
Using Workflow Context for Automated
Enactment State Tracking

Thomas Sauer1 and Kerstin Maximini2

1 rjm Business Solutions GmbH
68623 Lampertheim, Germany

t.sauer@rjm.de
2 University of Trier

Department of Business Information Systems II
54286 Trier, Germany

kerstin.maximini@wi2.uni-trier.de

Abstract. Workflows are getting a more and more pervasive concept for model-
ing arbitrary activities. The resulting workflow definitions will convey knowledge
how and when to apply the right procedures. Whenever innovative, experimen-
tal or explorative tasks have to be fulfilled, however, workflows will evolve to
previously unknown structures. In order to allow planning and quality assurance
nevertheless, the tasks currently enacted within an organization must be known.
In this paper, an approach for automatically tracking the active tasks by observ-
ing the data produced is presented. Further, it is describedhow this approach is
applied for geographical information management.

1 Introduction

In the last decades, the concept of workflows has evolved froma means to describe the
flow of paperwork through an organization to a more abstract and general technique
used in many application domains. Nowadays, workflows are most often considered a
programmatic structure for designing and executing arbitrary transactions.

Workflows have long been considered useful for storing common and standard pro-
cedures, leading to an organizational memory similar to process manuals [1]. However,
repeatable methods are not always applicable, and sometimes not even desirable. When-
ever innovative, experimental or explorative tasks have tobe fulfilled, workflows will
evolve to previously unknown structures. These fields have been characterized as know-
ledge intensive tasks [2] as well as business and time critical processes [3,4]. In order to
adhere the challenges in these fields, theCollaborative Agent-based Knowledge Engine
(CAKE)has been created [5,6]. CAKE offers modeling and enactment support forag-
ile workflowsor adaptive workflowsas a flexible solution to express and maintain best
practices, lessons learned within the organization, etc.

In this paper, a formal approach for workflow representationand enactment is pre-
sented. Furthermore, based on this formalism, a procedure for capturing context infor-
mation during workflow enactment is introduced, and how to track the currently active
task within a workflow using this context information. This allows to learn about the
current enactment state or deviations from the original model, at minimal effort for the

team members. For instance, this is useful for manager rolesto ensure that the team is
focusing on the most appropriate tasks at the moment.

Besides several other application scenarios, CAKE is used for geographical infor-
mation management [7]. In the next section, this application scenario is introduced in
detail and the requirements on workflow enactment support are discussed. In section
3, the general CAKE architecture is presented with respect to workflow modeling and
workflow enactment. Further, the procedure for automated enactment state tracking is
given. Section 4 shows how to put the latter into practise. Insection 5, related and adja-
cent work is discussed, and finally, a short conclusion and outlook to future work close
this paper.

2 Application Scenario

Recently, changes to law according to the regulation of civil works in the German fed-
eral state of Hessen does no longer demand owners to seek explicit permission for
most refurbishment tasks on buildings. Rather, planners and architects have to ensure
themselves that they comply with all regulations that applyto the corresponding land
parcels, including monument protection. In Hessen, each building and site of historic
interest (e.g. old marketplaces, or characteristic quarters) is listed in the official monu-
ment register. For each monument, its exact location is recorded, as well as a rationale
why the monument is subject to protection, and which type of protection applies. For
instance, a building may be protected in a whole, or only parts of it may be of historic
interest (e.g. the cladding, or an annex). As yet, these facts have been published in print
only, leaving many planners and owners unaware of monument protection. This invites
inappropriate reconstruction, damage, or even complete demolition of cultural heritage.

To overcome this, rjm business solutions GmbH has been assigned by the Mon-
ument Protection Agency of Hessen to conduct the long-term eGovernment project
DenkXweb. DenkXweb provides a freely accessible Internet service topublicly access
the monument register3. It presents the protection rationale as described above aswell
as a detailed map denoting location and dimensions of the protected building or site.
As laid down by law [8], the latter is based on the official cadaster as provided by the
surveying and mapping authorities. Thus, using DenkXweb, users can look up whether
a building is a monument by itself, or whether according landparcels are included in
site protections (which will have implications on any construction on these parcels).

Besides developing the Internet service, rjm business solutions GmbH and its as-
sociate company rjm medienservice GmbH provide data management services as well
in order to combine monument register data with the geospatial information provided
by the land cadaster. That is, internal tools and proceduresare developed to create data
displayed by the Internet service most cost-effective, butstill as accurate as possible.
During everyday work, handling these procedures have proven to be highly knowledge
intense and require the coordination of collaborative activities between the participants.

