present the details how the problem solving component of the architecture is
realized by means of PO-CBR. The benefits of using PO-CBR is twofold namely
the reduction of costs for the vendor by reducing over-provisioning and SLA
violations and, second, a better cost estimation based on experience.

2 WFCF ARCHITECTURE

In this section, we will explain the architecture of WFCF and its components.
Starting with the overall architecture, we show the details of the monitoring and
management components and how they interact.

128

2.1 Overall architecture

Figure 1 shows the overall architecture of the WFCF, which we will explain
in the following. The architecture can be divided roughly in three parts: the
environment, the monitoring component and the management component. The
environment are the cloud and the workflow management tool that is used by
the customer. Ideally, WFCF will use the already offered information and man-
agement methods of the tools, so that additional changes are not necessary.
Therefore, WFCF will use offered log files, databases and APT’s for monitoring
the environment and to configure the cloud. CWorkload is the monitoring com-
ponent. It collects information from the environment and combines data across
the different layers (the cloud layer and the workflow layer) to one status model
of the system. We had done initial tests for the cross layer monitoring aspect of
CWorkload in [10]. The management component recognizes current or upcoming
problems within the system. This could be for example violated SLA’s, violated
constraints or resource over-provisioning. If a problem occurs, the management
component searches for a solution and reconfigures the cloud. We will explain
this in more detail in section 2.3.

Environment Monitoring (

I CWorkload

WFCF Configurator

I l | CProblem

WFCF Solver

/

Fig. 1. Architecture of WFCF

2.2 Monitoring

The main components of WFCF work independently from the actually used
environment. To work properly, WFCF needs information about the status of
the actually running workflow instances and the resource utilization of the cloud.
The basic idea is, to connect the used workflow engine and cloud to WFCF with
connectors. This allow the usage of different engines and clouds without or just
small adaptions. For further details, please have a look at our previous work [12].

129

2.3 Management

Whereas the monitoring component observes the environment, the management
component configures it. This means, the management component starts and
stops virtual machines or PaaS container, scales resources and migrates con-
tent. Figure 2shows the management component in more detail. After CWork-
load has built the WFCF CloudWF Status, CProblem is the part of WFCF
which interprets the current status of the environment that is recorded as the
WEFCF CloudWF Status. Besides the CloudWF status, there is another archive,
the Global SLA // Constraint Archive, where global constraints and SLA’s are
stored. The Global SLA // Constraint Archive contains SLA’s and constraints
that are valid for all workflows of a user. There are several different problems
that can occur and which CProblem will identify, e.g., violated SLA’s. We are
planning that CProblem does not only check the current situation, but also do a
forecast to identify upcoming problems and over-provisioning. A workflow defi-
nition contains all information about the structure of the workflow. For example,
the name of the tasks and their order. Via the workflow definitions, for example,
CProblem can recognize if a certain web service is going to be used in the future
by a currently running workflow instance. If not, WFCF can shut down the VM
or container to save money. Another possible scenario could be that currently,
there is no violated SLA, but in the near future, several tasks with high resource
demand will be started, which can probably lead to a SLA violation, so WFCF
should scale up the resources to avoid this problem. Forecasting SLA violations,
however, could be a difficult task. To decide if the start of some resource inten-
sive tasks lead to a SLA violation is not as easy as to recognize if a web service
has not started yet. A simulations seems a proper way to identify these kind of
problems. Therefore, CProblem interacts with CSimu. We are planning to use
CloudSim [1] as the core of our simulation part. CSimu will simulate the execu-
tion of the tasks with the current cloud status and will show if this will lead to a
SLA violation. If any problem is unidentified, CProblem extends the CloudWF
status with annotations about the problems. This new annotated model is the
WFCF CloudWF Problem. Such annotations could be, for example, web service
x s not longer needed or SLA vy is currently violated. Whereas CWorkload is the
core of the monitoring component, the WFCFSolver is the core of the manage-
ment. Similar to CWorkload, the solver has two jobs. First, the solver searches
for a new cloud configuration that solves the current problems. Then it finds a
reconfiguration path from the current cloud configuration to the new solution.
In the last step, the solver sends the reconfiguration steps to the WFCF Config-
urator as shown in Figure 1. The reconfigurator then will do the reconfiguration
job. There are several possible approaches to find a new cloud configuration. We
will choose Case-Based Reasoning (CBR) as our solving strategy.

