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Abstract In this paper, we describe the participation of the Natural Language
Processing Lab of the University of Ottawa in the author profiling shared task at
PAN 2018. We present our approach to gender identification in Twitter performed
on the tweet corpus provided by CLEF for the task. Our approach takes advantage
of textual information solely, and consists of tweet preprocessing, feature con-
struction, dimensionality reduction using Latent Semantic Analysis (LSA), and
classification model construction. We propose a linear Support Vector Machine
(SVM) classifier, with diftferent types of word and character n-grams as features.
Our model was the best-performing model in textual classification, with the ac-
curacy of 0.8221, 0.82, and 0.809 on the English, Spanish, and Arabic datasets
respectively. Considering the combination of textual and image classification, and
all three datasets, our model ranked second in the task.
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1 Introduction

The rise of social media in the past decade, has introduced new forms of social interac-
tion. With more than a billion daily active users' and millions of posts posted every hour?
on social networking services, namely Facebook and Twitter, social media has become
an invaluable source of data for researchers. The increasing amount of unstructured tex-
tual data generated on the social media has thrived the need for Natural Language Pro-
cessing to extract useful information with various applications ranging from security
and defense (forensics), marketing, and personalization to research in psychology and
sociology [8].

It is possible to learn some traits of users, such as gender, age, native language, and
personality, based on what they share on the social media. In the author profiling shared
task at PAN 2018 [15], the focus is on multimodal gender identification in Twitter, by
leveraging the textual and image tweets that a user has posted. This year’s task includes
three languages: English, Spanish, and Arabic. Gender is framed as a binary classifica-
tion problem.

! https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-
users
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The rest of this paper is structured as follows: Section 2 reviews some of the related
work in author profiling, and their approaches towards this task. In section 3, we describe
the Twitter corpus of the author profiling task at PAN 2018. In section 4, we discuss our
proposed system, including our preprocessing steps, the features that we extracted from
the corpus, and the classifier trained on those features. We have included all details
necessary to reproduce our results. In section 5, we investigate the use of the frequency
of offensive expressions as features, and also demonstrate the effect of dimensionality
reduction on the accuracy of our model for the English dataset. Section 6 reports the
accuracy scores of our final model in cross-validation experiments and on the official test
set of the task, and highlights the importance of paying attention to confidence intervals.
Section 7 contains a brief discussion and conclusion.

2 Related Work

Pennebaker et al. [12] explored the link between language and demographic, psycho-
logical, and social traits of a person, including gender. Along with his colleagues, he
developed the Linguistic Inquiry and Word Count (LIWC) tool, which exploits word
counts and word categories to identify traits of authors.

Koppel et al. [10] classified gender on a genre-controlled corpus of formal written
documents (e.g., news papers and books) with an accuracy of about 79 percent. They
started with a total of 1,081 features to represent the corpus, including part-of-speech
(POS) n-grams and a list of 405 function words. They then performed feature selection,
and trained their classifier on the most important features.

Argamon et al. [2] probed the variation of writing styles between male and female
on a corpus similar to above-mentioned. They reported pronouns (I, you, she, her, their,
myself, yourself, herself) as strong female indicators, and determiners (a, the, that, these)
and quantifiers (one, two, more, some) as male indicators.

Schler et al. [18] obtained an accuracy of 80 percent on gender classification on a
corpus of 71,000 blogs from blogger.com. They used some stylistic features, including
POS and hyperlinks, along with the 1000 unigrams with the highest information gain.
They adopted the Multi-Class Real Winnow (MCRW) learning algorithm, which they
claimed to be more efficient than SVM with comparable results. They reported that male
bloggers write more about politics, technology, and money, while female bloggers share
more about their personal lives.

Burger et al. [5] undertook gender classification of Twitter users and achieved 76%
accuracy, when trained their model only on tweets, using word unigrams and bigrams
and character 1- to 5-grams as features. They adopted the Balanced Winnow?2 learning
algorithm, which they claimed to have a better combination of accuracy, speed, and ro-
bustness than Naive Bayes and linear SVM. Furthermore, they assessed the performance
of 130 human annotators on Amazon Mechanical Turk, annotating the gender of Twitter
authors solely based on their textual tweets, and reported that only 5% of the human
annotators were able to out-perform the classification model.