3 http://www.denkmalpflege-hessen.de/denkxweb

2.1 Requirements to the Envisaged Solution

Working in the DenkXweb project means to coordinate severalparticipants from dif-
ferent organizations. Technical roles at rjm create and maintain custom software, and
prepare data as required for publication using this software. Technical roles at the mon-
ument protection agency are involved in revising data, and they keep in touch with
local authorities, who in turn notify the agency whenever monuments are demolished,
repaired, etc. This applies to all municipalities in Hessen(several hundred), i.e. a large
number of interleaved activities will have to be concerted (several thousand) across
multiple organizations.

However, these activities cannot be fully planned in advance. For instance, when a
project stakeholder demands a specific modification, or whena time-critical issue has to
be solved (web server downtime or similar), priorities willbe altered, and the original
plans will have to be adapted to the new situation.

In order to deliver support for the application scenario sketched above, CAKE has
to fulfill the following requirements:

1. The various activities and procedures applied have to be defined formally in order
to ensure that they are done most cost-effective and most accurate.

2. The modeling approach must allow ad-hoc modification and stepwise refinement.
3. The currently executed activities have to be revealed in order to allow short-term

planning, even if the underlying workflow models are subjectto change.
4. The role of individuals, tools, etc. has to be exploited for coordination across orga-

nization boundaries (e.g. determine whether a change in a custom piece of software
affects a customer system).

5. CAKE has to be incorporated within the organization as seamlessly as possible,
since users already have to master a plethora of applications, tools and utility pro-
grams.

CAKE features a light-weight model for workflow definition and enactment to fulfil
these requirements. In the next section, the overall systemdesign is discussed, and the
modeling approach is given in detail.

3 Approach

The approach presented within this paper is based on theCollaborative Agent-based
Knowledge Engine (CAKE)[3,4,5,6]. CAKE is a general domain-independent system
providing a general data and workflow model. The CAKE architecture is illustrated in
figure 1. The system consists of three major building blocks,namely theagent frame-
work, theworkflow management component, and theCBR component.

The agent framework is a unified interface to couple externalknowledge sources
as well as user interfaces. It distinguishes betweeninformation agentsanduser agents.
Information agents connect information sources to the CAKEsystem, enabling access
to search engines, databases, groupware calendards, humanexperts, etc. User agents
request knowledge from the CAKE system, and represent interfaces to human system

CBR Technology

CAKE Data Model

Workflow Technology
Agent Technology

Agent Framework
 Workflow Engine Manager

WD Characterization CB
Agent Characterization CB

User Agent

Information Agent

Workflow

Definitions

Workflow Engine

Context

CBR
Similarity Model
 Retrieval Engine

Chemical

DB

User

Fig. 1. CAKE System Architecture

users (e.g. graphical user interfaces or natural language interfaces). For the scope of this
paper, only information agents are of particular relevance.

CAKE aims at supporting flexible and changing processes throughadaptive work-
flow management. This is realized by sophisticated search facilities for business pro-
cesses, single tasks, and agents following astructural CBR (SCBR)[9] approach. The
latter is working on top of a domain-specific data model and considers its semantics and
structural aspects. Therefore, it is the perfect basis to meet all requirements for adaptive
workflow management.

The workflow management component is used for modelling business processes and
for specifying collaboration among agents which are following a common goal. In the
following section, the workflow management component is presented in detail, and how
it can be used to provide dynamic guidelines for planning andenactment of arbitrary
activities. Section 3.2 describes the context capturing approach, wheareas Section 3.3
introduces an algorithm how to automatically follow current work progress in the model
and how to detect deviations from the model. The last sections 3.4 and 3.5 focus on
technical issues, necessary to put the system into practise.

3.1 Workflow Management

The CAKE workflow model approach is based on a data modelD which is shared
across all system components. It is an object-oriented model using specialization and
aggregation to definedata classes(types). Built-in data classes like boolean, integer,
or double as well as compound data classes like aggregates, collections or intervals
may be specialized to domain-specific user data classes as required. Instances of data
classes are calleddata objects. By using the data model, all entities relevant in the

organization (e.g. documents or capabilities of humans andmachines) can be expressed
as data objects.

The following definition describes the representation for any operation taking place
in the real world, or are expressed as a machine-executable program:

Definition 1. (Task)A taskdescribes an arbitrary activity that may be carried out by
either a human or a machine by a tuplet = (Int, Outt) with Int, Outt two non-empty
disjoint sets containing labels denoting theinput portsandoutput portsof the task.