3 CBR FOR PROBLEM SOLVING

In this section we take a closer look how the WFCFSolver will solve the cloud
management problems with CBR methods. As mentioned in Section 1, the idea

130

| WFCF S
CloudWF -
Constraint
Status .
Archive

CProblem

(= J
¥
WFCF Cloud Resources and
Service Archive
0 ¥
WFCF CloudWF
Problem

Fig. 2. Management of WFCF

of CBR is that similar problems have similar solutions. If a problem situation
occurs the system retrieves experience by searching a similar situation from the
past. In our case a problem situation is a cloud configuration with a problem,
such as violated SLA’s. This is the retrieval step. The key to experience retrieval
is a good notion when some kind of experience is relevant for a certain situation.
This knowledge is captured in the similarity measure [7]. The reuse step of CBR,
is to use the solutions from the past for the current problem. In our case, the
solution contains re-configuration steps. This for example could be the to start
new VM’s or to migrate containers to another VM.

A problem situation is recorded as WFCF Cloud WF Problem. Figure 3 shows
an example of a simple CloudWF Problem. This example contains one VM, two
containers for the required web services and a bunch of workflow instances cur-
rently being executed. The image depicts not the entire workflows but the tasks
that are currently active within the instances. Most of the workflow instances
are derived from the same workflow definition and are in the same state of exe-
cution. At this point, the task Task 1 uses the web service web service 1 while
Task 2 uses web service 2. In addition, there is another workflow instance (in
the bottom right corner). This instance is probably from a different workflow
definition, or the instance is in a different state of execution. The current task
of this instance is task 217 and for its proper execution, a web service that has
not yet started is required. This example also includes the constraint that the
average resource utilization must not extend 75% for reasons of performance.
The example CloudWF Problem includes also three problems. The resource uti-
lization of the CPU and memory of VM1 is too high and a new web service must
start for Task 217. More complex CloudWF Problems may involve several VM’s,
containers and workflow instances.

131

Constrain: List of Problems:

Resource
utilization ==75%

D~

—VM1: CPU utilization
is to high

=—VM1: RAM utilization
is to high

Container 1 jContainer 2

CPU's: 2 utilization: 75% | JCPU's: 2 utilization: 20% L
RAM: 4GB utilization: 40%] JRAM: 4GB utilization: 40% | | ~T2sk 217: missing web
Storage: 30GB ... rtnrage: 20GB ... Service

I web service 1 I I web service 2 I

|
:

o om0

Task 2
Workflow,

0‘0 ¢¢ Instances of

=3 Task: J ongen | workflows

Fig. 3. Example representation of a case

A case base is an archive of previous problems and their solutions. The case
base is not depicted in Figure 2, because it is part of the solving strategy and not
part of WFCF itself. The solver will search the case base for similar problems in
the past. In our previous work [11], we have introduced the idea of a similarity
function for cloud configurations. For the similarity of a cloud configuration, we
consider the following aspects as important.

The provided resources. Two VM’s are similar, if they have a similar set of
resources available. For example, two VM’s with a quad core processor should
be more similar than a VM with a dual core processor and a VM with a quad
core. The idea is, that VM’s with a similar set of resources should handle gen-
eral workload similar, where VM’s with a different set of resources maybe lead
to other results, for example you can not migrate a container that requires a
quad core, if the VM only have a dual core. The same applies to containers.
The resource utilization. VM’s with a similar resource utilization, for exam-
ple average CPU usage, should be considered as similar. If the utilization differs
significantly, a solution that is valid for one case could be invalid for the recent
case. For example if the disk space utilization for a VM vmqis 20% and for an
another vmg 100%, the system can not migrate a container to vms, because of
the lack of free disk space, while a migration to vm, is feasible. The same applies
to containers.

The assigned SLA’s and whether they are violated or not. If two cloud
configurations have a similar set of SLA’s, the configurations should be consid-

