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Abstract. This paper describes the details of our participation in the
image caption prediction task at CLEF 2018. We explored and imple-
mented an encoder-decoder framework to generate caption given a med-
ical image. For the encoder, we compared two variations of convolutional
neural networks (CNN) architectures: ResNet-152 and VGG-19, and for
the decoder we used the long short term memory (LSTM) recurrent
neural network. The attention mechanism was also experimented on a
smaller sample to evaluate its impact on the model fitting and prediction
performance. We submitted 4 valid runs and the best result achieved 0.18
BLEU score, which ranked second among all participant teams.
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1 Introduction

Automatically making computer understand the content of an image and offering
reasonable description in natural language has gained more and more attentions
from the computer vision and natural language processing community. In clin-
ical practice, medical specialist and medical researchers usually write diagnosis
reports to record microscopic findings from images, so automatic captioning on
medical images will benefit healthcare providers with valuable insights and re-
duce their burden across the overall clinical workflow.

Due to its importance, ImageCLEF 2018 [5] continued the medical image cap-
tioning challenge [6] with the aim of advancing methodological development in
mapping visual information from medical images to condensed textual descrip-
tions. The main stream of Recent methods [2–4, 10] was combining the recurrent
neural networks (RNN) for modeling natural language, with deep convoluational
neural networks(CNN) for extracting image features. Within that framework,
RNN based natural language generation was conditioned on CNN based image
contextual features through encoder-decoder framework which was originally
proposed for neural machine translation [1]. In the meantime, different deep
architectures were also explored, including Deep Residual Networks [9] which
created shortcuts between different layers to enable neural network to model the



identity mapping, and Wide Residual Networks [8] which shows that the widen-
ing of residual networks blocks can lead to improved performance compared to
increasing their depth. More recently, Zhang et al. applied MDNet [7] on med-
ical image captioning, where the image model utilizes an enhanced multi-scale
feature ensemble method and the language model adopts an improved attention
mechanism, outperforming other comparative baselines. It is worth noting that
the caption in their clinical dataset was generated through a special guideline
which requires additional manual efforts.

In participating the CLEF caption prediction task, we adopted the proven suc-
cessful Encoder-Decoder architecture of neural networks, where we investigated
two state-of-the-art image encoder variants (VGG-19 and ResNet-152) inte-
grated with LSTM recurrent neural networks. Most existing studies use image
encoders which were pre-trained on ImageNet, a very large dataset containing
daily images from general domain. However, this pre-trained model is not avail-
able in medical domain. Therefore, we performed finetuning during end-to-end
training of our model.

2 Dataset

The whole training dataset of Image CLEF caption prediction contains 222,314
image-caption pairs, and the length of captions varies from 1 word to 816 words.
The average caption length is 20 words. Images are mainly from medical domain,
but some of them are generic pictures such as animals or geography pictures.
Caption itself is also noisy, e.g. some copy right or author information is also
included. The official test data contains 9,938 images which are used to evaluate
the system’s performance.

3 Methods

In the encoder-decoder framework, the encoder extracts effective image features,
based on which the decoder generates a sequence of textual terms for summa-
rizing the image’s content. As image understanding is crucial for caption predic-
tion, we built two systems: VGG Attention Model using VGG-19 architecture
as encoders integrated with the attention mechanism, and ResNet Model using
residual networks as encoders. Those two encoders have shown promising results
on image classification and are expected to work well for caption prediction.
Both systems depend on LSTM model for decoding.

3.1 Preprocessing

To improve generality of model, we used random crop method to augment more
data into original dataset. As we found that only 0.28%(628 instances) of the



training data contain captions with length larger than 145, we removed these
data to reduce the sequence length required in LSTM model which can speed
up the training process without losing much data representativeness.

