CEUR-WS.org/Vol-2123/paperl8.pdf

Efficient Formal Concept Analysis through
Recursive Context Partitioning

Tim Pattison, Aaron Ceglar, and Derek Weber

{tim.pattison,aaron.ceglar,derek.weber}@dst.defence.gov.au
Defence Science & Technology Group
West Ave, Edinburgh
South Australia 5111

Abstract. Formal Concept Analysis takes as input a bigraph known as
a formal context. It produces a partially-ordered set of formal concepts
which constitutes a complete lattice. This lattice can be represented as a
directed acyclic graph, whose vertices are formal concepts and whose arcs
connect neighbours in the ordering relation between them. This paper
describes a divide-and-conquer technique for discovering and exploiting
hierarchical structure in a formal context. Simultaneous hierarchical par-
titioning of both the context bigraph and the resultant lattice digraph is
used to achieve efficient computation and, elsewhere, interactive visuali-
sation of the concept lattice.

1 Introduction

Formal Concept Analysis (FCA) derives a multiple-inheritance class hierarchy
from a formal context. A formal context consists of a set of objects, a set of
attributes, and a binary relation between them. The classes derived by FCA are
known as formal concepts. Each consists of a set of objects, called its extent,
and a set of attributes, called its intent, such that each object in its extent,
and no others, has all attributes in its intent. The set of formal concepts, when
partially ordered by set inclusion, forms a complete lattice. This lattice can be
efficiently represented as a directed acyclic graph (DAG), whose vertices are
formal concepts, and whose adjacency relation is the transitive reduction of the
ordering relation.

The number of formal concepts is bounded above by an exponential function
of the number of objects and attributes in the context. Scaling FCA to the
interactive analysis of large data sets poses two fundamental challenges: the time
required to compute the concepts and construct the large lattice digraph; and
the difficulty of meaningful and responsive user interaction with this digraph.

The times required to enumerate all formal concepts of a formal context, and
to calculate the transitive reduction of the ordering relation between them, are
both bounded above by a polynomial function of the number of formal concepts.
One class of “divide and conquer” techniques tackles this inherent computational
complexity by partitioning the context, performing FCA on each resultant sub-
context, and combining the results. FCA is thereby mapped onto multiple inde-
pendent processors, each performing FCA on a sub-context which is significantly

© paper author(s), 2018. Proceedings volume published and copyrighted by its editors.

Paper published in Dmitry I. Ignatov, Lhouari Nourine (Eds.): CLA 2018, pp.
219-230, Department of Computer Science, Palacky University Olomouc, 2018.
Copying permitted only for private and academic purposes.

220 Tim Pattison, Aaron Ceglar, and Derek Weber

smaller than the overall context. Several FCA algorithms use this approach for
the enumeration of concepts [7,2] and construction of the lattice digraph [3,11].

This paper describes the CARVE technique for recursively partitioning a for-
mal context, which produces a corresponding hierarchical partition of the lat-
tice digraph. CARVE exploits structure which we have identified in an empirical
author-publication context for co-authorship analysis, and which Bhatti et al. [4]
found in software systems. We explain how recognising this structure leads to a
novel divide-and-conquer algorithm for efficient FCA. The resultant hierarchical
partitioning of the lattice digraph is exploited elsewhere for both layout of, and
interaction with, the Hasse diagram [10].

CARVE recursively partitions a formal context for analysis by any FCA algo-
rithm which, or algorithms which collectively: enumerates the formal concepts;
calculates the transitive reduction of the ordering relation; and returns the corre-
sponding labelled DAG. It further assembles the resultant digraphs into that for
the original context. CARVE does not compete with existing FCA algorithms; it
accelerates their application to formal contexts exhibiting the requisite structure.

This paper is organised as follows. Section 2 introduces relevant aspects of
the theories of partial orders, FCA, graphs and graph drawing. Section 3 then
establishes the theoretical foundations for the CARVE algorithm, after which the
algorithm is detailed in Section 4. A brief discussion of related work is presented
in Section 5, followed by a summary in Section 6.