A task may cover course-grained activities like “write a report”, “send email” as
well as fine-grained operations like comparing two alternatives in order to form and-
joins, or-splits etc. The task ports are simply labels attached to a task defining the input
and output slots for arranging control flow.

Further,T denotes the set of all tasks available. For simplicity, for two different
taskst, t′ ∈ T, it is required thatInt ∪ Int′ = ∅ andOutt ∪ Outt′ = ∅. That is, the
labels used to denote input and output ports are meant to be unique.

For a set of tasksT ⊆ T, the sets of all input and output ports used are given by
InT =

⋃

t∈T

Int andOutT =
⋃

t∈T

Outt respectively. Connections between these ports

will then express control flow between tasks, as discussed bythe next definition:

Definition 2. (Workflow Definition)A workflow definitionis a tuple
wd = (T, ts, tf , conn) comprising a set of tasksT ⊆ T, a start taskts ∈ T with
|tsin| = 1, a final tasktf ∈ T with |tf out

| = 1 and a bijective control flow function
conn : OutT \ tf out

7→ InT \ tsin.

Thus, the control flow between tasks is described by listing connections between
output and input ports. For each output porto of the start taskts, conn(o) points to the
input port(s) of the second task; for each output porto′ of the second task,conn(o′)
points to the third task and so on until the final tasktf is reached. Since the num-
ber of input and output tasks is not limited for any task besides start and final tasks,
selection among alternatives (e.g. “or”-splits), parallelism (multiplexers) and synchro-
nization (demultiplexers) may be expressed by the tasks.

A workflow definitionwd does not establish explicit data flow among tasks. While
explicitly expressing data flow would have its advantages for controlling and limiting
further evolution (e.g. adding or replacing tasks), it would also have disadvantages due
to increased complexity for modeling and connecting tasks.Instead, CAKE establishes
data flow implicitly during run time, which is discussed in detail below.

The definitions above are already sufficient to describe the structure of a workflow,
i.e. how to reach a goal using a structured approach. In orderto put this description into
practice, enactment of tasks and workflow descriptions haveto be discussed, i.e. how
artifacts are produced and consumed. Hence, enactment means to instantiate a concrete
control flow within the structure given by the underlying workflow definition, and to
describe data flow between the tasks. For flexibility reasonsthe approach allows to start
task enactment as soon as a sufficient set of input ports are enabled rather than requiring
that all input ports have to be enabled. This aspect is discussed below in detail. Anyhow,
it demands that the following definitions work on the powersets (P(Int), P(Outt))
instead ofInt, Outt.

Definition 3. (Task Enactment)Let t ∈ T be a task. Thetask enactmentof t is de-
scribed byenactt : P(Int) × P(D) 7→ P(Outt) × P(D).

That is, based on a set of “ready” input ports and a set of data available to the task,
task enactment chooses a set of output ports and modifies the set of data. For easier
reading, instead ofenactt(I, C) = (O, C′), C, C′ ⊂ D, I ⊂ Int, andO ⊂ Outt the
projectionresultt(I, C) = C′ is used. The data available for consumption by a task is
also known as itscontext:

Definition 4. (Context)A contextC = {c1, c2, . . . , cn} is a finite set of data objects
ci ∈ D, 1 ≤ i ≤ n.

When enacting a sequence of tasks, their results given byenactt may be accumu-
lated into a context ready for consumption of the next task. For example, when assuming
that data once created will never be altered nor deleted, forthe sequencet1, t2, . . . , tn
the respective contexts could be determined asCi+1 = Ci∪resultti(Ii, Ci), 0 < i < n

andIi the input ports available for tasksti. Accumulating results given byenactt into a
new context is discussed below in more detail. Anyhow, a taskmay access data present
within its context randomly, i.e. data flow between tasks is enabled using the blackboard
paradigm [10].

A workflow definition provides structural information how the tasks are interrelated.
For concerting their enactment, the data already produced,the input ports currently
available and the tasks currently active have to be maintained within anenactment state:

Definition 5. (Enactment State)Let wd = (T, ts, tf , conn) be a workflow definition.
Let I ⊂ InT be the set of currently enabled input ports, letA ⊂ T be the set of
currently active tasks (i.e. tasks that may be enacted in parallel), and letC be a context
for these tasks. Thenstatewd = (I, A, C) is called theenactment stateof wd.