3.2 VGG Attention Model

We adopted the architecture from the ”show,attend, and tell” [10] as our VGG
attention model, which is one of the state-of-art models for general domain image
captioning task. It consists of a VGG-19 encoder and an attention based LSTM
decoder where the soft attention mechanism was implemented. The architecture
is illustrated in Fig. 1.

Fig. 1. Illustration of VGG Attention Model. We use VGG-19-conv5-3 to extract fea-
tures from images and the initialization of hidden state (h0 in picture) is the average
feature map. LSTM receives the current word embedding, and weighed feature map to
predict the next word.

Encoder: VGG-19 Attention mechanism can guide the LSTM decoder to dy-
namically focus on specific parts of the image when generating the next caption
term at each time step. Therefore we choose the output from the relatively lower
convolution layer of the VGG net as image feature representation, which enables
the model to attend to salient regions of the image. Specifically, we extracted
features from the conv5 3 layer, which provides the 14 x 14 x 512 feature map
(512 is the number of feature maps). The flattened 196 x 512 encoding will be
fed in the subsequent LSTM decoder.



Decoder: Attention Based LSTM As shown in Fig. 1, the LSTM encoder
receives the current word embedding and a dynamic image representation at
each time step through the attention module. The attention module calculates
different weights for feature map from different image locations, so that the
LSTM encoder will know which location should be focused more for producing
the next word. The weights are based on the hidden state of the LSTM at
previous time step and the feature map extracted from the aforementioned VGG
encoder(Fig. 1).

3.3 ResNet Model

Another model we explored is to use ResNet(residual neural networks) architec-
ture in place of VGG network as image encoders. The motivation to swap VGG
with ResNet is that the latter achieved state-of-the-art results in ImageNet clas-
sification tasks in general domain. It indicates that ResNet has the potential to
produce a better encoding on image features. By adding shortcut of each block,
residual network architecture also accounts for the vanishing gradients problem
when training very deep convolution neural networks.

As shown in Fig 2, we adopted ResNet-152 encoder which directly connects
to a standard LSTM decoder. Due to the depth of the architecture, we didn’t
add attention in this model as it is tricky to pick up an appropriate layer to
attend to, which we will investigate in the future work. For implementation,
we used pre-trained models’ parameters to initialize ResNet-152 and performed
end-to-end finetuning. Note that for both systems, the LSTM decoder doesn’t
use any pre-trained model.

Fig. 2. Illustration of ResNet-based Model.

3.4 Over-fit a Small Dataset

One of the challenges for this caption prediction task is that the caption length
varies largely, and the number of words per caption ranges from 1 to 145 even



with our preprocessing step. In last year’s challenge, ISIA [11] implemented sep-
arate deep learning models to handle different lengths of captions, while the
other team PRNA [12] developed one deep learning model to handle all of them.
It shows that a single model may work well as long as it is properly parame-
terized. As the Hochreiter pointed out( [13]), LSTM has capacity to handle the
length over 1000. In order to determine some hyper-parameters, we sampled 10
instances from the training data whose captions contains words from 140 to 145.
Using this small data, we tried to over-fit our deep learning model to empirically
choose hyper-parameters by measuring its capacity of modeling this small data
with long captions. Two hyper-parameters we are interested are the hidden size
of the LSTM and size of word embedding, which plays an important role in
mapping visual context features with textual terms.

We use the BLEU score as a metric to measure whether the model can overfit
the small data properly. All the experiments are using Adam gradient descent
method, and the learning rate is set as 0.0001. As we can see from Table 1, the
capacity of the model to handle long length captions is more sensitive to hidden
size than word embedding size, i.e. when the hidden size is not large enough(256),
increasing the word embedding size doesn’t help much(run1 vs. run2); when the
hidden size is increased to 512, the model can fit well with embedding size of
256 or 512(run3 or run4). As expected, when embedding size is further reduced
to 128, the capacity is adversely affected(run4 vs. run5). Based on this result,
we choose the hidden size of 512 and the word embedding size of 256 in our
systems. We also did this experiment on the attention LSTM model with VGG
encoder and similar results were observed.