2 Preliminaries

This section introduces relevant aspects of the theories of partial orders and
FCA, as well as graphs and graph drawing. It assumes relevant knowledge found
in such textbooks as [5] and [8] respectively.

Definition 1 A formal context (G, M,I) is a triple consisting of a set G of
objects, a set M of attributes and a binary relation I C G x M such that an
object g € G has attribute m € M iff (g,m) € I.

Definition 2 The context bigraph for the formal context (G, M, I) is a bipartite
graph having object vertex set G, attribute vertex set M, and edge set I.

Definition 3 A connected component of a context bigraph is a maximal sub-
graph in which a path exists between all pairs of vertices.

The example formal context of Figure la is represented in Figure 1b as a
context bigraph. Object vertices are drawn with grey fill and attribute vertices
white. The context bigraph has three connected components.

Definition 4 The extent operator < : P(M) — P(G) and intent operator * :
P(G) — P(M) return the mazimal sets

B'={geG|(9,m)el ¥Yme B} (1a)
A" ={meM]|(gm)el Vge A} (1b)

Efficient Formal Concept Analysis through Recursive Context Partitioning 221

A B C D E F G H 1 J K L

10 v
11 v v
12 v v v
(a) Formal context (b) Context bigraph

Fig. 1: An example formal context and its corresponding bigraph.

of objects possessing all attributes in B C M and attributes possessed by all
objects in A C G.

Here, P(G) and P(M) denote the powersets — sets of all subsets — of G and
M respectively. m® = {m}< is the set of objects which have attribute m and
g~ = {g}" is the set of attributes possessed by object g.

Proposition 1. For ACG and BC M

B={geG|g 2B (20)
A" ={me M |m" 2D A} (2b)

Definition 5 A formal concept of the context (G, M, I) is an ordered pair (A, B)
with extent) € A C G and intent 0 C B C M satisfying

A" =B (3a)
Bi=4A (3b)

Definition 6 A biclique (A, B) in the context bigraph (G, M, I) is a set() C A C
G of object vertices and a corresponding set) C B C M of attribute vertices
such that each vertex in A is adjacent to all vertices in B, and vice versa.

Definition 7 A biclique (A, B) is maximal if there is no biclique (A’, B') #
(A, B) having A’ 2 A and B’ 2 B.

Proposition 2 (Gaume et el. [6]). (A, B) is a formal concept in the formal
context (G, M, I) having extent A # 0 and intent B # 0 iff (A, B) is a mazimal
biclique in the bigraph (G, M,I) having object vertex set A and attribute vertex
set B.

222 Tim Pattison, Aaron Ceglar, and Derek Weber

The elements of the set B(G, M, I) of formal concepts are partially ordered
by defining the relation < between concepts (A, B),(C, D) € B(G, M, I) such
that

ACC<= (A,B)<(C,D)<=B2>D (4)

Definition 8 Let (3; <) be a finite partially-ordered set, and let a,b € P satisfy
a<b-ie a<banda#b. If fc € P satisfying a < ¢ < b, then we write a < b.
Element a is then called a lower neighbour of b, and conversely b is an upper
neighbour of a.

Proposition 3. FCA of the formal context (G, M, I) produces the lattice

(‘B(G,M,I);§>:<¢U\/CU/\C;§> (5)

ce€ ced
where ¢ ranges over the set € of mazimal bicliques in (G, M, T).

Thus the global supremum V. c¢c and infimum A.cec of the set € of maximal
bicliques complete the set B O € of formal concepts in cases where they have
empty intent or extent, and are therefore not already included in €. We refer to
the supremum and infimum collectively as the extrema.

