
Abusive Text Detection Using Neural Networks

Hao Chen, Susan McKeever, Sarah Jane Delany

School of Computer Science, Dublin Institute of Technology, Ireland
hao.chen@mydit.ie, susan.mckeever@dit.ie, sarahjane.delany@dit.ie

Abstract. Neural network models have become increasingly popular for
text classification in recent years. In particular, the emergence of word
embeddings within deep learning architectures has recently attracted a
high level of attention amongst researchers. In this paper, we focus on
how neural network models have been applied in text classification. Sec-
ondly, we extend our previous work [4, 3] using a neural network strat-
egy for the task of abusive text detection. We compare word embedding
features to the traditional feature representations such as n-grams and
handcrafted features. In addition, we use an off-the-shelf neural network
classifier, FastText[16]. Based on our results, the conclusions are: (1)
Extracting selected manual features can increase abusive content detec-
tion over using basic ngrams; (2) Although averaging pre-trained word
embeddings is a naive method, the distributed feature representation
has better performance to ngrams in most of our datasets; (3) While the
FastText classifier works efficiently with fast performance, the results are
not remarkable as it is a shallow neural network with only one hidden
layer; (4) Using pre-trained word embeddings does not guarantee better
performance in the FastText classifier.

1 Introduction

Text classification is an essential component in many applications, such as sen-
timent analysis[27, 29], news categorization[16], and in our research domain of
interest, abusive text detection[4, 3]. One of the fundamental tasks in text clas-
sification is feature representation - finding appropriate approaches to represent
text content. The traditional approach is based on the occurrence-model, count-
ing the frequency of words (e.g. BoW) in text content. This largely ignores
word orders and thus the problem of capturing semantics between words still
remains. Adding extra features that are identified by experts based on specific
task requirements can alleviate the drawback of traditional features. However,
this takes time and human effort and introduces domain specific dependencies
into the model. One solution for feature extraction without hand-crafting is to
use deep learning methods. In particular, this trend is sparked by the emergence
of word embedding techniques, such as word2vec[22] and glove[26]. Word embed-
ding is a distributed representation at word level which has been proven to be
capable of learning word semantics. To generate a distributed feature represen-
tation at sentence level, one of the straightforward approaches is averaging the
pre-trained word embeddings. However, this reduces context information such



as the sensitivity of word orders, which limits semantic knowledge. To address
this issue, combining word embeddings with deep neural networks is a promising
approach, and it has attracted increasing attention in recent research.

Originating from neural network structures, deep neural networks aim to au-
tomatically abstract feature representations for data based on hierarchical layers.
It produces the state-of-the-art results in many text classification tasks[27, 25,
14]. In this paper, we first present a review of the recent deep neural networks
that are widely used in the text classification. Afterwards, we carry out some
preliminary experiments on abusive text detection using fundamental neural net-
work techniques. We compare word embeddings to the more traditional feature
representations using SVM classifiers. In addition, we investigate an off-the-shelf
neural network based classifier.

The structure of the rest of paper is as follows: Section 2 discusses two modes
of using neural networks for text classification and how these have been used in
abusive text detection. In Section 3, we present experimental results. Finally,
conclusions and future work are presented in Section 4.

2 State-of-the-Art Neural Networks

In this section, we investigate the current deep neural networks that have been
used in general text classification tasks. We consider the use of deep neural
networks in two modes: unsupervised for feature representation, and supervised
for text classification. Furthermore, we review some deep neural networks that
have been used in the abusive text detection domain.

2.1 Unsupervised Mode for Feature Representation

The cornerstone of using neural networks in unsupervised mode is word2vec[22]
which is an approach to generate a distributed representation for words in a
vector space with lower-dimension. These word vectors, also called word embed-
dings, are learned based on the concept that the words with similar meaning
should have the similar surrounding words. Mikolov et al.[22] introduced two
models, skip-gram and continuous bag of words (CBOW). The framework of
skip-gram is shown in Figure 1. The architecture is very straightforward. In the
training process, the model generates a representation of current word Wt based
on predicting the nearby words (Wt−2,Wt−1,Wt+1,Wt+2) in a window. After
training, the vector of weights from the hidden layer is the representation of the
word, the word embedding. CBOW is a similar model to skip-gram except it
swaps the input and output, using nearby words to predict the current word.