Table 1. Over-fit results of ResNet using a small data. Maximum number of epoch is
500.

Runs Hidden and Word Dimension Model BLEU

1 256 x 256 ResNet LSTM 0.132
2 256 x 512 ResNet LSTM 0.124
3 512 x 512 ResNet LSTM 0.908
4 512 x 256 ResNet LSTM 0.923
5 512 x 128 ResNet LSTM 0.324

3.5 Training

We used Adam stochastic gradient descent method for model training, with
learning rate set as 0.0001, the maximum epoch set as 20, and the batch size set
as 16. All our models were trained on two Tesla M60 GPUs in an Amazon EC2
server. However, attention based model training process is extremely slow, so we
have no time to get a usable model before the challenge deadline. Therefore, our
submitted runs were based on ResNet model.



4 Submitted Runs

We delivered totally 6 runs, and 4 of them are valid, so we only describe those
4 runs. As mentioned before, those 4 runs are all based ResNet encoder with
standard LSTM decoder with different epochs of training. Table 2 shows our
official test results.

– best results among teams: the best results among all participants for caption
prediction.

– run1 epoch 6: the run with 6 epochs of training
– run2 epoch 13: the run with 13 epochs of training
– run3 epoch 13 remove UNK: unknown words (UNK) were removed from

run2
– run4 epoch 13 remove UNK finetune: same setting with run3, except for al-

lowing whole ResNet architecture to be finetuned in the training (other runs
only finetuned the top 2 layers)

We can see that run1 delivered an under-fitted model obtaining the worst per-
formance. With the same training epochs, no differences were found in terms of
removing UNK or not, which may be due to the pre-processing step embedded
in the evaluation script. Run4 achieved the best result of 0.18 demonstrating
fully finetuning is beneficial.

Table 2. Official Test Results

Submitted Runs BLEU Rank

best results among teams 0.25 1
run1 epoch 6 0.132 4
run2 epoch 13 0.176 2
run3 epoch 13 remove UNK 0.176 2
run4 epoch 13 remove UNK finetune 0.180 2

5 Discussion and Conclusions

CLEF image caption prediction dataset is very different with COCO or Flickr
10k dataset. Some captions of this dataset are extraordinary long. Fig. 3 and
Fig. 4 show two examples, one is from CLEF image caption prediction dataset,
which has five sentences, and the other one is from COCO dataset, which only
has one sentence.

The caption in Fig. 3 is very complicated, covering different semantics: a
summary at the beginning followed by other descriptions as well as reason-
ing/inferring which can’t be seen in the picture at all. In contrast, the caption
from COCO dataset(Fig. 4), it only describes what can be seen from the picture.
Thus, compared with the general domain VQA task, CLEF caption prediction is



Fig. 3. Example: image of CLEF training dataset, caption: (1)Summary of key in-
teractions in ’atypical’ WD-repeats 6 and 7 of RACK1, illustrated with the structure
of yeast Asc1p (PDB: 3FRX). (2)RACK1 proteins are characterised by a significant
sequence extension between blades 6 and 7, leading to a knob-like protrusion from the
upper face of the propeller. (3)The P0 Asp in blade 7 forms a salt bridge to an Arg
at the P+4 position and this is packed against a Tyr (or in some orthologues Phe) in
the P-2 position. (4) The P0 Asp is absent in blade 6. (5)In principle, these features
together with the absence of the GH signature dipeptide on the loops between blades
5 and 6 and between blades 6 and 7 may facilitate structural transitions in this region
of the protein that are important for function.

Fig. 4. Example: image of COCO dataset, caption:The man at bat readies to swing at
the pitch while the umpire looks on



more challenging, not to mention the additional added complexity due to diffi-
cult medical terms. To address this, the model needs to be more intelligent with
adequate reasoning ability, which may require more complex and hierarchical
text modeling structure with support of background knowledge.
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