The complete lattice (B(G, M, I);<) can be efficiently represented as a la-
beled digraph whose vertices are concepts and whose arcs connect neighbours.
Each arc is directed from the lower to the upper neighbour, and concepts are
comparable iff there exists a directed path between the corresponding vertices.
For each concept (A, B), the corresponding vertex is labelled with attribute set
1 C B and object set v C A defined as follows:

pi={me Mm* = A} (6a)
v:={g9€Glg" = B} (6b)

Definition 9 The concept (A, B) is an attribute concept for each attribute m €
1 and an object concept for each object g € .

The resultant directed graph is a single-source, single-sink DAG. The source
vertex s, corresponding to the infimum, has only outgoing arcs; the sink vertex t,
corresponding to the supremum, has only incoming arcs. The extent [intent]! of
any concept is the set of all object [attribute] labels encountered on downward
[upward] paths from that concept. Two lattices are order isomorphic iff their
lattice digraphs, excluding labels, are isomorphic.

Proposition 4. Let t and s be the sink and source vertices, respectively, of a
lattice digraph. Denote by u: and -y the attribute and object label sets of t, and
by ps and v, the attribute and object label sets of s. Then
e =G" ps = {m e M|m* = M}
n={g€Gly" =G"} Vs = M*

1 Square brackets indicate that a sentence is true both when read without the brack-
eted terms and when read with each bracketed term substituted for the preceding
term.

(7)

Efficient Formal Concept Analysis through Recursive Context Partitioning 223

Proposition 4 indicates that t is labelled with attributes possessed by all
objects and with objects possessing only these universal attributes. Similarly, s
is labelled with objects possessing all attributes and with attributes possessed
only by these universal objects.

A Hasse diagram [8] is a two-dimensional spatial embedding of the lattice
digraph in which the vertical component of each arc is upwards, and edge direc-
tions are accordingly omitted. Attribute [object] labels are placed above [below]
the labelled concept. Figure 2b shows the Hasse diagram for the context bigraph
in Figure 2a. The labelling indicates, inter alia, that the supremum is an at-
tribute concept for attribute G and an object concept for object 10. The vertex
having attribute label set © = {F} and object label set v = {5} in Figure 2b
corresponds to the concept ({5,12},{F,G}); it “inherits” attribute G from its
upper neighbour and object 12 from its lower neighbour.

3 Foundations of Recursive Partitioning

3.1 Partitioning the Context Bigraph

Each biclique of the context bigraph must be entirely contained within a single
connected component. The maximal bicliques of (G, M, I') can therefore be enu-
merated by dividing the bigraph into its connected components and enumerating
the maximal bicliques of each component. Separate connected components, and
hence also their bicliques, share neither object nor attribute vertices.

Proposition 5. If V.cec € € or Accec € € then the bigraph (G, M,I) consists
of a single connected component.

3.2 Partitioning the Lattice Digraph

For any two concepts, the intent [extent] of their supremum [infimum] is the
intersection of their intents [extents].

Proposition 6. For any pair of mazimal bicliques drawn from different con-
nected components, their extrema are those of the set € of maximal bicliques.

Corollary 1 No arcs exist between vertices of the lattice digraph corresponding
to mazimal bicliques from different connected components of (G, M,I).

Corollary 1 indicates that partitioning the context bigraph into connected
components partitions the vertices of the resultant lattice digraph, excepting the
extrema, into disjoint sets between which there are no arcs. From the converse
of Proposition 5, if (G, M, I) consists of more than one connected component,
then the extrema are not maximal bicliques, and are not covered by Corollary 1.

Figure 3a uses rounded boxes as containers to illustrate this partitioning of
the concepts for the example context in Figure 1. The concepts derived from the
largest connected component of the context bigraph — with the exception of the

224 Tim Pattison, Aaron Ceglar, and Derek Weber

(a) Bigraph (b) Hasse diagram

Fig. 2: Bigraph and Hasse diagram for largest connected component of Figure 1b.

infimum which does not correspond to a biclique — are in the pink container.
These concepts and the ordering relation between them are the same as those
in Figure 2b, which resulted from FCA of the largest component in isolation. As
expected, there are no edges (arcs) between concepts in different containers.