There are also approaches that use neural networks to generate the dis-
tributed representation for blocks of text (sentence, paragraph or document).
Here, we introduce three typical unsupervised models, paragraph2vec[20], Skip-
Thought[18] and autoencoder[6]. Adapted from the word2vec architecture, Mikolov
et al.[20] proposed a method called paragraph2vec which can learn comment rep-
resentation from variable length text. Figure 2 shows the framework. Looking



at the base of the diagram, the input layer has two elements, a unique vector D
represents paragraph id, and a set of vectors W s representing words in a window
which slides over the text. The output layer is the prediction of the next word
in the context. During the training process, each weights of each word vector
W s is updated over each window. However, the weights of the paragraph vector
are updated only when the window is in the paragraph. At the end of training
process, the paragraph vectors D can be used as the text feature representation.
In paper[20], the error of classification when using paragraph vectors decreased
by approximately 39% compared to the traditional Bag-of-Words feature repre-
sentation.

Fig. 1: The skip-gram architecture of word2vec proposed by Mikolove et al.[22]

Skip-Thought[18] is an another unsupervised approach to generate feature
representations at sentence level also inspired by word2vec. Given a tuple of
(Si−1, Si, Si+1) sentences, the words in Si are mapped as input, through the
neural network model, Si is converted into the vector, and then the vector is
converted back to a set of words that are appear in the nearby sentences(Si−1

for previous sentence, and Si+1 for next sentence). After the training process,
the resulting weights vector can be used as the representation. Instead of re-
constructing context information such as surrounding words (paragraph2vec)
or surrounding sentences (Skip-Thought), reconstructing the text content it-
self is also a popular way to generate feature representation. This approach is
named autoencoder where the model starts by encoding the sentence into a
lower-dimensional embedding, and then converts it back to the original input.
After training, the lower-dimensional embeddings can be used as the feature
representation [6, 32].

2.2 Supervised Mode for Text Classification

Neural network architectures have also been used directly for text classification
tasks. For example, the simple model named FastText, proposed by Joulin et
al.[16], is an efficient classifier. As shown in Figure 3, a sentence with a set
of N ngrams features (X1, X2, ..., XN−1, XN ) are embedded and then averaged
to the middle layer, the output layer is the softmax function that computes
the probability distribution over the pre-defined classes. The advantage of the



Fig. 2: The architecture of Paragraph2vec proposed by Mikolove et al.[20]

FastText model is its fast execution time. However, the performance of using a
shallow neural network in supervised classification is rudimentary (see the results
of experiments in Section 3).

A range of more complex neural network architecutures have been used in
recent years for text classification. Two particular architectures that are widely
used are convolutional neural networks and recurrent neural networks. The fol-
lowing subsections expand on details of these two models respectively.

Fig. 3: The architecture of FastText proposed by Joulin et al.[16]

Convolutional Neural Network The CNN model uses multiple layers with
convolving filters that aim to capture ‘local’ features. It was originally used in
computer vision[19]. Subsequently, CNN was adopted in natural language pro-
cessing and produced impressive results for many text classification tasks. The
basic framework of CNN is shown in Figure 4. The sentence is represented by
a set of word embeddings which are then mapped through a variety of convolu-
tional filters of different sizes. Afterwards, the structure applies max-pooling to
reduce the dimensionality of the features in order to reduce the complexity of
the model and prevent overfitting. The final layer is the probability distribution
over classes.