Author profiling has been undertaken as a shared task at PAN annually since 2013.
The best performing team at PAN 2017 used word unigrams and bigrams and character
3- to 5-grams as features [3], however some teams experimented with word and charac-



ter n-grams with values of n up to 3 and 7 respectively [16]. Term frequency—inverse
document frequency (tf-idf) was a common feature transformation technique. POS tag-
ging, lemmatization and stemming were also investigated with mixed results.[3] The
best performing team at PAN 2015 [14] adopted Latent Semantic Analysis (LSA), and
reported a 4% increase in accuracy in their English dataset, compared to bag-of-words
(BOW).[1]

3 Dataset Description

The training dataset of the author profiling task at PAN 2018 consists of tweets and
images of three groups of authors (i.e., Twitter users):

— English: 3,000 authors
— Spanish: 3,000 authors
— Arabic: 1,500 authors

The dataset is balanced and labeled with gender, in every group. Gender annota-
tion has been done based on the name of the users, their profile photos, description,
etc.[16,15]

For each author (Twitter user), a total of 100 tweets and 10 images were provided.
Authors were coded with an alpha-numeric author-ID.

According to PAN, this year’s dataset was a subset of the PAN 2017 dataset for the
author profiling task, and was collected in 2017. For each author, the last 100 tweets had
been retrieved from the user’s timeline. As a result, the time frame of the tweets might
vary from days to months, depending on how frequently a user tweets. According to [16]
none of the tweets are retweets.

As for the images, according to PAN, they retrieved all the images posted by each
user, taking into account at least the last 1,000 tweets of the user. They then randomly
selected 10 of the images. As a result, the time frame of the images does not necessarily
match that of the textual tweets.

For training our classification model, we only took advantage of the tweets, and not
the images.

4 Feature Construction and Classification Model

4.1 Preprocessing

For preprocessing we used the TweetTokenizer module from the Natural Language Toolkit
(NLTK) library [4] along with some additional procedures using regex. We performed
the following preprocessing steps:

1. Replaced the linefeed characters with <LineFeed>.

2. Concatenated all 100 tweets of each author into one string, with an <EndOfTweet>
tag added to the end of each tweet.

3. Lowercased the characters



4. Trimmed the repeated characters: Replaced repeated character sequences of length
3 or greater with sequences of length 3

5. Replaced URLs with <URLURL>

6. Replaced @username mentions (i.e., Twitter handles) with <UsernameMention>

7. Removed punctuations: Although we did not remove the punctuations in our pre-
processing function, scikit-learn[11]’s TfidfVectorizer function completely ignores
punctuation.’

8. Stop words were detected by document frequency and removed. Any n-gram that
occurred in all documents was considered a stop word and was ignored.

4.2 Features

To find the best values for parameters, we performed several hyper-parameter tuning
experiments—some manually and some using the scikit-learn’s grid search function. As
the three languages possess separate datasets and need separate classification models,
we treated them as three independent tasks, and tuned their hyper-parameters separately.
We ended up with two different sets of values: one for the English dataset, and another
for both the Spanish and Arabic datasets.

In short, the feature set we used for the English dataset had two differences:

1. It benefited from word trigrams in addition to other n-grams
2. Dimensionality reduction using LSA was performed on its n-grams

We used the following n-grams features in our final model:

— Word unigrams, bigrams and trigrams for the English dataset
— Word unigrams and bigrams for the Spanish and Arabic datasets
— Character 3- to 5-grams for all three datasets

Both word- and character-level n-grams for all three languages used the following
parameters (for the feature sets):

Term frequency—inverse document frequency (tf-idf) weighting

Sub-linear term frequency scaling, which uses 1 + log(TF') instead of T'F.
Minimum document frequency = 2: Terms with a document frequency strictly lower
than 2 would be ignored.