A context bigraph exhibiting two or more connected components can be
partitioned into those components, those components analysed separately to
identify their maximal bicliques and compute the transitive reduction of their
partial ordering, and the sink [source] vertices of each resultant sub-graph of the
lattice digraph connected to the global sink [source] to form the lattice digraph.
FCA of the context (G, M, I) is thereby reduced to independent FCA for each of
the sub-contexts (G;, M;, I N (G; x M;)). Some care is required (see Section 3.5)
to ensure the proper handling of the extrema of each sub-context.

3.3 Reducing the Context

Proposition 7. Let (G',M’',I') be formed from (G, M,I) by removing object
set s, attribute set g, and all edges incident on either. Then (B(G',M',I"); <)
is order isomorphic to (B(G, M, I);<).

Proposition 8. Let (G', M',I') be formed from (G, M, I) by removing object set
Ve, attribute set ps, and all edges incident on either. Then (B(G', M’',1'); <) is
order isomorphic to (B(G, M, I); <) iff the supremum and infimum of B(G, M, I)
have more than one lower and upper neighbour respectively.

Propositions 7 and 8 involve the application of row and column reduction
[5] to the objects and attributes for which the extrema are object and attribute
concepts. They allow us to safely remove from the context all fully-connected
attributes and objects, and in many cases any objects and attributes which are
isolated after this removal.

Efficient Formal Concept Analysis through Recursive Context Partitioning 225

(a) Initial partitioning of maximal bicliques (b) Recursive partitioning

Fig. 3: Hasse diagram for the context in Figure 1 showing partitioning of its
maximal bicliques. Figure 3b adds an inclusion tree layout (nested containers)
to illustrate the recursive execution of Carve().

Figure 4a shows the connected components of the bigraph in Figure 2a after
removal of the universal attribute G and its incident edges. Object 10 is now iso-
lated, and cannot therefore participate in a biclique. Figure 4b shows the Hasse
diagram for this sub-context after removal of both G and 10. As indicated by
the shaded containers, the maximal bicliques are partitioned into two sets, cor-
responding to the two remaining connected components of the bigraph, between
which there are no connections. Comparison of Figures 4b and 2b confirms that
the lattices before and after extremum reduction are order isomorphic. Since the
supremum has more than one lower neighbour, removal of object 10 satisfies the
condition of Proposition 8 for lattice isomorphism.

Let (G', M’, I') denote the result of applying Propositions 7 and 8 to (G, M, I).
The extrema of this extremum-reduced context are no longer object or attribute
concepts, and accordingly have no labels. Whereas the concept lattices for (G, M, I)
and (G',M’,I') are order isomorphic, the corresponding lattice digraphs will
therefore differ in the labelling of the supremum and infimum. Restoring these
labels, which are now stored in ~s, s,y and g, converts the lattice digraph
for (G',M’,I') into that for (G,M,I). For example, restoring the label sets
v = {10} and u: = {G} to the supremum converts the Hasse diagram in Fig-
ure 4b to that in Figure 2b.

3.4 Recursive Partitioning

We have seen that the removal of any universal attributes and objects, as per
Proposition 7, can disconnect the context bigraph, and thereby pave the way for
partitioning of (G, M, I). If (G, M, I) is instead a sub-context resulting from a
previous partition, removal of these objects and attributes may facilitate parti-
tioning of that sub-context, and hence recursive partitioning of the global con-
text.

226 Tim Pattison, Aaron Ceglar, and Derek Weber

(a) Bigraph (b) Hasse diagram

Fig.4: Removal of attribute G from the bigraph in Figure 2a reveals new con-
nected components and a corresponding partition of its maximal bicliques.