Several researchers have adapted the CNN architecture to perform text clas-
sification. Ren et al. [27] proposed a context-based CNN for sentiment analysis
in a Twitter dataset, incorporating context information from relevant tweets
into the model in the form of word embedding vectors; Yang Wang et al.[30]



designed a hybrid CNN to integrate metadata with text content for fake news
classification. For sarcasm detection in social media, Amir et al.[1] introduced
a CUE-CNN model which learns embeddings which represent both text content
and user information.

Fig. 4: The CNN model proposed by Kim[17]

The superiority of the CNN model is its ability to mine the relations in the
contextual windows and capture the ‘local’ information such as semantic clues
through the convolutional filters. However, given multiple filters with a large
number of trainable parameters, the CNN is a heavy data model which usually
requires a huge amount of training data. In addition, a critical issue of CNNs is
the inability to handle sentences of variable length as input due to the restriction
of a fixed input size. To address this particular issue, research has focused on
the recurrent neural network.

Recurrent Neural Network The RNN is an extension of a deep neural model
that has ability to handle variable-length sequence input. Instead of learning
features by the traditional feedforward structure, the RNN involves recurrent
units which can use the information of the previous states. In addition, this
architecture can effectively address the issue that the input of text content is
in fixed size. Figure 5 illustrates the basic RNN framework and unfolded into a
graph of the timesteps at time t. The input xt is fed to the model at timestamp
t, St is the hidden layer that captures input information xt and previous state
St−1 at timestamp t− 1, ot illustrates the output of the model.

Although the RNN model can capture the information from previous states,
the key drawback is the vanishing gradients problem which make is difficult to
learn and tune parameters from earlier states in the network. The limitation
is addressed by two advanced models, gated recurrent units (GRU) and long
short-term memory (LSTM). As shown in Fig 6, the normal recurrent unit is
replaced by the these two variant units with multiple useful gates. For GRU unit,
the gates r and z are designed to control long-term and short-term dependencies
which can mitigate against the vanishing gradients problem; For the LSTM unit,



in addition to updates and reset gates, it adds one more cell c as memory for
the previous state, and the gate o stands for how much information should the
cell output.

Fig. 5: The RNN structure by Young et al.[33]

To date, RNN based models have been widely applied in text classification.
Tang et al.[29] employed a gated RNN architecture in sentiment analysis, which
showed a superior performance over a standard RNN model. Wang et al.[31]
applied LSTM to predict polarities of tweets and gained 1% better accuracy
comparing to the standard RNN model. Typically, the standard LSTM is a
single direction structure that can only capture textual information from one
directional sequence. A bidirectional LSTM, consisting of two LSTMs that are
run in parallel, has proved to be useful in text classification[34]. In addition,
Tai et al.[28] developed a variant LSTM model that is based on a tree topology.
Rather than the traditional LSTM unit composed from the current timestamp
input and previous state, the tree-LSTM unit composes from the current times-
tamp and previous tree-based state. This model shows superiority for sentiment
classification than the standard LSTM.

Fig. 6: The structures of GRU(Left) and LSTM(Right) by Chung et al.[7]

2.3 Application in Abusive Detection

Early research in text classification on addressing abusive social media com-
ments focused on exploring useful information such as lexical features[5], the
users’ profile[8] and historical activities[9]. Djuric[11] et al. are the forerunners
of implementing a neural network architecture to generate a distributed feature



representation for hate speech detection. They used paragraph2vec[20] for the
modelling of comments. Compared to the BoW representation, the classifica-
tion accuracy increased from 0.78 to 0.80 compared with a logistic regression
classifier. Subsequently, Nobata et al.[23] also conducted a set of comprehen-
sive experiments to evaluate the performance of a variety of representations for
abusive comments. They compared the paragraph2vec[20] to a number of fea-
ture representations including n-grams, linguistic and syntactic. Using an SVM
classifier, the results indicated that using paragraph2vec to generate comment
embeddings outperformed the linguistic and syntactic handcrafted features. In
addition, they also show the performance of simply using an averaging strategy
over the pre-trained word embeddings is better to the ngrams feature represen-
tation in most of datasets.

