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Abstract. Here we discuss a problem of arranging k linear orders on
n elements to maximize the number of sets that can be obtained as
intersections of their initial intervals. We argue that this problem can
shed light on a hard problem of characterizing formal contexts of bounded
VC dimension, extremal with respect to the number of their objects
and attributes. To tackle this problem we introduce limit objects, which
capture their asymptotics, and propose, for all k, a tentative optimal
solution. We prove that, under additional hypothesis of symmetry, it is
indeed optimal for k = 3.

1 Introduction

As it was shown by Alexandre Albano and the author [2, 3], the growth of
Vapnik-Chervonekis (VC) dimension is, in essence, the only reason for the ex-
ponential growth of formal concept lattices. Any formal context of bounded
VC-dimension k has its lattice bounded in size by a polynomial in the number
of its join-irreducible elements n, specifically |L| ≤ f(n, k), where

f(n, k) :=
k−1∑

i=0

(
n

i

)
.

This bound itself can be traced back to a well-known lemma of Sauer and She-
lah [9, 10]. Here and further n denotes the standard n-element set {1, . . . , n}.

Lemma 1 (Sauer-Shelah) If A is a family of subsets of n and |A| > f(n, k),
then A shatters some k-set.

Apart from FCA perspective, this problem can be formulated in purely
lattice-theoretical terms by putting a doubly founded (or, less generally, a finite)
lattice into correspondence with its standard context. With this identification,
which we will use throughout the paper, objects and attributes become join-
irreducible and meet-irreducible elements, and the VC-dimension of a lattice L
is defined as the largest integer k for which a boolean lattice on k elements B(k)
can be order-embedded into L, see [3, Lemma 1]. Lattices on n objects of VC-
dimension at most k with f(n, k) elements are called (n, k+ 1)-extremal. We use
k + 1 instead of k to emphasize that these lattices do not allow an embedding
of B(k + 1), or, alternatively, do not shatter any (k + 1)-set.
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A notable feature of (n, k+1)-extremal lattices is that they can be completely
characterized, in a feasible fashion, through the doubling construction [2, 3], or
through their canonical bases [1]. One crucial disadvantage of this approach,
however, is that while the number of objects n for a lattice is bounded, there
is no estimate or restriction on the number of its attributes m. However, from
the duality principle, attributes and objects are interchangeable, so instead we
might be interested in maximizing a lattice with respect to max(m,n), m + n,
αn+ βm or n ·m, where the latter is a good estimate for the size of the formal
context in matrix form. An adequate theory of extremal contexts is thus calling
for resolution of problems of a kind:

Problem 1 Characterize concept lattices of formal contexts (G,M, I) of VC-
dimension at most k, maximal in size with respect to σ(|G|, |M |), where σ(n,m) =
n+m, or σ(n,m) = n ·m, or σ(n,m) = αn+ βm.

An example of a more nuanced conjecture could be as follows:

Conjecture 1 Maximal in size concept lattice of a formal context (G,M, I) of
VC-dimension at most k, such that |G|+ |M | = 2n, and such that k divides n,
is the Cartesian product of k chains of length n/k − 1 each:

L =×
k

C
(n
k

)
,

where C(l) is an l-element chain. The size of L is (n/k)
k
.

At the moment, these problems seem too hard to approach. A first easy step
could be to construct an (n, k + 1)-extremal lattice, which, at the same time,
would minimize the number of attributes. Such lattices will be called (n, k+ 1)-
doubly extremal. For k = 1 the construction is trivial, and further on we will
show that for k = 2 doubly extremal lattice is exactly the interval lattice. For
k ≥ 3, however, things start getting bleak. We thus resort to an even simpler
problem, which will be the central object of this investigation, and, as we hope,
can provide a key insight towards constructing doubly extremal lattices. We now
state this problem formally, and postpone the discussion of how it is connected
with doubly extremal lattices till Section 2.

Definition 1 (Configuration) For a fixed k, let a (discrete) k-configuration
C = {�i | i = 1, . . . , k} be a set of k linear orderings of n. We say that C
generates a feasible set Y ⊆ n, if Y can be obtained as an intersection of initial
intervals of ≤i, that is,

Y =
k⋂

i=1

(xi]i

for some xi ∈ n, where (v]i = {u ∈ n | u �i v}. As a matter of convenience, the
empty set is considered to be non-feasible.

