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ABSTRACT
Ensemble techniques have been applied to the unsupervised
outlier detection problem in some scenarios. Challenges are
the generation of diverse ensemble members and the combi-
nation of individual results into an ensemble. For the latter
challenge, some methods tried to design smaller ensembles
out of a wealth of possible ensemble members, to improve
the diversity and accuracy of the ensemble (relating to the
ensemble selection problem in classification). In this pa-
per, We propose a boosting strategy to solve the ensemble
selection problem, called BoostSelect. We evaluate BoostSe-
lect over a large benchmark of datasets for outlier detection,
showing improvements over baseline approaches.

1. INTRODUCTION
The identification of outliers (i.e., data objects that do not

fit well to the general data distribution) is very important in
many practical applications. Application examples are the
detection of credit card fraud in financial transactions data,
the identification of measurement errors in scientific data,
or the analysis of sports statistics data.

Recent research on the unsupervised problem of outlier de-
tection advanced the area by applying ensemble techniques
[31]. Ensemble methods, i.e., combining the findings or re-
sults of individual learners to an integrated, typically more
reliable and better result, are well established in the super-
vised context of classification or regression [20]. In unsuper-
vised learning, the theoretical underpinnings are less clear
but can be drawn in analogy to the supervised context as it
has been done for clustering ensembles [30].

The focus of my PhD thesis is on ensemble selection,
which has been well studied in supervised scenarios [4] (also
called selective ensembles [29], or ensemble pruning [15, 27,
30]). Ensemble selection is also related to boosting [22],
which is often used to change training conditions for addi-
tionally sought, yet to be trained ensemble members or to
select the most suitable additional ensemble members from
a pool of solutions.
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Given many outlier detection results, how do we select
which members we are going to include into the ensemble?
How do we combine these selected members into a single and
more robust result? These challenges mixed to an unsuper-
vised environment are still pertinent and more research is
need to increase our knowledge over this topic in question.

In this paper we propose an initial approach towards a
more robust ensemble method by transferring the supervised
boosting technique to the unsupervised scenario of outlier
detection ensembles. The proposed outlier ensemble selec-
tion technique is called BoostSelect.

2. RELATED WORK
The ensemble approach to learning has been studied in

outlier detection several times. In analogy to supervised
learning, an ensemble can be expected to improve over its
components if these components deliver results with a rea-
sonable accuracy while being diverse [31]. The two main
challenges for creating good ensembles are, therefore, (i) the
generation of diverse (potential) ensemble members, and (ii)
the combination (or selection) of members to an ensemble.

Some strategies to achieve diversity among ensemble mem-
bers have been explored, such as feature bagging (i.e., com-
bining outlier scores learned on different subsets of attributes)
[13], different parameter choices for some base method [5],
the combination of actually different base methods [16, 10,
23], the introduction of a random component in a given
learner [14], the use of different subsamples of the data ob-
jects (parallel [33] or sequential [21, 19]), adding some ran-
dom noise component on the data (“perturbation”) [32], or
using approximate neighborhoods for density estimates [8].
Likewise, different combination procedures have been pro-
posed based on outlier scores or on outlier ranks [13, 5, 10,
31].

Some methods have also been proposed to select the more
diverse or the more accurate ensemble members [23, 18].
These unsupervised methods construct a target result vector
from unfiltered results and then sequentially select individ-
ual results that somehow fit to the target vector while be-
ing different from already selected solutions. The “Greedy
ensemble” approach [23] fails in generating a good target
vector by selecting a percentage of top instances for each
ensemble candidate to compose the vector. This procedure
normally selects many inliers to fit the target vector due
to the imbalance between few outliers and many inliers. To
solve this problem, “SelectV” approach [18] generate the tar-
get vector by taking the average over all outlier detection re-
sults (possible ensemble members). The main problem with
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“SelectV” is that the algorithm does not consider diversity
as an important factor in selecting ensemble members.

3. BOOSTING FOR ENSEMBLE SELECTION
Starting from the ideas discussed for the “Greedy ensem-

ble” [23] and for “SelectV” [18], we propose here an im-
proved outlier ensemble selection method that is amenable
to the application of boosting techniques. Boosting is well
studied in supervised contexts [22]. We design and apply
an equivalent technique in the unsupervised setting, to se-
lect good components for an ensemble of outlier detectors,
resulting in our method BoostSelect.