The execution of a procedure which removes from the context bigraph the ob-
jects and attributes identified in Propositions 7 and 8, along with their adjacent
edges, identifies the connected components in the remaining context bi-graph,
and calls itself to process each of the identified components, is described by
its recursion tree. Figure 5 shows this tree superimposed on the context bigraph
from Figure 1 using an inclusion tree layout. Each rounded rectangular container
corresponds to a vertex in the recursion tree. A container includes another iff
the former corresponds to an ancestor of the latter in the recursion tree.

This tree also constitutes a partition tree for the context bigraph, in which
the non-leaf nodes are labelled with the objects v; U s and attributes p; U pg
associated with the extrema of the corresponding sub-context. In Figure 5, these
objects and attributes appear only in non-leaf containers.

The leaf nodes of this tree correspond to sub-contexts whose lattice digraphs
are either trivial — consisting of one or two vertices — or otherwise not amenable to
further partitioning. Each non-trivial leaf-node sub-context must be processed
by a suitable FCA algorithm which returns the corresponding lattice digraph
labelled as per (6). The resultant single-source, single-sink digraphs form the

G\O\ QIO
N

© OO ®
Fig.5: Context bigraph from Figure 1 with recursion tree superimposed using
inclusion tree layout.

Efficient Formal Concept Analysis through Recursive Context Partitioning 227

building blocks which must then be appropriately assembled and interconnected
to produce the lattice digraph for the overall context. Importantly, this assembly
can be performed progressively in a single pass back up the recursion tree.

3.5 Assembling the Lattice Digraph

Assembling the lattice digraph for a given sub-context involves either connecting
or merging the source (infimum) and sink (supremum) vertices s’,t’ of the di-
graphs for each of its immediate sub-contexts with their counterparts s, t for the
current sub-context. In this section we examine the circumstances under which
merging and connection, respectively, are appropriate.

Proposition 9. Let (G',M',I') be an extremum-reduced context consisting of
two or more connected components. Let (A, B) be the supremum [infimum] of one
of these connected components, (G;, M;, I;), and let ' [s'] be the corresponding
vertex of the lattice digraph for that sub-context. Then (A, B) € B(G', M', T') iff

pe # 0 [ys # 0]

If the supremum [infimum)] of (G;, M;, I;) has an attribute [object] label, then
an arc is added to connect it to its counterpart in the parent context (G', M', I').
This ensures that each maximal biclique in (G;, M;, I;) has a directed path to
the lattice supremum, and from the infimum, of the parent context. If the supre-
mum [infimum] of (G;, M;, I;) does not have an attribute [object] label, it should
instead be merged with its counterpart in the parent context. The merge opera-
tion replaces two digraph vertices with a single vertex having the unions of their
upper neighbours, lower neighbours, attribute labels and object labels.

4 CARVE

Algorithm 1 lists the CARVE algorithm for simultaneous recursive partitioning
of a formal context and its corresponding lattice digraph. Carve() takes as input
a context bigraph (G, M,I) and returns, by reference to its source and sink
vertices, the corresponding lattice digraph, labelled as per (6). The Boolean
parameter ¢ represents the level of recursion, and should be set to zero for the
initial call. Carve() invokes the following functions:

FindComponents(G’, M’ I'): Takes as input a context bigraph (G', M’,I') and
returns an unordered set of its connected component bigraphs.

FCA(G', M’,I'): Takes as input a formal context (G’, M’,I') which cannot be
further decomposed by Carve() and returns the resultant lattice digraph.
This function can be implemented using any FCA algorithm (see e.g. [9,1])
which enumerates the concepts, calculates the transitive reduction of the
ordering relation between them, and calculates the labelling defined in (6).

Connect(a,b): Creates an arc from vertex a to vertex b of the lattice digraph.

Merge(a,b): Applied to lattice digraph vertices a and b, it modifies vertex b to
have label sets and adjacent arcs, both incoming and outgoing, which are
the unions of those of a and b. Thus vertex a is merged with vertex b.

228 Tim Pattison, Aaron Ceglar, and Derek Weber

Algorithm 1 Build lattice digraph through recursive partitioning of context.

