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Abstract
Notions of predication based on extensional and in-
tensional subsumption, as described by Woods, are
related to Kahneman’s systems of thinking fast and
slow. Path-based reasoning with links is applied to
predication over not only individuals but (follow-
ing Carlson) kinds and stages/time. Predications,
fast and slow, are formulated in monadic second-
order logic over strings, analyzed in Goguen and
Burstall’s institutions.

1 Introduction
In his ACL Lifetime Achievement Award lecture, William
Woods contrasts two competing traditions in Knowledge
Representation for Natural Language Understanding

1. logical reasoning, which is rigorous and formal, but
often counterintuitive, and which has algorithms that
match expressions, substitute values for variables, and
invoke rules, and

2. associative networks, which are structured and intuitive,
but typically informal; however, they support efficient
algorithms that follow paths through links to draw con-
clusions

[Woods, 2010, page 625]. These traditions offer different per-
spectives on concepts and subsumption v between concepts.
The custom in logic is to interpret a concept C as a set [[C]]
of C-instances, called its extension (under [[·]]), with C sub-
sumed by a more general concept C ′, C v C ′, when every
C-instance is a C ′-instance

C v C ′ under [[·]] ⇐⇒ [[C]] ⊆ [[C ′]] (1)

[Baader et al., 2003]. Rejecting the reduction of a concept
to its extension, Woods advocates a notion of intension that
“is as much a psychological issue as a logical issue” [Woods,
2007, page 83]. Woods steps away from arbitrary instances
given by some interpretation [[·]] to a carefully crafted con-
ceptual taxonomy, for an intensional subsumption quicker to
compute than the extensional notion specified by (1).1 Woods

1Analyzing intension as a function from indices (or points of
reference) to extensions [Carnap, 1947; Montague, 1974] arguably
only compounds (1), multiplying notions of instance by indices.

hypothesizes the bulk of reasoning is of the quick “recognize
and react” variety, implicating the efficient algorithms of as-
sociative networks, as opposed to the ponderous mechanisms
of logic. In a similar vein, the psychologist Daniel Kahne-
man argues that thinking operates largely under a fast sys-
tem, breakdowns in which trigger a second slower system that
would otherwise lie dormant [Kahneman, 2011]. Woods and
Kahneman independently suggest commonsense reasoning is
often easy but at times hard.

The fast/slow intensional/extensional contrasts are taken
up together below, starting in §2 with Formal Concept Analy-
sis [Ganter and Wille, 1999] for a tight conceptual pairing of
extension and intension (shortened there to extent and intent).
Well-known complications in predication point to a loosen-
ing of that pairing, paving paths in §3 to logical systems in §4
that Goguen and Burstall [1992] call institutions. Institutions
based on monadic second-order logic over strings are defined,
providing a uniform path-based account of predication over
kinds and stages in the sense of Carlson [1977], with monadic
second-order variables ranging over paths, and many models
reduced to finite ones, amenable to finite-state methods. The
bias What you see is all there is (WYSIATI) from Kahneman
[2011] is formulated as a satisfaction condition characteris-
tic of institutions. Reasoning may slow down due to adjust-
ments within an institution or perhaps worse, changes of in-
stitutions. The former explores unknowns that are known to
an institution, while the latter arises from unknown unknowns
(to borrow Donald Rumsfeld’s words).

2 Formal Concept Analysis and partiality
To bring out a notion of intension buried in purely extensional
accounts, FCA defines a context to be a triple 〈O,A, H〉 con-
sisting of

(i) a set O of objects d, d′, . . .,

(ii) a set A of attributes a, a′, . . ., and

(iii) a binary relation H ⊆ O × A specifying the attributes
a in A that an object d in O has (so dHa can be read:
object d has attribute a).

Now fix a context 〈O,A, H〉. The extent of a set A ⊆ A of
attributes is the set

AH := {d ∈ O | (∀a ∈ A) dHa}



of objects that have every attribute in A, while the intent of a
set D ⊆ O of objects is the set

DH := {a ∈ A | (∀d ∈ D) dHa}

of attributes that every object in D has. The notions of extent
and intent constitute an antitone Galois connection inasmuch
as for every D ⊆ O and A ⊆ A,

D ⊆ AH ⇐⇒ A ⊆ DH . (2)

The inclusions ⊆ in (2) are strengthened into equalities in
defining a concept to be a pair (D,A) such that D = AH and
A = DH . Equivalently, a concept is a subsetA ofA such that
A = (AH)H (replacingD byAH , to focus on attributes). Re-
ducing extension to extent, extensional subsumption (as de-
scribed in §1) between concepts A and A′ is just inclusion of
extents

A vH A′ ⇐⇒ AH ⊆ A′H
which, in view of (2), is the converse of inclusion of intents

A vH A′ ⇐⇒ A′ ⊆ A.