10 Bogdan Chornomaz



Problem 2 (k-chains problem) Describe a k-configuration C that generates
the maximal number of sets, and the number |C| of its feasible sets. In particular,
what is the asymptotic behavior of |C| when n approaches infinity, that is, what
is the value of the limit

lim
n→∞

sup
C

|C|(
n
k

) = lim
n→∞

sup
C

k! · |C|
nk

, (1)

and which families of configurations correspond to this limit.

As it turns out, as long as we are interested in asymptotics, it is natural to
consider continuous objects called limit configurations, introduced in Section 3,
which enable us to present configuration families with specific asymptotics as a
single object.

Problem 2, however, is still too hard to solve in its full extent. In Section 4 we
present a tentative optimal family of k-configurations and its continuous coun-
terpart. This object satisfies several sufficient conditions for optimality, which,
due to the lack of space, were not included in the paper. However, in Section 5 we
prove that, under additional condition of symmetry, the configuration for k = 3
is indeed optimal. We also note that the general machinery of the proof holds
for arbitrary k. The only part that is specific to k = 3 is purely combinatorial
Lemma 6. This lemma can be formulated for arbitrary k, but we were unable to
handle the general case.

2 Doubly Extremal Lattices and the K-Chains Problem

The starting point for the estimation of the number of meet-irreducible elements
(attributes) in extremal lattices is the following lemma.

Lemma 2 Any (n + k, k + 1)-extremal lattice L has at least k(n + 1) meet-
irreducible elements, arranged in k disjoint chains of length n + 1 each. Every
such chain contains exactly one element of rank i, for i ∈ k − 1, . . . n+ k − 1.

Proof. We proved this lemma in another paper [5, Theorem 3]. The proof uses
the technique of extremal decompositions, which was developed in that paper,
and is rather involved, so we have no possibility to reproduce it here.

We call the chains of meet-irreducible elements from Lemma 2 the principal
chains. Figure 1 gives an illustration of this construction. It is also trivial [5,
Lemma 7] that, for k = 2, the interval lattices are (n, k + 1)-extremal with no
other attributes than those, provided by Lemma 2. Thus:

Corollary 3 The interval lattices are (n, 3)-doubly extremal.

For larger k, however, Lemma 2 does not describe all meet-irreducible ele-
ments. The technique of extremal decompositions from [5] can be used to prove
that, for example, any (6, 4)-extremal lattice has at least 3 meet-irreducible ele-
ments apart from the principal chains.
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a b c d a b c d

Fig. 1. The principal chains of
meet-irreducible elements for
(4, 3)- and (4, 4)-extremal lattices.

Fig. 2. The interval lattices are
(n, 3)-doubly extremal.

Instead of looking for additional meet-irreducible elements, we can reverse
the question and ask how the principal chains should be constructed in order to
maximize the number of elements they generate, that is, of elements of the lattice
that can be constructed from them by intersections. Answering this question may
be quite helpful for the construction of doubly extremal lattices, because of the
following plausible conjecture:

Conjecture 2 In a doubly extremal lattice the principal chains are optimal in
the sense of generating the (asymptotically) maximal possible number of ele-
ments.

Notice that every principal chain corresponds to a k-almost ordering of the
set of its objects, where k-almost ordering of a set X is a partial order on X, in
which all elements are comparable, except for k−1 smallest elements, which are
incomparable with each other. For the (4, 3)- and (4, 4)-extremal lattices from
Figure 1, the corresponding orderings are a ≤ b ≤ c ≤ d and d ≤ c ≤ b ≤ a for
the former, and b, c ≤ a ≤ d; b, d ≤ a ≤ c and c, d ≤ a ≤ b for the latter. There
is a one-to-one correspondence between the elements of the principal chains and
the initial intervals of these orderings.

Thus, in order to estimate the size of the fragment of an extremal lattice
generated by the principal chains, we have to find a family of k almost orderings
which is is optimal, in a sense that it generates the (asymptotically) maximal
number of sets as intersections of its initial intervals. This, however, is literally
Problem 2, but with almost orderings instead of orderings. But it is not a prob-
lem, as switching between almost orderings and orderings does not change the
asymptotics as n growth to infinity.

Apart from this, it can be easily shown that for a fixed configuration, the
family of its feasible sets, together with the empty set, forms a convex geometry.
It is known, however, that the convex geometries can be considered a natural
generalization of the (n, k)-extremal lattices [4]. Studying the k-chains problem
can thus be treated as studying extremal contexts with specific constraints on
the structure of their objects and attributes.