Furthermore, there are an increasing number of researchers who started to
work on complex deep neural networks for tackling the problem of abusive text
detection. Badjatiya et al.[2] investigated CNNs for hate speech detection in
tweets, which significantly outperformed the traditional methods such as Logis-
tic Regression and SVM; Gamback et al. [12] also conduct CNN architecture
to classify tweets into four categories include racism, sexism, both (racism and
sexism) and neither, they modified traditional CNN input with word embed-
ding by concatenating character ngrams; Park et al.[24] proposed an improved
CNN model that combined word embeddings and character embeddings as well.
Mehdad et al. [21] implemented RNN using characters as input instead of words,
which achieved an increase of approximately 8% in average class accuracy. An
advanced RNN model, bi-directional LSTM with attention mechanism which
adds weights for importance of each input, was proposed by Gao et al.[13] and
Del Vigna et al.[10]. Both of them achieved better performance compared to
the one-directional LSTM. In addition, Pavlopoulos et al.[25] also showed the
attention mechanism improves the performance of the RNN model when dealing
with abusive comments in the Greek language.

3 Experiments - Abusive UGC Detection

From our previous paper[4, 3], we have implemented traditional text classifica-
tion techniques to tackle abusive detection. In this section, we attempt to use the
fundamental neural network strategy to deal with this issue. We first compare
word embeddings to a variety of traditional text feature representations include
ngrams at word level, ngrams at character level, and handcrafted features. In
addition, we investigate the performance of using a recent neural network classi-
fier. The structure of this section is as follows: we describe the datasets that are
used in our experiments; we then detail the methodologies of our experiments;
finally, the experimental results are presented and discussed.

3.1 Datasets

All datasets used for abusive detection in this paper were extracted from social
media websites. Although these websites include a variety of user content sources



including forums, micro-blog, media-sharing, news article discussion, chat and
Q&A, they share the common characteristic that they allow online users to
freely post their comments. We identified 8 published datasets[3] that have been
gathered from different social media platforms: Twitter, MySpace, Formspring,
YouTube, SlashDot. Given that these are published datasets in the research
domain, we have assumed that their labelling strategies are correct and that the
label results are reliable. We also used our own abusive content dataset, collected
from a news site and labelled using crowd sourced labelling[4]. The following
Table 1 is an overview of each dataset, showing basic information including the
source type, the number of instances, average number of words across instances,
and the proportion of positive (abusive) and negative instances.

Table 1: Datasets Summary Statistics, D1-D8[3], D9[4]

Dataset with
Reference

Dataset
Style

#of
Instances

Avg Len
(words)

Class Dist.
(Pos./Neg.)%

D1 Micro-Blog 3110 15 42/58
D2 Video-Sharing 3466 211 12/88
D3 Forum 1710 337 23/77
D4 Q&A 13153 26 6/94
D5 Chat 4802 5 1/99
D6 Forum 4303 94 1/99
D7 Forum 1946 56 3/97
D8 Micro-Blog 1340 13 13/87
D9 News Discussion 2000 59 21/79

For each dataset, we carried out pre-processing operations as follows: all
letters were changed to the lowercase; the mentioned names started with ‘@’
symbol were replaced by the anonymous text ”@username”; links following with
”http://” or ”https://” were replaced by the generic term. Considering the com-
ments are typically short, we did not remove stop-words nor implement word
stemming.

3.2 Methodology

We employed Support Vector Machines (SVMs) with a linear kernel, one of
the most efficient classifiers[15], as our classification algorithm. We established
baseline results by using ngrams feature representation, implemented in two
ways: 1-4 word level and 2-4 character level. Based on our previous work[3], we
normalized features values, and used document frequency (1% as threshold) to
reduce the features where the most and least frequent 1% of terms are excluded.

To validate our results, we applied stratified 10-fold cross validation on each
dataset. In addition, Table 1 shows that most of the datasets are imbalanced,
with the positive instances (abusive) far less in number than the negative in-
stances (non-abusive). We used resampling to randomly oversample the minority
class of our training data and averaged results over three iterations.