We can turn an attribute or object x ∈ A∪O unambiguously
into a concept

concept(x) :=

{
{x}H if x ∈ O
({x}H)H if x ∈ A

assuming A ∩O = ∅, and then for x′ ∈ A ∪O, define

x is aH x′ ⇐⇒ concept(x) vH concept(x′)

so that for d ∈ O and a ∈ A,

d is aH a ⇐⇒ dHa

and for d′ ∈ O,

d is aH d′ ⇐⇒ {d′}H ⊆ {d}H .

The =⇒-half of the last biconditional is the inference rule

d′Ha d is aH d′

dHa
(3)

for property inheritance. Shortcomings of (3) are long-
standing concerns in Knowledge Representation, a common
example being that (a1) to (a3) leave out penguins.

(a1) bird H fly (i.e., birds fly)

(a2) tweety is aH bird (i.e., Tweety is a bird)
(a3) tweety H fly (i.e., Tweety flies)

To accommodate exceptions, let us replace is aH by a binary
relation IS (left unspecified for the moment) and, following
Reiter [1980], add an assumption M(dHa) to (3) for

d′Ha d IS d′ M(dHa)

dHa
(4)

with M pronounced “it is consistent to assume” (left implicit
in the :-notation for justifications in Default Logic). Under
(4), (a3) follows from (a1) and tweety IS bird only with M(a3),
which fails when there is information to the contrary of (a3).
Now, assuming a comes with a contrary attribute a ∈ A,

a plausible candidate for M(dHa) is the negation ¬(dHa)
expressing the absence of contrary information. Were it the
case that

dHa ⇐⇒ ¬(dHa) (5)

(4) would be vacuous, as ¬(dHa) reduces to the conclusion
dHa of (4). But (5) cannot hold in a context 〈O,A, H〉 with
a bird that flies and another that doesn’t,

neither bird H fly nor bird H fly

exposing a sense in whichH is partial, and pushing us beyond
H if, as commonsense demands, we are to make anything of
(4).

3 Varieties of predication and causal paths
What could birds fly mean when plainly some birds don’t?
The linguist Greg Carlson contrasts two views of generic sen-
tences, an inductive approach based on observed instances,
and a “rules and regulations” view emphasizing not so much
their “episodic instances but rather the causal forces behind
those instances” [Carlson, 1995, page 225]. The latter causal
approach (which Carlson favors) is broadly in line with the
proposal made in Steedman [2005] that causality and goal-
directed action lie at the heart of temporal semantics. A sim-
ple example of goal-directed action is expressed by the pred-
ication die(tweety), which overturns the temporal proposition
alive(tweety). The proposition alive(tweety) is inertial inas-
much as it persists in the absence of a force overturning it —
or to bring out the similarity with (4),

alive(tweety)@t t S t′ ¬opp(alive(tweety)@t)

alive(tweety)@t′
(6)

where

(i) alive(tweety)@t says “alive(tweety) holds at time t”

(ii) t S t′ says “t is succeeded (temporally) by t′”

(iii) opp(ψ) says “some force opposes ψ”

whence ¬opp(ψ) says “no force opposes ψ.”
For rigour, let us associate with every attribute a ∈ A, a

distinct unary relation symbol Pa, allowing us to encode an
FCA-relation H ⊆ O × A as a {Pa}a∈A-model [[·]] over the
universe/domain O interpreting Pa as the subset