132

ered as similar. Different SLA’s or the violation of different SLA’s can lead to a
situation, where a problem of the one case is not a problem in another case. For
example if a cloud configuration includes an SLA on availability and the other
doesn’t, the availability can be a problem in the first case while it is not in the
second. That leads to the situation, that a solution that mends the availability
problem for one case is not applicable for the other case.
The executed workflow instances and their workflow definitions. The
number of the started instances and the structure of the workflow definitions
can have a high impact on the requirements for resources and for started web
services. For example, if an instance of a workflow is started that requires a
certain web service, every solution that does not include this web service is not
valid. The structure of the workflow definitions also specifies which tasks will be
started next.
To determine the similarity of two cases, we use a composite, distance-based sim-
ilarity function based on the aspects introduced before. The similarity of each
aspect in two cases is computed by a particular local similarity function. The
local similarity values are aggregated by means of a sum of weighted aspects.
For example, the similarity function of the resources provided for a VM is based
on a taxonomy, and analog for containers. For the size of the provided resources,
we have been inspired by Amazon EC2 instances [5] for nodes and OpenShift
[2] for containers. For other aspects, we use mainly standard distance functions.
For example to determine the distance between the resource utilization for VMs
vmyti, we use the Euclidean distance for the resource vectors of CPU, mem-
ory, storage, network traffic, and so on. The utilization values are provided in
percentage. The distance of the resource utilization vm,,til is calculated by the
n
Euclidean distance vmuyi(p,q) = (/D (¢7™ — py™)?, where p is the vector of
i=1
n utilization values for the first case and ¢ for the second case. For example,
g}™ = 50 is the utilization of the CPU ¢} with a value of 50%. po is the uti-
lization of the memory and so on.
The similarity function for the workflow aspect of our approach is ongoing work.
Each workflow instance has 0 to n active tasks. These are the tasks that are
currently executed. We are planning to consider the currently active tasks, as a
bag of tasks in our similarity function. In addition, another relevant set of tasks
can be derived from the workflow definition namely the set of tasks that will
be active in the near future. We call this the bag of tasks approaching next. We
assume, these two bags of task should be an important part within the similarity
function. The similarity of two individual tasks will be determined by its service
characterization, the size of its input data and the name of the task. Two tasks
are similar if they have the same characterization (for example CPU intensive)
and if the size of the input data and the name of the task are similar. However,
we have not decided yet how to implement the similarity function for bags of
tasks finally.
For the reuse step, a solution is a cloud configuration without problems. The
solver will search for a similar problem and use the solution for this old problem

133

or the solution can serve as a starting point for a new solution. Anyways, the
solver will send the solution back to CProblem to check if the solution comes
up with new problems. CProblem will check and simulate the solution and give
feedback to the solver. This will be repeated until a solution is found or another
condition is fulfilled. This could be, for example, a time limit. In this case, the
solution with the least significant problem will be chosen. The usage of CBR
also opens the opportunity for post-mortem analysis and improvement of the
stored solution, while WFCF is otherwise idle. This lazy learning can also be
used, if there is no similar soluation, or when the case base is empty. In such a
case, a simple rule based approach can generate a first placement for the current
situation and a post-mortem analysis can improve the result afterward, for the
next time, a similar situation approaches. In addition to the case base, there is
the WECF Cloud Resources and Service Archive. This archive contains infor-
mation about the available type of containers, VM’s, web services and so on.
This archive helps the solver to find valid solutions. Similar to the connectors in
the monitoring part, the Cloud Service Explorer is a connector to the cloud to
discover available sizes and services and store them in the Resources and Service
Archive.

4 EXAMPLE

To demonstrate the idea of WFCF, we will give a running example. As our
example domain, we chose music workflows to mastering music. The purpose
of such a workflow is to transform and process a music file. This includes to
normalize and limit the volume of the sound, increase or reduce the sample rate,
convert from mono to stereo or reverse and adding special effects like fading
and compressing the size of the music file. Figure 4 shows an example workflow.
The workflow is modelled in BPMN [8]. To simplify the image, figure 4 does not
show the input and output files of the web services. The workflow starts with
the Init Workflow Parameter tasks to initialize the workflow by a human. The
user chooses some parameter for the later mastering. The following two tasks
are also human tasks require along with the first one no cloud resources. The
following tasks are all based on web services and alter the music file each time.
For example, the task normalize normalizes the volume of the music file, while
the task fading adds a fade-out effect to the end of the music. Let us assume
that task choose file is currently active.

CProblem realizes that, in the near future, the task normalize will start. This
task requires the web service normalize web service that is not available at the
moment and this is a problem. CProblem prepares the WFCF Cloud WF Prob-
lem and annotates that this web service is required. Because of the simple cloud
configuration and because no SLA’s are involved, no simulation from CSimu is
needed. The WFCFSolver searches its case base for a case where a web service
is required and no container is currently started. Let us assume that the WFCF-
Solver finds such a solution and this solution includes to start a container with
the needed web service. The solver will send this solution back to CProblem to

134

!

—A8 ini ot 2
@ init N generate | i i
parameters random set
k-] -] @
sample rate |+ limiter N normallize

L) -3
channels " fading + sample size

I

O.

write data

i

Fig. 4. Sample workflow of mastering music

check if the solution includes new problems. This, however, is not the case. The
solver can now start to plan the reconfiguration. After the solver is done, the
WFECF Configurator starts a container with the web service.