The results of our experiments are reported using a standard classification
measure recall, which measures ability to find all instances of a specific class. Our
working assumption is that the consequence of failing to detect abusive content is
more serious than the non abusive content being predicted as abusive. Therefore,
we focus on abusive recall rather than non-abusive recall. Equation 1 shows the
calculation where TruePositive is the proportion of abusive comments correctly
classified as abusive, and FalseNegative is the proportion of abusive comments
were wrongly classified as non-abusive. Average recall is also reported.

Recall =
TruePositives

TruePositives + FalseNegatives
(1)

3.3 Experiments & Results

We present the results in Table 2. User generated comments are usually free-
format in style and ngrams at word level capture word misspellings and abbrevia-
tions. Therefore, the performance of using ngrams in word level is normally worse
than the ngrams at character level. In addition, based on the results of character-
level ngrams, extracting additional features that capture syntactic and semantic
information[4] achieves better results in abusive detection across 9 datasets. We
applied the paired t statistical test (p=0.0353) to confirm the difference.

Next, we analyzed the embedding representation which is averaging the word
embeddings that are appear in the comment. The existing word embeddings
we used in our paper are collected from Glove across 4 different dimensions
(50,100,200,300) 1 which were pre-trained on the Wikipedia data corpus. Al-
though averaging is one of the most naive approaches in using word vectors, it
shows better performance to ngrams for most of the datasets. In general, using
higher dimension word embedding achieves better performance since the higher
dimension vectors contain in theory more information than the lower dimension
ones. However, in our experiments, some datasets show the opposite results. For
example, in D5, the performance of using 300-dimension vectors slumped 10%
when compared to the 50-dimension vectors; In D6 also, abusive recall rate de-
creased as higher dimension vectors were used. The selection of appropriate word
embeddings appears to play an important role when dealing with the specific
classification task. One reason for this counter intuitive result is the difference
between the training corpus language and the language of our posts. In this pa-
per, the Glove word embeddings used are trained on the Wikipedia text corpus
which generally uses a formal language style. However, social media datasets
typically contain casual expressions, meaning that the word context information
captured in Wikipedia-trained word embeddings may be different from that used
in the abusive datasets. In the future, we will attempt to use pre-trained word
embedding on a source corpus similar to the experimental dataset to boost the
classifier accuracy.

FastText[16] is a one-hidden layer neural network text classifier. We analyzed
this model in two ways: with and without using pre-trained word embeddings. As

1 https://nlp.stanford.edu/projects/glove/



shown in Table 2, we note that the performance of FastText in abusive content
detection is in fact worse than the other feature representations with an SVM
classifier. However, FastText is an efficient classifier with a much faster execution
time than the SVMs. We attribute the classification results to the straightfor-
ward structure of FastText. In addition, using pre-trained word embeddings in
FastText does not guarantee better results, which also may be due to the data
source used for the pre-trained word embeddings.

Table 2: Results of Abusive Detection across 9 Datasets. The results are shown as
percentage recall, the abusive recall is outside of thebrackets, average recall is inside
brackets. The highest abusive recall is displayed in bold.

D1 D2 D3 D4 D5 D6 D7 D8 D9

Ngrams (1-4 Word) 70(75) 35(62) 91(93) 62(77) 58(78) 12(56) 18(58) 65(78) 33(60)
Ngrams (2-4 Char) 75(77) 33(62) 89(93) 66(80) 57(78) 18(59) 18(58) 70(83) 35(62)

Ngrams+Feat. 75(77) 40(64) 89(93) 67(80) 57(78) 18(59) 22(60) 73(85) 40(64)