3.1 Construction of the Target Vector
As a prerequisite for the combination of different outlier

score lists (i.e., individual results, potential ensemble mem-
bers), we normalize the scores following established proce-
dures [10]. The target vector is constructed by combining
the scores of all available results. Different combination
methods could be used here, without further assumptions
taking the average score is the most natural approach [31],
i.e., the target vector lists the average scores of all individ-
ual results for each data object. From this target vector, we
preliminarily assume the top bn · tc objects (ranked by their
combined score) to be outliers, where n is the dataset size
and 0 < t � 1 is a parameter capturing the expected per-
centage of outliers in the dataset (i.e., there are K = bn · tc
outliers assumed to be present). The target vector thus be-
comes a binary vector, listing 1 for an (alleged) outlier and
0 for an (alleged) inlier and serves as pseudo ground truth
for the boosting approach to ensemble selection.

3.2 Weights and Ensemble Diversity
Weighted Pearson correlation has been proposed as a sim-

ilarity measure for outlier rankings [23]. We follow the pro-
cedure of Schubert et al. [23], setting weights for Pearson
correlation to outliers and inliers. Different from previous
approaches, though, these values are only the initial weights.
The weights will be updated by the boosting procedure.

The potential ensemble members are sorted according to
their weighted Pearson correlation to the target vector. The
candidate that is most similar to the target vector is chosen
as the first ensemble member.

Remaining potential ensemble members are iteratively re-
sorted in ascending order according to their similarity to the
current prediction of the ensemble, resulting in a preference
for the most different (i.e., most complementary) additional
ensemble members. Potential members are included if their
inclusion would increase the similarity of the ensemble pre-
diction to the target vector, otherwise they are discarded.
If the correlation improves, the ensemble is updated and
the remaining lists are re-sorted by their weighted Pearson
correlation to the updated prediction.

3.3 Boosting Procedure
The boosting is performed upon the inclusion of a new

member into the ensemble. The idea is to reduce the weights
for those outliers that have already been identified by any
ensemble member. The weights are reduced by some speci-
fied parameter 0 < d < 1 (drop rate).

The boosting effect is that the selection will prefer to in-
clude such additional ensemble members that detect those
outliers that have not yet been detected by any ensemble

Algorithm 1 BoostSelect

Input: P := set of normalized outlier score lists,
d := drop rate (percentage), t := threshold (percentage),
combination := combination technique
Output: E := ensemble members

1: W := [n], E := ∅
2: target := combination(P ) . Generating the target

vector
3: target := convertBinary(target, t) . Top K = bn · tc

scores ← 1, others ← 0

4: W :=
[
out = 1

2K
, in = 1

2(n−K)

]
. K = number of

outliers, n = size
5: Sort P by weighted Pearson Correlation (wPC) to

target . Descending order
6: f := getF irst(P ) . Remove f from P
7: E := E ∪ f
8: while P 6= ∅ do
9: curr := combination(E) . Current prediction

10: sort P by wPC to curr . Ascending order
11: f := getF irst(P ) . Remove f from P
12: if wPC(combination(E ∪ f), target) >

wPC(curr, target) then
13: E := E ∪ f . Include into ensemble
14: Boosting(W, target, f, t, d) . Adapt the weights
15: end if
16: end while

Algorithm 2 Boosting

Input: W := weight vector, target := target vector, f :=
new ensemble member, t := threshold (percentage), d :=
drop rate (percentage)
Output: W := Updated weights

1: outliers := convertBinary(f, t)
2: for i ∈ 1 : size(target) do
3: if target(i) == 1 & outliers(i) == 1 then
4: W (i) := W (i) ∗ d
5: end if
6: end for

member, while very easy outliers that have been detected by
many ensemble members already will get assigned smaller
and smaller weights.

Algorithm 1 lists the steps of the overall framework Boost-
Select in pseudo code. The boosting procedure is detailed
in Algorithm 2.

4. EXPERIMENTS

4.1 Datasets
For evaluation, we use a benchmark data repository for

outlier detection [3]. The repository is based on 23 basic
datasets, processed in different ways mainly to provide vari-
ants with different percentage of outliers and with different
handling of dataset characteristics such as duplicates, at-
tribute normalization, and categorical values. As suggested
for analysis [3], we focus on the normalized datasets without
duplicates, which leaves us with 422 dataset variants.

4.2 Ensemble Members
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As basic outlier detection results (i.e., potential ensem-
ble members) we use the results provided along with the
datasets [3], testing 12 neighborhood-based outlier detec-
tion algorithms changing the neighborhood size k from 1 to
100. The algorithms are: KNN [17], KNNW [1], LOF [2],
SimplifiedLOF [25], LoOP [9], LDOF [28], ODIN [6], FastA-
BOD [11], KDEOS [24], LDF [12], INFLO [7], and COF [26].
For LDOF and KDEOS, k must be larger than 1, for FastA-
BOD, k must be larger than 2, resulting in 1196 results per
dataset (less on some small datasets where k cannot reach
100). These results compose the set of potential ensemble
members.