Require: 1 C G x M
Ensure: (s,t) are (source,sink) vertices of labelled lattice digraph for (G, M, I)
1: Function (s,t) = Carve(G, M, I, ¢)
2: Mt <— G*
3: if uy = M then
v +— G
return (¢,t)
end if
if uy # 0 or ¢ =0 then
vt {9 € Glg" = pue}
9: else
10: Yt 0
11: end if
12: s +— M*
13: if v5 # 0 or ¢ = 0 then
14: ps < {m € M|m* =~,}
15: else
16: s 0
17: end if
18: M’ « M\ (ue U ps)
19: G' + G\ (7 Uys)
20: if M’ =0 or G’ = () then
21: Connect(s,t)
22: return (s,t)
23: end if
2: I' < 1N (G x M)
25: if put # 0 or s # 0 or ¢ = 0 then
26: @ <+ FindComponents(G’', M’ I")
27: else
28 Q< {(G,M,I)}
29: end if
30: if |Q| =1 and 7+ =0 and pus = 0 then
31: (¢',t') « FCA(G',M',T")
32: Merge(t,t)
33: Merge(s',s)

34: else

35: for all (Gi, M;,I;) € Q do
36: (s',t') « Carve(G;, M;, I;, 1)
37 if py # 0 then

38: Connect(t,t)

39: else

40: Merge(t',t)

41: end if

42: if v, # () then

43: Connect(s, s)

44: else

45; Merge(s’, s)

46: end if

47: end for

48: end if

49: return (s,t)

Efficient Formal Concept Analysis through Recursive Context Partitioning 229

Lines 2 to 24 of Carve() create and label the source and sink vertices of the
sub-lattice digraph, return the lattice digraph in cases where it is trivial, and
if not, convert the context (G, M, I) to its extremum-reduced form (G', M', I').
Lines 25 to 29 partition (G’, M’,I') into its connected component bigraphs.
Lines 30 to 48 calculate the sub-lattice digraph for each of these components
and connect or merge it into the source and sink vertices of the lattice digraph
for (G, M,I). From the perspective of FCA(), Carve() is a pre-processor which
reduces the context to an extremum-reduced, connected bigraph, and a post-
processor which connects the resultant sub-lattice digraph into that for the orig-
inal context.

Figure 3b uses an inclusion tree layout to illustrates the recursive execution
of Carve() when applied to the context of Figure 1. The containers are filled
with the same colours as their counterparts in Figure 5, in which the same
recursion tree is overlaid on the context bigraph. The single vertex in the yellow
container is returned by line 5 of Algorithm 1. Those in the light grey container
are generated by a call to FCA() at line 31, and those pairs in the remaining three
leaf-node containers are returned by line 22.

5 Related Work

Berry et al. [3] proposed a divide-and-conquer approach to FCA based on the
identification of a vertex separator known as a clique minimal separator. A clique
minimal separator is an attribute or an object, or an attribute-object pair, whose
removal disconnects the context bigraph. The vertices of a bigraph having one
or more such separators are “partitioned” by notionally removing each separator
in turn, and replicating it across each of the adjacent connected components of
the resultant bigraph. Berry et al. [3] nominated an algorithm which efficiently
identifies these separators and described a method for combining the concept
lattices produced by applying FCA to each resultant sub-context.

Decomposition using clique minimal separators produces a set of atomic bi-
graphs which by definition contain no clique minimal separators. FCA of each
atomic bigraph produces corresponding lattice digraphs from which the original
lattice digraph is reconstructed. In contrast with CARVE, the resultant decompo-
sition of the lattice digraph is not hierarchical, and reconstruction is complicated,
inter alia, by the fact that edges can be required between constituent digraphs.