Avg. of Glove50 62(68) 13(53) 56(70) 49(68) 60(76) 61(74) 50(68) 75(82) 36(61)
Avg. of Glove100 65(71) 30(59) 66(76) 59(74) 58(76) 51(71) 48(68) 77(85) 48(66)
Avg. of Glove200 66(72) 31(60) 78(82) 62(76) 60(78) 44(69) 48(69) 78(85) 48(66)
Avg. of Glove300 68(72) 33(60) 81(85) 65(77) 54(76) 43(69) 50(70) 74(83) 50(68)

fastText 72(75) 42(61) 70(62) 65(76) 58(79) 31(63) 23(58) 47(71) 30(56)
fastText+Glove100 73(76) 37(62) 60(76) 46(71) 58(79) 21(60) 21(60) 62(79) 41(65)

At this stage, we have not found a general model that performs best across
all 9 datasets. The ngrams with syntactic & semantic information achieves sig-
nificantly better results to the standard ngrams in 7 of our 9 datasets. Averaging
word embedding is considered as the most straightforward approach to generate
sentence vectors and achieves good results in our experiments. In addition, the
FastText simple neural network shows poor performance in the abusive detection
task. We suggest that an advanced structure needs to be designed for abusive
detection in future work.

4 Conclusions & Future Work

The purposes of this paper were two fold: (1) to investigate how off-the-shelf
deep neural networks have been used across the two tasks within text classi-
fication - feature representation and the classification tasks itself and (2) to
run preliminary experiments in abusive detection across 9 different social media
datasets. We highlight the following aspects from our work: Firstly, we systemat-
ically summarized current neural models and categorized them into two modes,
unsupervised approaches for generating distributed feature representations and
supervised approaches for classification. Secondly, we attempted to compare the
classification performance of using traditional feature representation to word
embedding feature. Simply averaging pre-trained word embeddings has better
results to ngrams feature representation in most of datasets. In addition, we
employed a recent neural network, FastText. Due to its shallow architecture,



the performance is unexceptional. Using pre-trained word embeddings can not
guarantee better results possibly probably due to the characteristics of corpus
used for pre-training the embeddings being different from our datasets. We will
validate this assumption in our subsequent experiments.

The ultimate goal of our research is to develop a powerful classification model
that can assist social media moderators to detect abusive comments efficiently
and effectively. The path to the goal can be divided into two directions, designing
appropriate features for abusive comments and designing an outstanding model
for detection. In future work, we will focus our research on both directions by
exploring deep neural networks in unsupervised mode and supervised mode.

References

1. Amir, S., Wallace, B.C., Lyu, H., Silva, P.C.M.J.: Modelling context with user
embeddings for sarcasm detection in social media. arXiv preprint arXiv:1607.00976
(2016)

2. Badjatiya, P., Gupta, S., Gupta, M., Varma, V.: Deep learning for hate speech
detection in tweets. In: Proceedings of the 26th International Conference on World
Wide Web Companion. pp. 759–760 (2017)

3. Chen, H., Mckeever, S., Delany, S.J.: Harnessing the power of text mining for
the detection of abusive content in social media. In: Advances in Computational
Intelligence Systems, pp. 187–205. Springer (2017)

4. Chen, H., Mckeever, S., Delany, S.J.: Presenting a labelled dataset for real-time
detection of abusive user posts. In: Proceedings of the International Conference on
Web Intelligence. pp. 884–890. ACM (2017)

5. Chen, Y., Zhou, Y., Zhu, S., Xu, H.: Detecting offensive language in social media to
protect adolescent online safety. In: Privacy, Security, Risk and Trust (PASSAT),
2012 International Conference on and 2012 International Confernece on Social
Computing (SocialCom). pp. 71–80. IEEE (2012)

6. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning phrase representations using rnn encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

7. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recur-
rent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

8. Dadvar, M., de Jong, F.M., Ordelman, R., Trieschnigg, R.: Improved cyberbullying
detection using gender information (2012)

9. Dadvar, M., Trieschnigg, D., Ordelman, R., de Jong, F.: Improving cyberbullying
detection with user context. In: ECIR. pp. 693–696. Springer (2013)