[[Pa]] = {d ∈ O | dHa}

of O, so that
d ∈ [[Pa]] ⇐⇒ dHa

for all d ∈ O. But the point of the relation symbols Pa is
not to recreate a particular relation H ⊆ O ×A but to move
beyond such relations, as described by (4) and (6) above. And
central to these moves are the relations IS in (4) and S in (6),
for which we introduce a binary relation symbol S. We can
then reformulate (4) as the sentence

ih[a] := ∀x∀y((Pa(y) ∧ ySx ∧ ¬Pa(x)) ⊃ Pa(x))

saying a is inherited through S in the absence of information
a to the contrary (assuming a ∈ A). S inverts IS in ih[a]



for uniformity with S in (6), which we generalize to a as the
inertial requirement

ir[a] := ∀x∀y((Pa(y) ∧ ySx ∧ ¬Po(a)(y)) ⊃ Pa(x))

assuming an attribute o(a) ∈ A for an a-opposing force. An
obvious choice for o(alive(tweety)) is die(tweety), which de-
scribes an event that terminates the state alive(tweety). The
distinction between events and states is critical to temporal se-
mantics [Kamp and Reyle, 1993; Allen and Ferguson, 1994],
with ir[a] suited as a requirement for a equal to alive(tweety)
but not for die(tweety). Further evidence for the significance
of the event/state divide is the ∃/∀-contrast illustrated by (a4)
and (a5).

(a4) Tweety flew in his first year.

(a5) Tweety was flightless his first five weeks.

While some flight by Tweety in his first year is enough to
make (a4) true, (a5) specifies flightlessness at every instant of
his first five weeks. That is, (a4) claims of an interval that a
certain event happens within it, while (a5) claims of an inter-
val that a certain state holds at each instant in it. Inasmuch as
states holds at instants, while events happen over intervals, an
analogy can be drawn with individuals/kinds

state
event

≈ instant
interval

≈ individual
kind

.

Carlson [1977] describes kind-level predicates such as
widespread that range over kinds, but not over individuals
such as Tweety, the failure of (a7) being, as (a8) sugggests, a
sortal error.

(a6) Birds are widespread.

(a7) ?Tweety is widespread.

(a8) ?A typical bird is widespread.

As presupposition failures, sortal errors are commonly held
to apply equally to negations, expressed in (5) and ih[a] by
a, and not to be confused with ¬. To block the leap from
(a6) to (a7) on the basis of ih(widespread), we must refrain
from requiring ih[a] of kind-level predicates, just as we re-
frain from requiring ir[a] of predicates describing events (for
which o(a) may not even be defined). That said, the present
paper focuses on attributes a suited to ih[a] or to ir[a]. Let us
agree to call the former inheritable, and the latter inertial.

Ensuring an inheritable attribute a satisfies ih[a] or an iner-
tial attribute satisfies ir[a] may call for some repairs on [[Pa]].
The repair for ih[a] can be described through a fresh attribute
a+ with Pa+ given by two rules

Pa(x)

Pa+(x)

Pa+(y) ySx ¬Pa(x)

Pa+(x)
(7)

extending Pa so that Pa+(x) can be read

there is an S-path to x avoiding Pa from some y
such that Pa(y).

That is, Pa+(x) can be formulated as

∃y(Pa(y) ∧ yS∗ax)

where S∗a expresses the reflexive transitive closure of the re-
striction Sa of S to pairs (x1, x2) such that not Pa(x2)

Sa := λx1λx2(x1Sx2 ∧ ¬Pa(x2)).

Now, whether or not ih[a] is true at a model [[·]], the aforemen-
tioned assumptions about Pa+ make ih[a+] true at [[·]] with
a+ = a. Put another way, ih[a] is satisfied by a model [[·]]+
identical to [[·]] except possibly at Pa, where

[[Pa]]+ := [[Pa+ ]].

As for the inertial sentence ir[a], we introduce, in place of a+

for ih[a], an attribute ao with Pao given by

Pa(x)

Pao(x)

Pao(y) ySx ¬Po(a)(y)

Pao(x)
(8)

so that Pao(x) says
an Soa-path to x exists from some y such that Pa(y)

where Soa is the counterpart in ir[a] of Sa
Soa := λx1λx2(x1Sx2 ∧ ¬Po(a)(x1)).

Then [[·]]o satisfies ir[a] where [[Pa]]o := [[Pao ]]. Sa-paths and
Soa-paths alike are causal, implementing the inheritance and
inertial laws ih[a] and ir[a], respectively.