3 Asymptotics and a Limit Object

Let us take a k-configuration C. We say that an ordered k-tuple (m1, . . . ,mk),
mi ∈ n, is feasible and corresponds to X, if
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1. X =
⋂
i(mi]i is a nonempty (and thus feasible) set,

2. mi is maximal in X with respect to �i, for all i = 1, . . . , k.

Notice that for every feasible set X and every ordering �i there is always an
element mi ∈ X, maximal with respect to �i, the k-tuple of these elements is
feasible, and it is a unique feasible tuple that corresponds to X. Thus, feasible
sets and feasible tuples are in one-to-one correspondence. On the other hand,
while we can associate with an arbitrary k-tuple a = (a1, . . . , am) a feasible
(or empty) set A =

⋂
i(ai]i, in general, a will not be feasible for A, even for

nonempty A, as the following example shows:

Example 1 Let k = 2 and n = 3, 1 �1 2 �1 3 and 1 �2 3 �2 2. Then
for the configuration C = {�1,�2} there are four feasible sets: {1, 2, 3}, {1, 2},
{1, 3} and {1}; and their feasible tuples are (3, 2), (2, 2), (3, 3) and (1, 1). The
tuple (2, 3) is not feasible, because although it corresponds to the feasible set
{1} = (2]1 ∩ (3]2, elements 2 and 3 do not lie in {1}, and thus can not be
maximal in it with respect to any ordering.

By putting feasible sets and feasible tuples into correspondence, we conclude
that there are at most kn feasible sets. But this estimate is way too crude, as
the following statement holds:

Statement 1 For a k-configuration C and a feasible tuple (m1, . . . ,mk), such
that all mi are different, a tuple (mσ(1),mσ(2), . . . ,mσ(k)) is not feasible for any
nontrivial permutation σ.

Proof. Let us take a nontrivial σ and fix j such that σ(j) 6= j. Then mσ(j) ≺j mj ,

and thus mj /∈ Y =
⋂k
i=1(mσ(i)]i. But then mj cannot be in a feasible tuple,

corresponding to Y , a contradiction.

Thus, there can be at most
(
n
k

)
≈ nk/k! feasible sets with distinct compo-

nents, where a feasible set is a k-set in n, for which there is a corresponding
feasible tuple. As for the tuples with repeating elements, their number will be
asymptotically negligible comparing to nk, so we can disregard them. This clar-
ification also explains the choice of the denominator in the limit in (1).

When analyzing a k-configuration, or rather a family of configurations Cn,
parametrized with n, we will be interested in the volume vol of Cn:

vol(Cn) = lim
n→∞

|Cn|(
n
k

) = lim
n→∞

k! · |Cn|
nk

≤ 1. (2)

As long as we are concentrating on the asymptotics, it will be convenient
for us to define a notion of a limit object, which approximates the behavior of
the sequence of configurations as n goes to infinity. Good example of such limit
objects are graphons [7] for dense graphs, or flag algebras [8] for set families with
prohibited configurations.
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Our definition of a limit configuration exploits the fact that for a given k-
configuration C, every element from the base set n naturally corresponds to a
tuple in nk, whose coordinates represent the relative position of the element
in corresponding chains. Further on, by measure on [0, 1]k we understand a
measure on the σ-algebra of Borel sets. The set [0, 1]k is equipped with a pack
of projections πj : [0, 1]k → [0, 1], πj(x) = xk, where x = (x1, . . . , xk). The
Lebesgue measure of a set B is denoted by |B|.
Definition 2 (Limit configuration) Limit k-configuration µ is a measure on
[0, 1]k, such that for every measurable set B ⊆ [0, 1], every j = 1, . . . k, and every
projection πj : [0, 1]k → [0, 1], it holds: |B| = µ

(
π−1j [B]

)
.

Usually we deal with a measure given in a form of a measurable weight
function w on a 1-dimensional manifold M ⊆ [0, 1]k, defined as a line integral
µ(X) =

∫
x∈X w(x)ds(x), for any measurable X ⊆M. In this case we denote the

configuration as (M, w).

For a limit configuration µ, the axes, with their natural order, represent the
chains; the measure µ represents relative positions of elements in the chains; and
the restriction on projections reflects the fact that the elements are uniformly
distributed along each chain.