10. Del Vigna12, F., Cimino23, A., Dell’Orletta, F., Petrocchi, M., Tesconi, M.: Hate
me, hate me not: Hate speech detection on facebook (2017)

11. Djuric, N., Zhou, J., Morris, R., Grbovic, M., Radosavljevic, V., Bhamidipati,
N.: Hate speech detection with comment embeddings. In: Proceedings of the 24th
International Conference on World Wide Web. pp. 29–30. ACM (2015)

12. Gambäck, B., Sikdar, U.K.: Using convolutional neural networks to classify hate-
speech. In: Proceedings of the First Workshop on Abusive Language Online. pp.
85–90 (2017)

13. Gao, L., Huang, R.: Detecting online hate speech using context aware models
(2017)



14. Hill, F., Cho, K., Korhonen, A.: Learning distributed representations of sentences
from unlabelled data. arXiv preprint arXiv:1602.03483 (2016)

15. Joachims, T.: Text categorization with support vector machines: Learning with
many relevant features. Machine learning: ECML-98 pp. 137–142 (1998)

16. Joulin, A., Grave, E., Mikolov, P.B.T.: Bag of tricks for efficient text classification.
arXiv preprint arXiv:1607.01759 (2016)

17. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882 (2014)

18. Kiros, R., Zhu, Y., Salakhutdinov, R.R., Zemel, R., Urtasun, R., Torralba, A.,
Fidler, S.: Skip-thought vectors. In: Advances in neural information processing
systems. pp. 3294–3302 (2015)

19. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in neural information processing systems.
pp. 1097–1105 (2012)

20. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In:
Proceedings of the 31st ICML-14. pp. 1188–1196 (2014)

21. Mehdad, Y., Tetreault, J.R.: Do characters abuse more than words? In: SIGDIAL
Conference. pp. 299–303 (2016)

22. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

23. Nobata, C., Tetreault, J., Thomas, A., Mehdad, Y., Chang, Y.: Abusive language
detection in online user content. In: Proceedings of the 25th International Confer-
ence on World Wide Web. pp. 145–153 (2016)

24. Park, J.H., Fung, P.: One-step and two-step classification for abusive language
detection on twitter. arXiv preprint arXiv:1706.01206 (2017)

25. Pavlopoulos, J., Malakasiotis, P., Androutsopoulos, I.: Deep learning for user com-
ment moderation. arXiv preprint arXiv:1705.09993 (2017)

26. Pennington, J., Socher, R., Manning, C.: Glove: Global vectors for word repre-
sentation. In: Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP). pp. 1532–1543 (2014)

27. Ren, Y., Zhang, Y., Zhang, M., Ji, D.: Context-sensitive twitter sentiment classi-
fication using neural network. In: AAAI. pp. 215–221 (2016)

28. Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations from
tree-structured long short-term memory networks. arXiv preprint arXiv:1503.00075
(2015)

29. Tang, D., Qin, B., Liu, T.: Document modeling with gated recurrent neural network
for sentiment classification. In: EMNLP. pp. 1422–1432 (2015)

30. Wang, W.Y.: ” liar, liar pants on fire”: A new benchmark dataset for fake news
detection. arXiv preprint arXiv:1705.00648 (2017)

31. Wang, X., Liu, Y., Sun, C., Wang, B., Wang, X.: Predicting polarities of tweets
by composing word embeddings with long short-term memory. In: ACL (1). pp.
1343–1353 (2015)

32. Xu, W., Sun, H., Deng, C., Tan, Y.: Variational autoencoder for semi-supervised
text classification. In: AAAI. pp. 3358–3364 (2017)

33. Young, T., Hazarika, D., Poria, S., Cambria, E.: Recent trends in deep learning
based natural language processing. arXiv preprint arXiv:1708.02709 (2017)

34. Zhou, P., Qi, Z., Zheng, S., Xu, J., Bao, H., Xu, B.: Text classification improved by
integrating bidirectional lstm with two-dimensional max pooling. arXiv preprint
arXiv:1611.06639 (2016)