An enactment state describes the results achieved after having enacted a number of
tasks. A sequence of enactment states can be understood as aworkflow instanceof a
workflow definition or simplyworkflow:

Definition 6. (Workflow Instance, Workflow)Let wd = (T, ts, tf , conn) be a work-
flow definition. Aworkflow instanceof wd or shortwd-workflow is a sequencewf =
{statewd1, statewd2, . . .} of enactment states.

That is, while the workflow definition lays out tasks and theirinterrelationships,
the workflow instance expresses the results achieved by enacting them step-by-step as
arranged by the workflow definition. The results achieved during one step is expressed
by workflow enactment:

Definition 7. (Workflow Enactment)Let wf = {state1, . . . , staten, staten+1, . . .}
be a workflow.Workflow enactmentofwf is described byenactwf : P(InT)×P(T)×
P(D) 7→ P(InT) × P(T) × P(D) so thatenactwf(staten) = staten+1.

Generally, workflow enactment starting atstaten = (In, An, Cn) will advance to
staten+1 = (In+1, An+1, Cn+1) as described below:

1. For eacht ∈ An, enactt(In, Cn) = (Ot,n, Ct,n) is calculated. Thus,Ot,n ⊆ Outt
is a set of output ports belonging to taskt, andCt,n ⊂ D is a set of data objects
produced or altered byt.

2. For each output porto ∈ Ot,n, the corresponding input ports are retrieved as
Connt,n =

⋃

o∈Ot,n

conn(o).

3. It is In+1 =
⋃

t∈An

Connt,n: The set of input ports available instaten+1 is the

union of all input ports connected to the output ports selected by the enactment of
the currently active tasks.

4. It isAn+1 = {t ∈ T |In+1∩ Int 6= ∅}: The set of active tasks instaten+1 is made
up of tasks featuring the input ports found in the previous step.

5. Finally,Cn+1 is created from mergingCn with Ct,n, the data objects learned from
the taskst ∈ An.

The merging procedure has to be understood as a problem of itsown, as conflict
mitigation strategies have to be established. For example,one task might try to delete a
product while another task still needs access. Issues regarding merging products to cre-
ate a new context are similar to those discussed in relational database research, and are
commonly addressed by transaction management systems. A very simple merging pro-
cedure can be given when restricting the context to be monotonous, i.e. that data once
created will never be altered nor deleted. Then, it isCn+1 =

⋃

t∈An

resulttn(In, Cn).

In the above model of workflow enactment, a task is allowed to return an empty
set of output ports, indicating that no port can be selected yet (e.g. because the input
ports available are not sufficient yet, or because no appropriate data has been found
on the context). This may stall a workflow when reaching an enactment state that does
compute another state (i.e.staten = staten+1). This has to be handled by the execution
environment (e.g. by sending a warning message to the user) as the model itself makes
no further assumptions.

As a matter of fact, quite a number of process definition languages and workflow
models have emerged during the last decades. CAKE does not aim to replace a specific
language, and is not bound to a certain methodology how to perform workflow model-
ing. Instead, the workflow model has been designed to be as simple as possible in order
to fulfill the requirements demanded by the application domains. If required, transla-
tion between workflow modeling languages is an option [11], e.g. to leverage specific
modeling tools.

3.2 Capturing Context Data

When putting the workflow definitions into practice, i.e. when people start enacting
them, it is crucial to know about the current enactment state. The set of currently active
tasks, for instance, is the foundation of short-term planning, and the vantage point for
agile workflow evolution. Traditional workflow-oriented systems follow a constructive
approach: Using a workfow definition created prior to enactment, the set of active tasks
is determined and presented as a to-do-list to the user. The user then accepts or rejects
the tasks assigned to him or her, and reports whenever a certain task (or parts of it) has

been accomplished. This interaction, however, is often considered tedious work, leading
to an acceptance problem: Besides “doing the work”, users feel forced to reason about
work progress and their task assignments.

Furthermore, whenever a user executes a workflow spontaneously in order to handle
an unforeseeable event (e.g. a customer request), a constructive approach requires him
or her to explicitly represent this workflow enactment as a change of plan in order to add
the workflow on the to-do-list. This tends to be cumbersome, especially if the workflow
only lasts for a short period in time (e.g. half a day), thus the system gets omitted instead
of being used for guidance and for quality assurance.