A k-tuple (x1, . . . , xk), xi ∈ [0, 1]k (the tuple itself is thus in [0, 1]k
2

), is
feasible, if πi(xi) ≤ πi(xj), for all i, j. Here, for convenience, we suppose that the
order on the axes is reversed, so that the top of the chains corresponds to the
origin of coordinates. We denote the set of feasible tuples by F ⊆ [0, 1]k

2

, denoted
F(M) = F ∩Mk when the configuration takes form (M, w). The volume vol(µ)
is thus defined as

vol(µ) = k! ·
∫

(x1,...,xk)∈F

k∏

i=1

dµ(xi) = k! · µk(F), (3)

where µk is a measure on [0, 1]k
2

, obtained as a product of k copies of µ.
It is possible, and easy, to show that for every discrete configuration it is

possible to construct a limit object, so that, for large n, their volumes would
be arbitrary close. And, on the contrary, for every continuous configuration it is
possible to construct a family of discrete configurations, which approximate it
with respect to volume. The proofs are omitted due to space restrictions.

We conclude the section with a couple of examples of limit configurations.

Example 2 (Discrete configuration) For a given k-configuration C on n, let
us define a limit k-configuration µC in the following way. Let

P ⊆ [0, 1]k =
⋃

i∈n
×

l=1,...,k

[ol(i)/n− 1/n, ol(i)/n],

where ol(i) is a position of i with respect to �l in decreasing order, that is, if
a �l b �l c, then ol(a) = 3, ol(b) = 2 and ol(c) = 1. We then take µC to be a
measure, uniformly distributed over P , that is

µC(X) = |X ∩ P |/|P |.
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This construction gives a “continuous version” of the discrete configuration C,
vol(C) ≤ vol(µC), and for reasonable C, the difference between the volumes is
small for large n.

Example 3 (Random configuration) Let us take a k-configuration C on n
by choosing �i to be a random ordering of n, taken independently for all i. It is
easy to see that for a k-tuple (x1, . . . , xk) with distinct elements, the probability
of being feasible is 1/kk (x1 is the smallest with respect to �1 with probability
1/k, etc.). Thus,

E vol(C) =
k!

kk
.

A limit configuration, corresponding to this construction, is simply the Lebesgue
measure µ(X) = |X|, and vol(µ) = E vol(C).

4 Tentative Solution

Author’s intuition prompts, and the rest of the paper will be devoted to sub-
stantiate this claim, that the following k-configuration can be asymptotically
optimal for the k-chains problem, at least for k = 2 and 3:

Definition 3 (Tentative optimal configuration) Let us fix k and n = k ·
m, and let us split n into k disjoint bunches of m elements each: a1, . . . am;
b1, . . . bm; . . . ; z1, . . . , zm, where a, b, . . . , z is a symbolic representation of these
k bunches. Then the asymptotically optimal k-configuration is Ok,n = {�a,�b
, . . . ,�z}, where

�a = a1 ≥ · · · ≥ am ≥ bm ≥ · · · ≥ zm ≥ bm−1 ≥ · · · ≥ zm−1 ≥ b1 ≥ · · · ≥ z1;

�b = b1 ≥ · · · ≥ bm ≥ am ≥ · · · ≥ zm ≥ am−1 ≥ · · · ≥ zm−1 ≥ a1 ≥ · · · ≥ z1;

. . .

�z = z1 ≥ · · · ≥ zm ≥ am ≥ · · · ≥ ym ≥ am−1 ≥ · · · ≥ ym−1 ≥ a1 ≥ · · · ≥ y1.

Figure 3 below illustrates this construction.
It can be the case that the tentative optimal construction can be optimized

further, for example by swapping ai and bi in �c. These modifications, however,
are asymptotically negligible, and we thus refrain from trying them for the sake
of simplicity. Note also, that for k = 2 orderings �a and �b will be inverse to
each other, and it is easy to see that the corresponding lattice, as expected, will
be the interval lattice on n elements, that is, (n, 3)-doubly extremal lattice. The
corresponding limit configuration is defined as follows:

Definition 4 (Optimal limit configuration) The limit configuration Ok,∞ =
(M, w), which corresponds to the tentative optimal configuration family Ok,n, is
defined as

M⊆ [0, 1]k =
⋃

i=1,...,k

[c, ei],

K-Chains Problem and Why it Matters for Extremal Contexts 15



where c, ei ∈ [0, 1]k, c = (1/k, . . . , 1/k), ei,j = 0, i 6= j, ei,i = 1, and [c, ei] is a
closed line segment. The weight function is w(x) = 1/kL, where L is the length
of the line segment [c, ei].