Valtchev et al. [11] described a procedure for recursive binary partitioning
of an arbitrary formal context and the assembly of the overall lattice digraph
from the digraphs arising from the sub-contexts. Only the attribute [object] set
is partitioned, so that each sub-context contains all objects [attributes]. Whilst
postulating that an “optimal” partition of the context would be one which min-
imised the size of the component digraphs, Valtchev et al. [11] left open the
question of how to choose such a partition. In contrast, CARVE discovers and ex-
ploits the structure of amenable contexts to recursively partition both the object
and attribute sets, and significantly simplifies digraph assembly for this special
case.

230 Tim Pattison, Aaron Ceglar, and Derek Weber

6 Summary

This paper has established the theoretical foundations of, and then detailed, the
CARVE algorithm, a divide-and-conquer technique for discovering and exploit-
ing hierarchical structure in a formal context. Hierarchical partitioning of both
the formal context and the resultant concept lattice have been used to achieve
efficient computation of the lattice digraph. The discovered structure can be
exploited for improved layout of, and interaction with, the Hasse diagram [10].

References

1. Andrews, S.: A ‘best-of-breed’ approach for designing a fast algorithm for com-
puting fixpoints of Galois connections. Information Sciences 295, 633649 (2015).
https://doi.org/10.1016/j.ins.2014.10.011

2. Baklouti, F., Levy, G.: Parallel algorithms for general Galois lattices building. In:
Proc. Workshop on Distributed Data and Structures (WDAS 2003). Proceedings
in Informatics, Carleton Scientific (2003)

3. Berry, A., Pogorelcnik, R., Sigayret, A.: Vertical decomposition of a lattice us-
ing clique separators. In: Napoli, A., Vychodil, V. (eds.) Concept Lattices and
their Applications (CLA 2011). CEUR Workshop Proceedings, vol. 959, pp. 15-29
(2011), http://ceur-ws.org/Vol-959/

4. Bhatti, M.U., Anquetil, N., Huchard, M., Ducasse, S.: A catalog of patterns for con-
cept lattice interpretation in software reengineering. In: Zhang, D., Reformat, M.,
Gokhale, S., Maldonado, J.C. (eds.) Proc. 24th Intl. Conf. Software Engineering &
Knowledge Engineering (SEKE’2012). pp. 118-124. Knowledge Systems Institute
Graduate School (2012)

5. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Berlin, Heidelberg (1999). https://doi.org/10.1007/978-3-642-59830-2

6. Gaume, B., Navarro, E., Prade, H.: A parallel between extended Formal Concept
Analysis and bipartite graphs analysis. In: Hiillermeier, E., Kruse, R., Hoffmann,
F. (eds.) Computational Intelligence for Knowledge-Based System Design. LNCS,
vol. 6178, pp. 270-280. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-
14049-5_28

7. Gély, A.: A generic algorithm for generating closed sets of a binary relation. In:
Ganter, B., Godin, R. (eds.) Formal Concept Analysis. LNCS, vol. 3403, pp. 223—
234. Springer, Berlin (2005). https://doi.org/10.1007/978-3-540-32262-7_15

8. Gross, J.L., Yellen, J., Zhang, P. (eds.): Handbook of Graph Theory. Chapman &
Hall/CRC Press, New York, second edn. (2013)

9. Kuznetsov, S.0O., Poelmans, J.: Knowledge representation and processing with For-
mal Concept Analysis. Wiley Interdisciplinary Reviews: Data Mining and Knowl-
edge Discovery 3(3), 200-215 (2013). https://doi.org/10.1002/widm.1088

10. Pattison, T., Weber, D., Ceglar, A.: Enhancing layout and interaction in Formal
Concept Analysis. In: Proc. 2014 IEEE Pacific Visualization Symposium. pp. 248—
252. IEEE (2014). https://doi.org/10.1109/PacificVis.2014.21

11. Valtchev, P., Missaoui, R., Lebrun, P.: A partition-based approach towards con-
structing Galois (concept) lattices. Discrete Mathematics 256(3), 801-829 (2002).
https://doi.org/10.1016/S0012-365X(02)00349-7