Looking back at the previous section, it is doubtful FCA-
intents are what Woods has in mind by intension (as marvel-
lous as Galois connections are). Accordingly, we trade sub-
sumption vH between intents of FCA-concepts for a pred-
icate symbol S that has many interpretations, in line with
Woods contention that intension is as much psychological as
logical. Insofar as no single interpretation of S on its own
will do, it is not unreasonable to keep these interpretations as
simple as possible. Suppose, for example, [[S]] were given by
some finite string d1 · · · dn of n distinct objects di

[[S]] = {(di, di+1) | 1 ≤ i ≤ n}
and A were finite. Then the construction of [[·]]+ to ensure
ih[a] for a in some set Ih ⊆ A of inheritable attributes can be
implemented by a finite-state transducer transforming a string
A1 · · ·An with

Ai = {a ∈ A | di ∈ [[Pa]]}
to A′1 · · ·A′n with

A′i = {a ∈ A | di ∈ [[Pa]]+}.
The transducer has subsets of Ih as states q, the empty set as
the initial state, all states final, and transitions

q
A:A′

→ A′ ∩ Ih where A′ := A ∪ {a ∈ q | a 6∈ A}
so that the current state consists of the inheritable attributes
in the last set A′ of attributes returned. Moreover, for a ∈ Ih
with a ∈ Ih and a = a, we have

[[Pa]]+ ∩ [[Pa]]+ = ∅ ⇐⇒ [[Pa]] ∩ [[Pa]] = ∅
allowing us to set a+ equal to a+. As for ir[a] where a be-
longs to some set Ir ⊆ A of inertial attributes, we can build a
finite-state transducer taking A1 · · ·An to Ao1 · · ·Aon where

Aoi = {a ∈ A | di ∈ [[Pa]]o}

using subsets of Ir as states q, and transitions q A:Ao

→ q′ where
Ao := A ∪ q and q′ := {a ∈ Ao ∩ Ir | o(a) 6∈ A}.



4 Predications in flux: an MSO institution
We step in this section from an FCA context 〈O,A, H〉 up
to an institution 〈Sign, sen,Mod, |=〉 in the sense of [Goguen
and Burstall, 1992], where contexts can be varied system-
atically via signatures. The definition of an institution uses
a modicum of category theory, and is, on first exposure, a
mouthful:

(i) Sign is a category, with objects Σ called signatures
(ii) sen is a functor from Sign to the category of sets and

functions, with elements of the set sen(Σ) called Σ-
sentences

(iii) Mod is a contravariant functor from Sign to the category
of (small) categories and functors, with Mod(Σ)-objects
called Σ-models

(iv) |= is an indexed family {|=Σ}Σ∈|Sign| of binary rela-
tions

|=Σ ⊆ |Mod(Σ)| × sen(Σ)

between Σ-models and Σ-sentences, indexed by signa-
tures Σ such that for every Sign-morphism Σ

σ→ Σ′,
Σ′-model M and Σ-sentence ϕ,
M ′ |=Σ′ sen(σ)(ϕ) ⇐⇒ Mod(σ)(M ′) |=Σ ϕ. (9)

A context 〈O,A, H〉 can be packaged as an institution with
exactly one signature Σ, trivializing the category-theoretic re-
quirements above so that the functor sen amounts to

sen(Σ) = A,
the functor Mod to

Mod(Σ) = O (understood as a discrete category)
and the indexed family |= to

|=Σ = H.

A far more interesting institution associated with 〈O,A, H〉
pieces together finite fragments of 〈O,A, H〉 on which the
S-paths behind a+ and ao in §3 tread. Some preliminary def-
initions help make this precise. Given a finite subset A of
A,

(i) the fragment MSOA of Monadic Second-Order logic
over strings [e.g., Libkin, 2004] is given by a binary
predicate symbol S (expressing succession) and a unary
predicate symbol Pa for each a ∈ A

(ii) an MSOA-model 〈[n],Sn, {[[Pa]]}a∈A〉 with domain
[n] := {1, . . . , n},

interpreting S as the successor (plus 1) relation
Sn := {(i, i+ 1) | 1 ≤ i < n}

on [n], and each Pa as a subset [[Pa]] of [n] can be iden-
tified with the string A1 · · ·An of subsets

Ai := {a ∈ A | i ∈ [[Pa]]}
of A consisting of attributes a in A with i in the inter-
pretation [[Pa]] of the unary predicate for a.2

2Proceeding from the string A1 · · ·An, the equations

[[Pa]] = {i ∈ [n] | a ∈ Ai} (a ∈ A)

take us back to 〈[n], Sn, {[[Pa]]}a∈A〉, justifying the identification of
MSOA-models with strings of subsets of A.