Figure 4 below depicts the optimal limit configuration for k = 3. In order to
calculate the volume of the optimal configuration, and to understand better the
arrangement of its feasible sets, we now will describe these sets explicitly. The
proof of the following proposition is by meticulous examination of the feasibility
conditions for the given configuration, and will be omitted due to the lack of
space.

a1
a2
a3

b3
c3

b2
c2

b1
c1

b1
b2
b3
a3
c3
a2
c2
a1
c1

c1
c2
c3
a3
b3
a2
b2
a1
b1

Fig. 3. The tentative optimal con-
figuration O3,9.

A
1
3 1

B

1
3

1

C

1
3

1

{ci}
x

y

{ai}

{bi}z

Fig. 4. The optimal limit configuration O3,∞.
The triple {x, y, z} is a feasible set, as long as
πA(x) ≤ πA(z).

Proposition 4 (Feasible sets of the optimal limit configuration.) A set
{x1, . . . , xk} ⊆ Ok,∞ is feasible iff one of the following mutually exclusive con-
ditions hold:

1. all {xi} lie on different line segments, xi ∈ [c, ei]. The corresponding feasible
tuple is (x1, x2, . . . , xk);

2. or all {xi}, except for two of them, xp and xq, lie on different line segments:
xi ∈ [c, ei], i 6= p, q. Elements xp and xq lie on one of the remaining segments
[c, ep], and for xq it holds:

πq(xq) ≤ πq(xi),

for all i = 1, . . . , k. The corresponding feasible tuple is (x1, x2, . . . , xk).

Figure 4 shows a feasible configuration corresponding to the second case of
the above proposition. This, together with volume formula (3), enables us to
easily calculate the volume of the optimal solution:
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Proposition 5 (Volume of the optimal limit configuration)

vol(Ok,∞) =
k!

kk−1
.

Proof.

vol(Ok,∞) = k!

(
1

k

)k
·
[
1 + k(k − 1)

∫ 1

0

(1− x)k−1dx

]

=
k!

kk
[1 + k(k − 1)/k] =

k · k!

kk
=

k!

kk−1
.

For two and three chains we thus get: vol(O2,∞) = 1 and vol(O3,∞) = 2
3 .

5 Symmetry

An important feature which holds for Ok,∞, is that it is symmetric in the fol-
lowing sense:

Definition 5 (Symmetry) We say that a limit k-configuration (or simply a
measure) µ is symmetric if µ (ρσ[X]) = µ(X), for every permutation σ on k
and every measurable X ⊆ [0, 1]k, where ρσ : [0, 1]k → [0, 1]k is a coordinate
permutation function: ρσ(x1, . . . , xk) = (xσ(1), . . . , xσ(k)).

In symmetric configurations all chains look alike, and it is reasonable to
suppose that the optimal configuration would be symmetric. In this section we
prove that, assuming symmetry, our tentative solution for k = 3 is the best
possible. We start with the following simple combinatorial statement:

Lemma 6 Let (A,B,C) be a subdivision of the set 9 into three nonintersecting
subsets of size three each, and let a1, a2, a3; b1, b2, b3 and c1, c2 and c3 be
enumerations of A, B and C correspondingly. We say that such triple of enu-
merations is feasible if a1 < b1, c1, b2 < a2, c2 and c3 < a1, b1. Then, for a fixed
subdivision, the maximal number of feasible triples is 24.

Note. This lemma can be reformulated for larger, or even for arbitrary k, and
an optimal upper bound can then be used for an upper bound for the symmetric
case for arbitrary dimension. The solution strategy which we undertook there
can not, however, be easily scaled, so finding such bound may prove problematic.

Proof. In order to be able to compare subdivisions, let us introduce the fol-
lowing notations. For a subdivision S = (A,B,C), we denote the number of
feasible triples of enumerations by n(S). For subdivisions S = (A,B,C) and
S′ = (A′, B′, C ′) we introduce the shift operation [S → S′], which translates
the enumerations of S into the enumerations of S′, so that the relative order of
elements inside every set remains the same. An example of the shift is given on
Figure 5 below. Every shift is one-to-one and onto, and the inverse of [S → S′]
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is [S′ → S]. For a subdivision S′, we say that S is dominated by S′, denoted
S � S′, if for every feasible enumeration triple α of S, the triple [S →′ S]α is
feasible for S′. Trivially, we might look for an optimal subdivision only among
those, which are not dominated by any other.