To overcome these issues, the idea is to integrate the workflow management system
as closely within the organization’s tool chain as possible. That is, information already
created using the tools already deployed within the organization is leveraged. Thus,
tasks currently enacted by users are identified not by observing the actual activities done
by the users (e.g. “opening E-mail client” or “selecting monument spatial feature”), but
the products created during these activities (e.g. the Email sent, or the spatial feature.)
Following the definitions given above, this set of products resembles acontext.

3.3 Deriving Enactment State from Context

A context resulting from real-world activities contains a rich variety of products rang-
ing from database records, informal and semiformal documents (e.g. emails), formal
documents (e.g. CAD drawings), etc. When transforming thiscollection of real-world
information items into a set of data objects represented using the CAKE unified data
model, the latter set may be understood as anobserved contextcreated by enactment of
an otherwise hidden workflow definition.

As defined above, a workflow is a sequence of enactment states
wf = {state1, state2, . . . , staten, staten+1, . . .} with the statesstatei, i > 1 result-
ing from task enactment of the previously active tasks. In turn, task enactment of these
predecessor tasks means mapping input ports and input data to output ports and output
data. Hence, task enactment may be either characterizeda priori by the premises (in-
put ports and input data) ora posterioriby its results (output ports and output data).
For staten = (In, An, Cn), the a priori characterization for each of the active tasks
t ∈ An is simply Chart,prior = (In, Cn). For the a posteriori characterizations the
taskst ∈ An are determined byChart,post = enactt(Chart,prior). The latter charac-
terizations then are merged and processed to formstaten+1. Thus, a workflow contains
an a priori task characterization within each of its individual states.

When comparing the observed context with theCi contained in the enactment states,
the accompanying setAi gives the desired set of currently active tasks.

Anyhow, as the actual workflow definition is hidden, the actual workflow is too.
Assumed that a case base contains tuples(Chart,prior, t), a reasonable set of active
tasks could be determined nevertheless by using structuralCBR. Figure 2 illustrates
this approach.

Fig. 2. Deriving the next task by observing context data.

3.4 Creating an Observed Context

The CAKE system design introducesinformation agentsthat represent the various in-
formation sources present in the organization [5,6]. Each information agent encapsu-
lates translation rules and procedures how to transform information items available from
these sources into CAKE data objects.

Translating information items into data objects basicallymeans to identify “interest-
ing” properties contained within the information items. For instance, an activity record
created by a time recording application provides a unique IDnumber, a work descrip-
tion, the user name who has performed the task, and the duration of the overall op-
eration. While the last three properties may be considered useful by the information
agent, the unique ID number is only meaningful to the underlying RDBMS of the time
recording application, and is omitted.

For other information items it may not possible to identify distinct properties. For
example, a CAD drawing stored in a proprietary data format makes it impossible to
access individual features. However, it may be sufficient toknow that a drawing exists
(without interpreting the content), and that can easily be detected. For instance, if map
update files have been loaded before, the drawing is most likely to represent an updated
map edition.

In order to leverage this extra information, relationshipsbetween the information
items are inspected. These structures within the source context are derived by applying
context perspectives, that put a particular concept in focus. Concepts include, but are
not limited to, users, products, events and time as described in the following:

User perspective.The user perspective describes a user centric point of view on the
information items contained within the source context. Thefollowing relationships
between users and the information items are exploited:

– Creator: Who is the original creator of the data object?
– Permissions: Who has access granted for reading or alteringparticular data?
– Last access: Who did access the product lastly (read/write)?

– Competency: Who has the competencies to create a product?
For each user, the user perspective expresses actual and possible contribution to the
source context.

Product perspective. The product perspective is a product-centric view on the ob-
served context, comprising the following properties:

– Type: Which tool was used to create a product?
– Version: Is the product considered a final edition intended for customer use?
– Existence: Does the product exist?

This perspective allows to link an information item with itssources, and provides
insight on its intents.

Event perspective.The event perspective puts events in center, and how they have
affected an information item within the context:

– Low-level events: Operating system events?
– Utilization: Has the object been utilized or send to someone?
– High-level descriptions: E-mail denoting change request

The event perspective reveals the activities around an information item. This is sim-
ilar to aspects covered by the user perspective, but not quite the same: For instance,
the user perspective will tell whether a particular user hastouched an object, but
not whether it has been sent to a coworker using an e-mail application.

Time perspective. The time perspective regard timing aspects and typical relationships
within the context set are:

– Creation time: When was the product created?
– Access time: When was the product accessed lastly (read/write)?
– Deprecation: When was the product deleted?