Maximum document frequency = 1.0 (100%): Terms that occur in all documents
would be ignored.

In addition to this, we performed topic modeling using latent semantic analysis
(LSA) only on the English dataset. Linear dimensionality reduction was done by means
of truncated singular-value decomposition (SVD), using the TruncatedSVD function
from the scikit-learn library [11].

LSA was first introduced in 1988 [6] as a technique for improving information re-
trieval (IR) by reducing the dimensionality of the IR problem. LSA is an unsupervised

3 http://scikit-learn.org/stable/modules/generated/sklearn. feature_extraction.text.
Tfidf Vectorizer.html
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learning technique. It starts with the tf-idf matrix, performs singular-value decompo-
sition (SVD) on it, and represents the documents and terms in a reduced-rank space.
This reduced space is referred to as the "semantic" space, as it captures the relationships
among words and documents.[7]

In the final model, we set the number of dimensions to 300, which seems to capture
the most useful information of the text [20].

Additional features, which did not make their way into the final model, are discussed
in section 5.

4.3 Learning algorithm

We examined different classifiers, namely Naive Bayes, logistic regression, and support
Vector Machine (SVM) with a linear kernel. We obtained the best results from linear
SVM, with the default parameters of scikit-learn’s implementation.

5 Additional Features

In this section, we explain our experiments with using the frequency of offensive expres-
sions as features, on the English dataset. Since these features had a negative impact on
the accuracy of the model, we did not use them in our final model.

A rather intuitive hypothesis is that males use profanities or offensive language more
often than females. We investigated this hypothesis using the Flame dictionary of of-
fensive language expressions [17]. The dictionary* consists of 2,648 expressions, each
marked with a flame level from 1 (lowest) to 5 (highest).

To compare the information gain of the expressions in each flame level, we first
trained our SVM classifier on the expressions of each flame level separately. The features
were extracted with the following steps:

1. Count the number of occurrences of each expression in each document (all tweets
of the user).

2. Transform the count matrix into a normalized tf or tf-idf representation, using the
scikit-learn’s TfidfTransformer function.

In the first set of experiments, we used the unnormalized count matrix (tf). In the
second set of experiments, we performed [2-normalization on the count matrix. With
12-normalization, each row of the matrix (representing each document, i.e., the tweets
of each author) is normalized to have a sum of squares equal to 1. The accuracy of the
models was measured using 10-fold cross-validation.

Table 1 shows the results of these experiments. CI refers to the 95% confidence
interval for the accuracy values of the 10-fold cross-validation, as discussed in section 6.

With the majority classifier baseline being 50%, we can see that the flame level
3-5 expressions contain nearly no discriminating information. We then combined the
expressions of flame level 1 and 2, and finally, combined the expressions of all flame

* http://www.site.uottawa.ca/~diana/resources/
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Table 1. Cross-validation scores for offensive expressions feature set, with and without normal-
ization

No norm. 12 norm.
Flame level Mean CI Mean CI

1 57.67 532 59.67 5.99
2 61.72 6.39 63.00 5.88
3 52.83 5.17 53.89 5.79
4 5428 8.56 54.56 9.79
5 52.56 4.51 51.44 4.90
1&2 61.17 7.36 65.33 5.43

All (1-5) 61.28 6.90 65.94 7.18

levels. The highest accuracy (65.94% =+ 7.18%) belongs to term frequency of all flame
levels, with /2 normalization.

We also performed the same experiments on the tf-idf matrix, with and without nor-
malization, but the accuracy scores were hurt rather than improved.

Next, we combined the offensive expressions feature set with the word- and character-
level n-grams, after performing LSA on them. We also performed LSA on the offensive
expressions features, with different number of dimensions. The accuracy of the model
was not improved in any of the experiments. The results are shown in table 2.