Now, let us proceed with finding an optimal configuration, and note that the
problem is symmetric, that is, for a feasible triple (a1, a2, a3; b1, b2, b3; c1, c2, c3)
for the subdivision (A,B,C), the triple (b2, b1, b3; a2, a1, a3; c2, c1, c3) will be fea-
sible for the subdivision (B,A,C), and so on. Here we changed the order of each
enumeration in the same way as we changed the order of sets in the subdivision.
Thus, without restricting generality, we can assume that the element 1 lies in A.

As 1 is the smallest element in 9, we can see that the only element from the
enumeration that can be 1 is a1: if, to the contrary, we take, say, a2 = 1, then
the constraint b2 < a2 will not hold. Now, we claim that an optimal position
for A is {1, 8, 9}. Indeed, for a subdivision S = (A,B,C), let S′ = (A′, B′, C ′) be
the subdivision, obtained from S′ by shifting the second and the third elements
of A to the right. It is easy to see that in this case the subdivision S′ dominates
S, see Figure 5 for the illustration.

1 1 2 1 3 3 3 2 2
S

1 1 2 1 3 3 2 3 2
S′

A:

B:

C:

Fig. 5. Shifting the last two elements of A to the right. Numbers show the enumerations
of A, B and C. Note that the unfeasible enumeration triple becomes feasible and that
the second subdivision dominates the first one.

Now, in order for a subdivision to be optimal, we only need to optimally
subdivide the set {2, . . . , 7} into B and C. As before, without losing generality,
we may assume that the smallest element, that is 2, lies in B. Note that assigning
b3 = 2 breaks the constraint c3 < b3, but it is, in principle, possible for a feasible
enumeration to have b1 = 2 or b2 = 2, so we can not apply the same simple
argument as we did for the optimal position of A.

However, there are not so many ways to make such subdivision: in fact, there
are ten, so we may check them manually. In order to simplify it even further,
we note that all subdivisions with 2, 3 ∈ B are dominated by B = {2, 3, 7} and
C = {4, 5, 6}, and the subdivisions with 2 ∈ B and 6, 7 ∈ C are dominated
by B = {3, 4, 5} and C = {2, 6, 7}. Other five we check manually, and obtain
that there are several choices for an optimal subdivision S∗ = (B,C), with
n(S∗) = 12. The situation is subsumed on Figure 6.

Now, an optimal subdivision for S = (A,B,C) is obtained by combining the
optimal position of A with one of the optimal subdivisions for S∗ = (B,C). In
this case, n(S) = 24, finishing the proof of the lemma. See Figure 7 for example.

For this part we introduce additional definitions for measures on [0, 1]k.
The total size of a measure µ is just µ([0, 1]k). Thus, if µ is a k-configuration,
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� n(S) = 12

� n(S) = 12

2 n(S) = 12

2 1 3 : 6
2 3 1 : 43
1 2 2 3 : 2

n(S) = 12

2 1 3 : 6
2 3 3 1 : 2
1 2 3 : 42

n(S) = 12

2 3 : 4
2 1 3 3 : 2
2 3 2 3 : 2
1 1 2 3 3 2 : 1
1 3 3 1 2 2 : 1

n(S) = 10

2 3 : 8
1 2 : 4

n(S) = 12

Fig. 6. Case study for an optimal subdivision of the set {2, . . . , 7} into B and C. Each
case is a subdivision, with a list of the corresponding feasible enumerations, together
with the total number of those enumerations.

S

A: B: C:

Fig. 7. An optimal subdivision S = (A,B,C) with n(S) = 12. This subdivision is
also the one which is obtained from the limit object O3,∞, see Theorem 9 for the
explanation.

then its total size is 1. A measure µ is diagonal-free if µ (D) = 0, where D =
{x ∈ [0, 1]k | xi = xj , for some i 6= j}. And µ is continuous on projections if
µ
(
π−1i (X)

)
= 0, for every i and every X ⊆ [0, 1] such that |X| = 0. Again, it is

trivial to see that any k-configuration is continuous on projections. The volume
vol(µ) is defined by the same formula (3) as for the k-configurations.

Lemma 7 For a symmetric continuous on projections diagonal-free measure µ
on [0, 1]3 of total size 1, it holds

vol(µ) ≤ 3!

33−1
=

2

3
.