5 CONCLUSION

In this paper, we introduced the architecture of WFCF, a connector-based in-
tegration framework for workflow management tools and clouds. The goal of
WEFCF is to provide a way to integrate different workflow management tools
and clouds, while also optimizing the resource utilization of the used cloud re-
sources by PO-CBR. To achieve this goal, WFCF uses multiple concepts. The
connector’s concept allows in a modular way to integrate workflow tools and
clouds by using their usual management and monitoring concepts and without
the need for special requirements to the used tools. The monitoring component
of WFCF analyzes the run time behavior and resource usage of tasks for a bet-
ter understanding of their needs and also combines information of the workflow
management tool and the cloud to a status model for future analysis and forecast
of problems. The management component analyzes this status model for prob-
lems by using a combination of simulation and static methods. When a problem
occurred or can be forecasted, the management component uses CBR to find a
similar problem in the past and solve the problem based on the past solution.
WEFCF aims at a shallow integration of cloud and workflow management tools
for flexible combination of tools and the optimization of resource usage. We be-
lieve that the use of PO-CBR will lead to the reduction of costs for the vendor
by reducing over-provisioning and SLA violations and, second, offer the oppor-
tunity for a better cost estimation due to experience, while the approach should
be less compute intensive and therefore faster as other solutions. Currently, we
are working on a prototypical implementation of the of the architecture to eval-
uate the concept in future. For our future evaluation, we are planing to compare

135

WEFCF with Cloud Socket. An open issue is to design the similarity functions
in detail and the WFCF Cloud WF Status model in a universal way without
dependencies of the actually used tools. Another future task is the acquisition
of a larger set of problems that should be recognized and solved and also to in-
vestigate how strong is the impact of different optimization goals (for example,
reduce costs or reduce SLA violations), for different solutions.

References

1.

®

10.

11.

12.

13.

14.

15.

16.

17.

18.

The CLOUDS lab: Flagship projects - gridbus and cloudbus (2016),
http://www.cloudbus.org, 2016-12-08

OpenShift (2016), https://www.openshift.com/, 2016-12-08

Antonopoulos, N., Gillam, L.: Cloud computing. Springer (2010)

Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, 1., Zaharia, M.: A view of cloud computing
53(4), 50-58 (2010)

AWS: Amazon web services (AWS) - cloud computing services (2016),
http://aws.amazon.com/, 2016-12-08

Baun, C., Kunze, M., Nimis, J., Tai, S.: Cloud Computing - Web-Based Dynamic
IT Services. Springer (2011)

Bergmann, R.: Experience management: Foundations, development methodology,
and Internet-based applications. Springer Verlag (2002)

. Chinosi, M., Trombetta, A.: BPMN: An introduction to the standard 34(1), 124—

134 (2012)

Korambath, P., Wang, J., Kumar, A., Hochstein, L., Schott, B., Graybill, R.,
Baldea, M., Davis, J.: Deploying kepler workflows as services on a cloud infras-
tructure for smart manufacturing 29, 2254-2259 (2014)

Kibler, E., Minor, M.: Towards cross-layer monitoring of cloud workflows. In:
Helfert, M., Ferguson, D., Muoz, V.M. (eds.) CLOSER 2015, Lisbon, Portugal,
20-22 May, 2015. pp. 389-396. SciTePress (2015)

Kiibler, E., Minor, M.: Towards a case-based reasoning approach for cloud pro-
visioning. In: CLOSER 2016, Rome, Italy 23-25 April, 2016. vol. 2, pp. 290-295.
SciTePress (2016)

Kiibler, E., Minor, M.: WFCF - a workflow cloud framework. In: CLOSER 2017,
Porto, Portugal 24-26 April, 2017. pp. 518-523. SciTePress (2017)

Minor, M., Schulte-Zurhausen, E.: Towards process-oriented cloud management
with case-based reasoning. In: Proc. ICCBR 2014. pp. 303 — 312. LNCS 8766,
Springer (2014)

Pousty, S., Miller, K.: Getting Started with OpenShift. ”O’Reilly Media, Inc.”
(2014)

Quiroz, A., Kim, H., Parashar, M., Gnanasambandam, N., Sharma, N.: Towards
autonomic workload provisioning for enterprise grids and clouds. In: Grid Comput-
ing, 2009 10th IEEE/ACM International Conference on. pp. 50-57. IEEE (2009)
Shoaib, Y., Das, O.: Performance-oriented cloud provisioning: Taxonomy and sur-
vey abs/1411.5077 (2014)

Wang, J., Korambath, P., Altintas, 1., Davis, J., Crawl, D.: Workflow as a service
in the cloud: Architecture and scheduling algorithms 29, 546-556 (2014)
Workflow Management Coalition: Workflow management coalition glossary & ter-
minology (1999), http://www.wfmec.org/resources 2016-12-15

136