MSOA-sentences and MSOA-satisfaction |=A are defined as
usual in classical predicate logic so that, for example,

A1 · · ·An |=A ∃x(Pa(x) ∧ ∀y¬ySx) ⇐⇒ a ∈ A1

for all stringsA1 · · ·An of subsets ofA. A fundamental result
is the Büchi-Elgot-Trakhtenbrot theorem [Libkin, 2004, page
124]: the set

MSOA(ϕ) := {s ∈ (2A)∗ | s |=A ϕ}
of strings satisfying an MSOA-sentence ϕ is regular, and
conversely, every regular language over the alphabet 2A (of
subsets of A) can be obtained this way from some MSOA-
sentence ϕ. The use of the powerset 2A as the alphabet of
strings constituting MSOA-models departs from the custom
of A in statements of the Büchi-Elgot-Trakhtenbrot theorem
but is crucial when forming an institution where A varies
[Fernando, 2016].3

Let IA be the institution where Sign is the set Fin(A) of
finite subsets A of A partially ordered by ⊆ (for a category),
and for every A ∈ Fin(A),

(i) an A-sentence is an MSOA-sentence, an A-model is
a string over the alphabet 2A and |=A is MSOA-
satisfaction

(ii) for A ⊆ A′ ∈ Fin(A), sen(A,A′) is the inclu-
sion of MSOA-sentences in MSOA′ -sentences, while
Mod(A′, A) intersects a stringA′1 · · ·A′n ∈ (2A

′
)∗ com-

ponentwise with A
Mod(A′, A)(A′1 · · ·A′n) := (A′1 ∩A) · · · (A′n ∩A).

Next, we bring in an FCA-context 〈O,A, H〉 to define for
every d ∈ O and A ∈ Fin(A), the set

A[d] := {a ∈ A | dHa}
of attributes inA that d has, which we then use to map a string
d1 · · · dn ∈ O∗ to the string

A[d1 · · · dn] := A[d1] · · ·A[dn]

over the alphabet 2A. Let I(O,A, H) be the institution
with the same signature category and sentence functor as IA,
but with a string d1 · · · dn ∈ On as an A-model that |=A-
satisfies an MSOA-sentence ϕ precisely ifA[d1 · · · dn] |=A ϕ
(in MSOA). That is, I(O,A, H) picks out the A-models
A1 · · ·An in IA given by strings d1 · · · dn and H

Ai = {a ∈ A | diHa}.
But H might be transformed to a different FCA-context, as
we saw in the transformations in §3 of [[·]] to [[·]]+ and [[·]]o to
satisfy the MSO-sentences

ih[a] := ∀x∀y((Pa(y) ∧ ySx ∧ ¬Pa(x)) ⊃ Pa(x))

saying a is inherited unless there is information a to the con-
trary, and

ir[a] := ∀x∀y((Pa(y) ∧ ySx ∧ ¬Po(a)(x)) ⊃ Pa(x))

saying a persists unless opposed by some force o(a). The
requirement ih[a] is suited to attributes a belonging to a set Ih
such that

3The reason is that the structure 〈[n],Sn, [[Pa]]a∈A〉 encoded by a
string A1 · · ·An over 2A has A-reduct 〈[n], Sn, [[Pa]]a∈A〉, encoded
by the string (A1 ∩A) · · · (An ∩A) over 2A.



(Inh) Ih ⊆ A and for each a ∈ Ih, a ∈ Ih and a = a with

ySx saying: y subsumes x.

Inertia ir[a] is suited to attributes a belonging to a set Ir such
that

(Inr) Ir ⊆ A and for each a ∈ Ir, o(a) ∈ A− Ir, a ∈ Ir and
a = a with

ySx saying: y is followed by x.

We can use a monadic second-order variable X to pick out a
path, defining the MSO{a,a}-formula patha(X)

patha(X) := ∀x(X(x) ⊃ (Pa(x)∨
∃y(X(y) ∧ ySx ∧ ¬Pa(x))))

by inverting the rules (7) for Pa+ with X in place of Pa+ .
Then ih[a+] follows from the MSO{a,a}-formula

∀x(Pa+(x) ≡ ∃X(X(x) ∧ patha(X))) (10)

reducing Pa+(x) to the possibility of putting x in a set X
such that patha(X). Similarly, for inertia ir[a] and ao, we
invert the rules (8) for Pao with X in place of Pao for

pathoa(X) := ∀x(X(x) ⊃ (Pa(x)∨
∃y(X(y) ∧ ySx ∧ ¬Po(a)(x))))

to derive ir[ao] from the reduction

∀x(Pao(x) ≡ ∃X(X(x) ∧ pathoa(X))) (11)

of Pao to pathoa. The finiteness of [[S]] (or more specifi-
cally [[S]]-chains) is crucial to push through the arguments
for ih[a+] and ir[ao] above (extracting Sa- and Soa-paths that
reach Pa from patha(X) and path◦a(X)).