The outlier scores of these results are processed (following
Kriegel et al. [10]) by applying an inverse logarithmic scaling
on FastABOD results and an inverse linear scaling on ODIN
results, since FastABOD and ODIN give inverse score results
(i.e., the lower the scores, the higher is the chance of an
observation to be an outlier). Then a simple linear scaling
from 0 to 1 is applied to transform all scores into the same
range.

4.3 Competitors and Settings
We compare BoostSelect against the Greedy [23] and Se-

lectV [18] ensembles. We also generate a “Näıve” ensemble
and Random ensembles as baselines. The “Näıve” ensemble
is a combination of all individual outlier results (i.e., a full
ensemble without selection procedure).

For each instance of an ensemble selection strategy (Greedy,
SelectV, and BoostSelect, respectively, on each dataset), we
generate 1000 “Random” ensembles consisting of the same
number of members as the corresponding selective ensemble,
where the ensemble members are randomly selected.

We used the Greedy ensemble rate parameter as 0.01, as
suggested by the authors of the Greedy ensemble [23]. We
test a range of parameters for BoostSelect: d = [0.25, 0.5, 0.75]
and t = [0.05, 0.1, 0.15].

As combination technique for ensembles we use the aver-
age score.

4.4 Results
Figure 1 shows pairwise comparisons between all ensem-

bles over all datasets, considering the ROC AUC evaluation
measure (area under the curve of the receiver operating char-
acteristic). We compare the ensemble selection techniques
“Näıve”, “Greedy”, “SelectV”, and “BS” (BoostSelect). We
include random ensembles for each ensemble selection strat-
egy and for each parametrization of BoostSelect: RG (Ran-
dom Greedy), RS (Random SelectV), RBS (Random Boost-
Select). The numbers represent on how many datasets the
ensemble listed in the row has performed better than the
ensemble listed in the column. Numbers representing the
majority (more than 50%) of the datasets are white, smaller
numbers black. The larger the number, the darker is its
background. For the random ensemble, we take the average
performance over the 1000 instances.

The best overall method is BoostSelect with d = 0.75 and
t = 0.05, which has only more losses than wins when com-
peting against BoostSelect with d = 0.25 and t = 0.1. The
Greedy ensemble does not perform well in general, having
more losses than wins against every other competitor. Se-
lectV is better than all random variants and Greedy, but
worse than Näıve and worse than all BoostSelect results.
The Näıve ensemble behaves very consistently, as it beats by
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Figure 1: Summarization of pairwise comparisons
over all 422 datasets. The number counts the wins
in term of ROC AUC (average ROC AUC in case
of random ensembles) of the ensemble listed in the
row against the ensemble listed in the column.

a large margin all random ensemble approaches, but still has
more losses when compared to BoostSelect. Even though
neither the threshold t nor the drop rate d has a strong
impact on wins, setting a relatively large drop rate and a
relatively small threshold overall seems to be a good choice
of parameters for BoostSelect, although the optimal param-
eter choice differs from dataset to dataset.

Looking at the top left quadrant of the heat map (Fig-
ure 1), where the random ensembles compete against them-
selves, we also see a broad dominance by the random ensem-
bles based on BoostSelect. This suggests that the number of
ensemble members selected by BoostSelect is a better choice
than those selected by the other strategies.

5. CONCLUSION AND FUTURE DIRECTIONS
We proposed a new ensemble selection strategy for unsu-

pervised outlier detection ensembles, using the unsupervised
equivalent to a boosting strategy for ensemble selection. Ex-
periments show the favorable behavior of the new ensemble
selection strategy compared to existing methods (Greedy
and SelectV) on a large set of benchmark datasets. Main
differences between our method BoostSelect, the Greedy en-
semble, and SelectV can be attributed to a different way of
focusing on diversity and accuracy of ensemble members.
Greedy goes all out for diversity and mostly disregards ac-
curacy, while SelectV ignores diversity and maximizes accu-
racy of the ensemble members. Our new method BoostS-
elect considers both, diversity and accuracy, in a balanced
manner and performs competitively on average over a large
selection of benchmark datasets with strong improvements
on many of the benchmark datasets.

The behavior of BoostSelect is robust to the parameters
on many datasets but depends strongly on the choice of pa-
rameters on some datasets. As future work, we are specially
interested on this behavior and potential relation to prop-
erties of the datasets. We are also interested to improve
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the target vector generation step and to include a complete
study over the combination step of outlier detection ensem-
ble.
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