Proof. Let us fix such µ. The proof strategy is to show that for every feasible
tuple on µ, only a specific fraction of tuples, obtained from it by permutations,
may be feasible.

By (3), we evaluate the volume of µ as

vol(µ) = 3!

∫

(x,y,z)∈FD
dµ(x)µ(y)µ(z),

where FD = F\D3 is a diagonal-free version of F . Note, that the elements of
FD can have coinciding coordinates. Indeed, due to exclusion of the diagonal,
for an element (x, y, z) ∈ FD it holds that x1 6= x2 6= x3, but it may hold that,
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for example, x1 = y1. But finite size of µ and its continuousness on projections
ensure that the volume of these points is 0. For example:

∫

(x,y,z)∈FD
x1=y1

dµ(x)µ(y)µ(z) ≤
∫

(x,y,z)∈[0,1]9
x1=y1

dµ(x)µ(y)µ(z)

=

∫

x∈[0,1]3

(∫

y∈π−1
1 (x1)

dµ(y)

)
dµ(x) = 0.

Thus, we may restrict FD even further, to the set F∗D of points with all
distinct coordinates. Now, with every x, y and z we associate one of 9! order-
ings o(x, y, z) of their coordinates, represented as formal letters x1, . . . , z3. For
example:





x = (0.1, 0.5, 0.8)

y = (0.3, 0.6, 0.7)

z = (0.4, 0.9, 0.2)

⇒ o(x, y, z) = (x1, z3, y1, z1, x3, y2, y3, x2, z2).

Also, the triple (x, y, z) is feasible if and only if o(x, y, z) is feasible, that is, if
the inequalities x1 ≤ y1, z1; y2 ≤ x2, z2 and z3 ≤ x3, y3 hold in o. Note that we
can, in a straightforward fashion, represent o as a subdivision of 9 into sets X, Y
and Z together with three relative enumerations ex, ey and ez correspondingly.
In the example above:

o(x, y, z) = (x1, z3, y1, z1, x3, y2, y3, x2, z2)

= (xzyzxyyxz, 132, 123, 312).

Now, if we apply permutations σx, σy and σz to the coordinates of x, y and
z, we get

o(x, y, z) =
(
(X,Y, Z), ex, ey, ez

)
,

o(σx(x), σy(y), σz(z)) =
(
(X,Y, Z), σx(ex), σy(ey), σz(ez)

)
.

So,

vol(µ) = 3!

∫

(x,y,z)∈F∗D
dµ(x)µ(y)µ(z) = 3!

∫

o(x,y,z)∈Fo

dµ(x)µ(y)µ(z)

=
3!

3!3

∑

σx,σy,σz

∫

o(σx(x),σy(y),σz(z))∈Fo

dµ(σx(x))µ(σy(y))µ(σz(z))

=
3!

3!3

∑

σx,σy,σz

∫
(
X,Y,Z,σx(ex),σy(ey),σz(ez)

)
∈Fo

dµ(x)µ(y)µ(z)

=
3!

3!3

∑

(X,Y,Z)

n(X,Y, Z)

∫

(x,y,z)∈[X,Y,Z]

dµ(x)µ(y)µ(z)

20 Bogdan Chornomaz



≤ 3! · 24

3!3

∑

(X,Y,Z)

∫

(x,y,z)∈[X,Y,Z]

dµ(x)µ(y)µ(z)

=
2

3

∫

(x,y,z)∈[0,1]9
dµ(x)µ(y)µ(z) =

2

3
.

where Fo is a set of feasible orderings of 9, n(X,Y, Z) is a number of feasible
enumerations for a subdivision (X,Y, Z), and [X,Y, Z] is a subset in [0, 1]9, for
which the coordinates correspond to a subdivision (X,Y, Z). Here we used an
estimation n(X,Y, Z) ≤ 24 obtained in Lemma 6. Note that this bound is exact,
and it is reached by the measure that is concentrated in the areas, for which
n(X,Y, Z) is maximal an equals 24.

Lemma 8 For a symmetric k-configuration µ there is a family {µa}a∈(1,∞) of

symmetric continuous on projections diagonal-free measures on [0, 1]k of total
size 1, such that lima→1 vol(µa) = vol(µ).

Proof. Due to the lack of space, we prove this lemma only for k = 2. The similar,
but more elaborated proof can be carried over for arbitrary k.