For a in Ih or Ir, it is natural to assume a does not co-occur
with a

nc[a] := ∀x¬(Pa(x) ∧ Pa(x))

banning contradictions in [[Pa]] ∩ [[Pa]]. The reduction (10)
above yields the equivalence of nc[a] and nc[a+]

nc[a] ≡ nc[a+]

provided Pa does not discriminate between S-predecessors
of the same object

∀x∀y∀y′(ySx ∧ y′Sx ∧ Pa(y) ⊃ Pa(y′))

which follows from the uniqueness of S-predecessors

∀x∀y∀y′(ySx ∧ y′Sx ⊃ y = y′).

Otherwise, nc[a] may hold while nc[a+] fails because an ob-
ject in [[Pa]] has the same S-successor as another in [[Pa]]

d1[[S]]d and d2[[S]]d with d1 ∈ [[Pa]] and d2 ∈ [[Pa]].

The same applies to inertia ir[a] and a0; nc[a0] follows from
nc[a] and the reduction (11), under the interpretation above of
S as

Sn := {(i, i+ 1) | 1 ≤ i < n}
for some positive integer n. As observed at the end of §3, this
interpretation of S allows us to build a finite-state transducer

that computes [[Pa+ ]] for finitely many inheritable a in one
pass from A1 down to An. Similarly for inertia and ao.

The institution IA accommodates different FCA-contexts
with attribute set A, providing accounts at bounded granu-
larities A ∈ Fin(A) that can be refined or coarsened, as re-
quired. Assuming A is infinite, we can always extend A to
a larger finite A-subset A′ ⊇ A, leading, after repeated ex-
tensions, to infinite models at the limit (or, as detailed below,
inverse limit). How smoothly can these extensions be carried
out? As a partial answer, clause (iv) in the definition above of
an institution provides the biconditional

M ′ |=Σ′ sen(σ)(ϕ) ⇐⇒ Mod(σ)(M ′) |=Σ ϕ (9)

known as the Satisfaction condition [Goguen and Burstall,
1992]. In the present institution IA, (9) unwinds to

A′1 · · ·A′n |=A′ ϕ ⇐⇒ (A′1 ∩A) · · · (A′n ∩A) |=A ϕ

whenever A ⊆ A′ ∈ Fin(A), and for every MSOA-sentence
ϕ and string A′1 · · ·A′n of subsets of A′. In particular, for
a fixed sentence ϕ, we can set A to the vocabulary of ϕ,
voc(ϕ), defined to be the set of all attributes mentioned in
ϕ (making voc(ϕ) the smallest subset A of A for which ϕ is
an MSOA-sentence). Satisfaction of ϕ by a string A′1 · · ·A′n
of subsets of A′ ∈ Fin(A) with voc(ϕ) ⊆ A′ then reduces to
satisfaction by the string

(A′1 ∩ voc(ϕ)) · · · (A′n ∩ voc(ϕ))

of subsets of voc(ϕ). In other words, the attributes we see in
ϕ can — as far as the issue of satisfying ϕ (or not) is con-
cerned — be assumed to be all there is, in accordance with
the bias What you see is all there is (WYSIATI) from Kahne-
man [2011]. Of course, “what you see” in ϕ depends on what
we put in ϕ. And while, for example, ih[a] mentions only the
attributes a and a, many more attributes may appear once we
try to spell out what information to the contrary is buried in a
(not to mention a). In the simplest case, amight be false (i.e.,
∀x¬Pa(x)) turning ih[a] into

∀x∀y((Pa(y) ∧ ySx) ⊃ Pa(x))

but the point of ih[a] is to deal with more interesting cases. As
Reiter [1980] notes, the list of birds that do not fly is open-
ended, expressed below as · · · in the non-well-formed MSO-
formula (12).