Table 2. Cross-validation scores for the combination of offensive expressions and word and char-
acter n-grams

Features Mean CI

N-grams 81.89 5.40
N-grams, LSA 300 82.83 5.50
N-grams, LSA 300 + Offensive expressions 82.72 6.80

N-grams, LSA 300 + Offensive expressions, LSA 300 82.61 6.87
N-grams, LSA 300 + Offensive expressions, LSA 10 82.67 4.79
N-grams, LSA 300 + Offensive expressions, LSA5  82.78 5.04

6 Results

"You are only as good as your cross-validation results."

To prevent over-fitting on the training set, and to avoid setting aside a significant portion
of the training set for validation, we evaluated the accuracy of our model using stratified
10-fold cross-validation, during all experiments. There is a bias-variance trade off in
choosing the value of k in k-fold cross validation. £ = 5 and £ = 10 have been shown
empirically to yield acceptable results.[9]

We set aside 40% of the task’s training set for test. During all experiments, our model
never saw this portion of the dataset and was trained only on the remaining 60% (i.e.,



1,800 authors for each of the English and Spanish datasets and 900 authors for the Arabic
dataset). With the exception of table 3, all the reported cross-validation scores have been
performed on this 60% subset of the task’s training set.

It goes without saying that the submitted model was trained on the whole training
set and tested on the official PAN 2018 [19] test set for the author profiling task, on the
TIRA platform [13].

Table 3 shows the 10-fold cross-validation scores for our final system performed on
the whole training set (3,000 authors for the English dataset, and so on), as well as the
accuracy score on the official test set. All numbers are expressed as percentages.

Table 3. Accuracy scores of 10-fold cross-validation and the official test set

Cross-validation | Test set
Dataset [Mean accuracy CI |Accuracy
English 82.73 5.22| 8221
Spanish 79.87 4.17| 82.00
Arabic 81.53 6.40| 80.90

CI refers to the confidence interval for the accuracy values of the 10-fold cross-
validation. We calculated the 95% confidence interval as 20, where ¢ is the population
standard deviation:

where n = 10, z; is the accuracy score of the i-th cross-validation run, and Z is the
mean of the 10 accuracy scores.

Loosely speaking, this means that 95% of the cross-validation scores lie within the
range of Z£C'I. As can be seen in Table 3, this range is quite considerable. This indicates
the variance in the dataset, and suggests that testing the model on a single test set cannot
be considered the ultimate judgment on its accuracy.

Since the dataset is balanced, the accuracy of the majority classifier baseline is 50%.
Therefore we can say that there is a substantial improvement over this baseline.

Table 4 shows the cross-validation scores for the word and character n-grams fea-
ture sets and their combination. As stated in section 4.2, word unigrams and bigrams
were used for the Spanish and Arabic datasets, and the English dataset employed word
trigrams as well. All three datasets had character 3- to 5-grams in their feature set.

Table 4. Cross-validation scores for word and character n-grams, as stated in section 4.2

English Spanish Arabic

Features Mean CI Mean CI Mean CI
Word n-grams 80.67 4.15 77.06 7.01 78.22 7.52
Character n-grams 81.33 4.80 77.11 530 77.89 7.40

Word and character n-grams 81.89 540 78.17 6.83 80.33 6.82




7 Discussion and Conclusion

For the author profiling task at PAN 2018, a relatively simple system using word and
character n-grams and an SVM classifier proved strong. This underlines the importance
of careful hyper-parameter tuning for the feature sets. For the English dataset, perform-
ing dimensionality reduction using LSA on the tf-idf matrix improved the accuracy by
about 1%.

As for preprocessing, it is worth mentioning that removing the repeated character
sequences helped improve the accuracy and lowered the number of features. This is
among the preprocessing procedures that is specifically beneficial to Twitter corpora.
Due to the nature of the social media, users often use repeated sequences to express
their feelings, among other reasons.

While the normalized term frequency representation of the offensive expressions
yielded an accuracy well above the random baseline, combining it with the n-grams
features did not have a considerable effect on the accuracy. This can be due to the fact
that the n-grams already contain the information that the offensive expressions feature
set embodies.

SVM has long proven a strong performance; however, we believe that logistic regres-
sion is worth considering in similar experiments. Furthermore, deep neural networks
may achieve outstanding results on larger datasets.
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