For a fixed α ∈ (1,∞) we split [0, 1]2 into five nonintersecting parts:

LL = {(x, y) | y = αx, x > 0}, LU = {(x, y) | x = αy, y > 0},
CL = {(x, y) | y < αx, x > 0}, CU = {(x, y) | x < αy, y > 0},
Z = [0, 1]2\ (LL ∪ LU ∪ CL ∪ CU ) .

We define the mapping ·∗ : (LL ∪ LU ∪ CL ∪ CU ) 7→ [0, 1]2 as:

(u, v)∗ =

{
(u, αv), (u, v) ∈ LL ∪ CL,
(αu, v), (u, v) ∈ LU ∪ CU .

Note that ·∗ is one-to-one on CL ∪ CU , and (LL ∪ LU )
∗

= D. Now, we define µα
as

µα(X) = µ
(
X ∩ (CL ∪ CU )

)∗
+

1

2
µ
(
X ∩ LL

)∗
+

1

2
µ
(
X ∩ LU

)∗
,

for every measurableX ⊆ [0, 1]2. Informally speaking, we construct µα by shrink-
ing the triangle below the diagonal along y, the triangle above the diagonal
along x, and splitting in half the measure concentrated along the diagonal. The
construction is illustrated on Figure 8.

It is trivial to check that µα is symmetric, diagonal-free, continuous on pro-
jections and has total size 1. Notice also that µ(Y ) = µα([·∗]−1Y ), for every
measurable Y . The only thing we need to check is that the volumes of µa con-
verge towards vol(µ).

vol(µα) = 2

∫

(x,y)∈F\Z2

dµα(x)µα(y)
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Fig. 8. Construction of µα.

= 2

∫

(x,y)∈F+

dµα(x)µα(y)− 2

∫

(x,y)∈F+\F
dµα(x)µα(y)

= 2

∫

(x,y)∈F+

dµ(x∗)µα(y∗)− 2

∫

(x,y)∈F+\F
dµα(x)µα(y)

= 2

∫

(x,y)∈(F\Z2)∗
dµ(x)µα(y)− 2

∫

(x,y)∈F+\F
dµα(x)µα(y).

where F ⊆ F+ = [·∗]−1(F\Z2)∗. Then

|vol(µα)− vol(µ)| ≤ 2

∫

(x,y)∈(F\Z2)∗∆F
dµ(x)µ(y)

+ 2

∫

(x,y)∈
(
F+\F

)∗ dµ(x)µ(y),

where ∆ denotes the symmetric difference. We estimate two summands sepa-
rately. If (x, y) ∈ (F\Z2)∗∆F then something like x1 ≤ y1 ≤ αx1 holds (perhaps
along different coordinate, perhaps with x and y swapped). Then
∫

(x,y)∈(F\Z2)∗∆F
dµ(x)µ(y) ≤ C

∫

{(x,y) | x1≤y1≤αx1}
dµ(x)µ(y)

≤ C
∫

x

(∫

y∈[x1,α+x1]

dµ(y)

)
dµ(x) ≤ C

∣∣[x1, α+ x1]
∣∣ = Cα.

for some constant C, which depends only on k. For the second estimate let us
consider what it means for (x, y) to lie in F+\F . First of all, as ·∗ is one-to-one on
CL∪CU , then either x or y (or both) lie in LL∪LU . Say, x ∈ LL, which means that
x1 = αx2. Then (x, y) /∈ F but (x′, y) ∈ F , where x′ = (x2, x1) = (x2, αx2). Yet
again, something like x2 ≤ y2 ≤ αx2 holds (perhaps along different coordinate,
perhaps with x and y swapped). After applying ·∗, to change from F+\F to
(F+\F)

∗
, these restriction can only change by α. So, just like for the previous

summand, we infer
∫

(x,y)∈
(
F+\F

)∗ dµ(x)µ(y) ≤ Dα2.
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for some constant D, which depends only on k. The combination of these two
estimates finishes the proof.

Theorem 9 (Optimality under symmetry assumption) For a symmetric
limit 3-configuration µ, it holds: vol(µ) ≤ 3!/33−1 = 2/3, that is, vol(µ) ≤
vol(O3,∞). Thus, the configuration O3,∞ is optimal symmetric 3-configuration.

Proof. By Lemma 7, this bound holds for arbitrary symmetric continuous on
projections diagonal-free measure η of total size 1, and by Lemma 8, every sym-
metric k-configuration µ can be approximated (in volume) by such measures
with arbitrary precision.
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