Pbird(x) ⊃ (Pfly(x) ≡
(Ppenguin(x) ∨ Postrich(x) ∨ · · · )) (12)

The same open-endedness applies to the forces overturning an
inertial attribute a, glossed over by the non-inertial attribute
o(a) in ir[a]. In practice, simplifying assumptions are adopted
(dropping, for example, · · · in (12)) to facilitate reasoning. In
situations where these assumptions fail, reasoning may break
down. As Shanahan [2016] points out,

Because it sometimes jumps to premature conclu-
sions, bounded rationality is logically flawed, but
no more so than human thinking.

Elaborating on the attributes a, a, o(a) is an art in manag-
ing flaws, and recovering from missteps (slowing reasoning
down).



Apart from the attributes inA, there is also the binary pred-
icate symbol S, interpreted as the successor relation Sn on
{1, 2, . . . , n} for some integer n > 0 for either subsumption
(Inh) or temporal precedence (Inr). Widespread views that
time branches and is infinite, and similar claims about con-
ceptual taxonomies raise the question:

is it not problematic to assume that
[[S]] is Sn for some integer n > 0?

It is, if an A-model that interprets S as a finite successor re-
lation is asked to carry on its own the burden of representing
an infinite branching structure. But once we adjust our sights
from a single context 〈O,A, H〉 for defining concepts to a
multitude of satisfaction relations |=A capturing finite frag-
ments of a multitude of contexts, the problem arguably dis-
solves. If time branches, it is because there is more than one
A-model in Mod(A) describing a branch up toA. And if time
is infinite, it is because no single signatureA can represent the
totality of signatures in Sign = Fin(A).

And exactly how might infinite branching structures
emerge from these finite approximations? Very briefly,
through an inverse limit construction linking vocabulary (A ∈
Fin(A)) with ontology (Mod(A)). More precisely, we work
with strings A1 · · ·An of subsets of A that are stutterless in
that

Ai 6= Ai+1 for all 1 ≤ i < n

(the intuition being that a stutter is some substring AiAi+1

such that Ai = Ai+1). Clearly, a string s of subsets of A is
stutterless iff s = bc(s) where the block compression bc(s) of
s is defined by

bc(s) :=

{
s if length(s) ≤ 1
bc(As′) if s = AAs′

A bc(A′s′) if s = AA′s′ where A 6= A′

(implementing a form of the Aristotelian claim, no time with-
out change). Next, for any A ∈ Fin(A), let bcA : (2A)∗ →
(2A)∗ be the function intersecting a stringA1 · · ·An ∈ (2A)∗

componentwise with A before destuttering

bcA(A1 · · ·An) := bc((A1 ∩A) · · · (An ∩A))

(recalling from the definition of IA that whenever A ⊆ A′ ∈
Fin(A), Mod(A′, A) intersects a string in (2A

′
)∗ componen-

twise with A). Now, the inverse limit

lim
←−
{bcA}

of the indexed family {bcA}A∈Fin(A) of functions is the set
of functions f : Fin(A)→ (2A)∗ such that

f(A) = bcA(f(A′)) whenever A ⊆ A′ ∈ Fin(A).

This equality ensures that f provides a consistent system of
A-approximations f(A) of a structure that is infinite insofar
as for any positive integer n, there is anA ∈ Fin(A) such that
f(A) is a string of length > n. For branching in lim

←−
{bcA},

we lift the prefix relation � on strings

s � s′ ⇐⇒ s′ = ss′′ for some string s′′

to a relation ≺A on lim
←−
{bcA} by universal quantification

f �A f ′ ⇐⇒ (∀A ∈ Fin(A)) f(A) � f ′(A).

For A equal to the set of rational numbers, we can express
the Dedekind cut construction of a real number r ∈ R as a
function fr ∈ lim

←−
{bcA} to get a copy of the real line R from

�A restricted to the functions fr (for r ∈ R).4
Compression bcA conditioned by A links the ontology [n]

of an A-model 〈[n],Sn, {[[Pa]]}a∈A〉 to the granularity A.
Consider, for instance, the finite-state transducer above for
inheritance, enforcing ih[a] for a ∈ Ih (assumed finite, for
convenience). Suppose on input A1 · · ·An, this transducer
outputs the string T (A1 · · ·An). Applying bcIh to this out-
put yields the block compression of T ’s output on input
bcIh(A1 · · ·An)

bcIh(T (A1 · · ·An)) = bc(T (bcIh(A1 · · ·An))).

Similarly for inertia and its transducer To,

bcA(To(A1 · · ·An)) = bc(To(bcA(A1 · · ·An)))

where A = Ir ∪ {o(a) | a ∈ Ir}. Attention to granular-
ity A pays off in bounding the search space of candidate
A-models. But before requiring an A-model A1 · · ·An is
equal to bcA(A1 · · ·An), we should be clearer about what
the strings A1 · · ·An represent. Common to ih[a] and ir[a]
is some form of Leibniz’ Principle of Sufficient Reason, no
change (in Pa over S) without a reason,

PSR[a] := ∀x∀y((Pa(y) ∧ ySx ∧ ¬Pa(x)) ⊃ xRay)

where the reason Ra is reduced to a unary relation

xRay :=

{
Pa(x) for inheritance (Inh)
Po(a)(y) for inertia (Inr).

PSR[a] with xRay as Po(a)(y) is essentially an explanation
closure axiom [Lifschitz, 2015]. The non-inertial attribute
o(a) designates any force opposing a, while a serves in ih[a]
as a differentia in a taxonomy, a path in which is picked out by
an interpretation of S. By placing demands on the signature
A of MSOA, these attributes provide a causal ontology for
change. It is instructive to eliminate the negation ¬ in PSR[a]
and ih/ir[a] by moving Pa(x) to the right of the implication
⊃ for a choice

(Pa(y) ∧ ySx) ⊃ (Pa(x) ∨ xRay)

between Pa(x) and xRay given Pa(y) and ySx. A bias to-
wards Pa(x) leading to S-paths in §3 amounts to a minimi-
sation assumption on reasons and on a domain [n] subject to
bcA. Of course, we can eliminate a stutter in a string not just
through bc but by adding an attribute n to A that names a
unique position

∀x∀y(Pn(x) ∧ Pn(y) ⊃ x = y)

(corresponding to a nominal in Description Logic). But this
goes against the custom of using attributes for universals,

4Inverse limits aside, the focus of the present work is very much
on the approximations from finite strings, which, under the prefix re-
lation�, do not form a complete partial order — a basic requirement
on domains over which default reasoning is investigated in [Hitzler,
2004]. These finite strings enjoy a special status as compact ele-
ments in algebraic cpo’s. (I am indebted to a referee for bringing
this paper to my attention.)



rather than particulars, and the anti-nominalist thrust of an
attribute-centered institution IA that constructs individuals
and temporal instants through inverse limits over kinds and
temporal intervals (conceived as basic, rather than as sets of
instances and instants).

5 Conclusion
The account of predication above proceeds from

(a) an extensional conception of predication as instantiation,
analyzed in section 2 as extensional subsumption is aH ,
given a fixed FCA-context 〈O,A, H〉

to

(b) an institution IA in section 4 within which finite frag-
ments of various FCA-contexts are represented by
strings A1 · · ·An of finite subsets of A, the successor
relation in which, S, is an intensional alternative to (the
converse of) is aH , along which fast path-based reason-
ing advocated by Woods [2007] can be carried out.

So what? The move from (a) to (b) challenges the primacy
accorded to the set of instances of a predicate by the tradi-
tional set-theoretic analysis of predication, proposing a shift
in focus away from instances towards strings that track mech-
anisms for predication, including inheritance (between in-
stances and kinds) and inertia (over time). This is a significant
shift, support for which can be found in

(i) the rules-and-regulations view defended in Carlson
[1995] that generic statements are about causal forces,

(ii) the proposal from Steedman [2005] that temporality in
natural language primiarily concerns the “representation
of causality and goal-directed action,”

(iii) the pluralistic perspective promoted in Goguen [2004]
away from any one isolated context, towards a space of
contexts subject to a Satisfaction Condition characteris-
tic of institutions, and

(iv) the notion of “semantics in flux” challenging “the im-
pression” from Montague [1974] “of natural languages
as being regimented with meanings determined once and
for all by an interpretation” [Cooper, 2012, page 271].

An institution IA is presented above where the Satisfaction
Condition amounts to What you see is all there is [Kahne-
man, 2011], and notions of inheritance and inertia can be es-
tablished through paths described by monadic second-order
variables within a logic which (by a fundamental theorem
due to Büchi, Elgot and Trakhtenbrot) represents finite-state
mechanisms (linked above to fast predications).
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