More formally, a perspective is a functionpersp = P(D) 7→ P(D), and with
Cobserved the observed context,persp = (Cobserved) is expected to contain data objects
listing the slots presented above. While the information agents are free to define what
information is translated from the information source, theperspective offers a fixed set
of properties shared among all information agents.

This allow to exploit the role and the importance of a certaincommon organization-
specific concept (such as a user role, or a specific tool) for the observed contexts.
This eases further design of similarity measures, leading to improvements of similarity
matching.

3.5 Designing the Case Base

As of this writing, the initial case base is about to be created by conducting user in-
terviews. Because of the a priori task characterization style, users can be asked quite
intuitive questions e.g. “what tasks are you currently performing”. For each task listed
in response, the observed context delivered by the various information agents is stored.

To complete the task characterization, the input ports available are required, too.
The input task ports describe the control flow alternatives between tasks, and may be
identified if the predecessor task(s) are known (usingconn). Thus, if a task has been
listed that has more than one input port, users are asked about prior tasks, too, in order
to identify the alternative taken to start task enactment.

For retrieval, the input ports can help to select the most appropriate tasks by limiting
the result set to tasks reachable from the last known alternatives taken by following
conn contained in the workflow definition.

So far, only a single workflow has been taken into consideration. In the application
scenario, multiple workflows based on the same workflow definitions are enacted in
parallel. Thus, besides task characterization, a workflow characterization is required
for mapping subsets of the observed contexts to the different workflows. As workflow
enactment means concerting task enactment, merging task characterizations to form
a workflow characterization appears suitable. In a first retrieval phase, workflows are
then identified by these characterizations, which will alsodetermine the partition of
observed context that is applicable to the particular workflow. A more detailed definition
of workflow characterizations is work in progress.

4 Example

For preparing the data displayed by the DenkXweb Internet service, the workflow def-
inition “import base data” has been created. The workflow definition consists of the
tasks “request geospatial information from the authorities” (trequest), “check whether
map and metadata information received matches” (tcheck), “create CAD files and di-
rectory structure” (tCAD) and finally “use CAD application import filter to load map
and metadata” (timport). Each task has only one input and only one output port, as
workflows based on this workflow definition are expected to be simple process chains.

The workflow definition “import base data” is instantiated whenever data intended
to be displayed by the DenkXweb Internet service is going to be prepared. So, for the
city of Frankfurt am Main, a workflow has been started, too, and has been proceeded to
tcheck. When employee Alice continues work on Frankfurt, she opensCAD files to hold
the data requested before. This results in new files and structures (SUB CADDB.PAR)
that are laid out in a characteristic structure. Furthermore, she enters her efforts in a
time recording application running within the company’s Intranet.

As depicted in figure 3, a “file server information agent” picks up the newly cre-
ated file and directory structure, and conveys it to the data objectcfile. In addition, the
“time recording application information agent” transforms the database record created
by Alice into the data objectctimerec. By looking at the observed contextCobserved =
{cfile, ctimerec} from the product perspective, it becomes clear that the municipality
assigned to both data objects is the city of Frankfurt am Main. Using the latter infor-
mation, the workflow representing ongoing work for this cityis retrieved. By similarity
matching using the previously built case base, the tasktimport is finally retrieved, and
the enactment state is updated to(Intimport

, {timport}, Cobserved).
While Alice is still busy continuing workflow enactment, a customer representative

calls her. During the phone call, the representative explains that a monument already

Fig. 3. Advancing to the next task while enacting a workflow.

published has to be revoked as soon as possible, as it had turned out that the original
building has been demolished.

Thus, Alice stops her current activities and loads the DenkXdatabase application
that maintains the monument protection rationales. She looks up the record in question
and deletes it. However, she has not deleted an already published record before, so she
logs into the CAKE GUI to find out how to proceed. Using the technique discussed in
section 3, the GUI presents that she is currently working on aworkflow based on the
workflow definition “delete monument”. Alice looks up how to proceed, and continues
by altering spatial data accordingly and runs a tool to update the web server.

When Manager Bob is asked by another project stakeholder whether the “import
base data” workflow for Frankfurt am Main has been already completed, he logs into
the CAKE GUI and sees that Alice has started working on it, butis currently busy in
completing her ad-hoc workflow. Based on the tasks left to perform in the workflow
“delete monument”, he estimates when the import is finished,and reports his estimate
back to the stakeholder.

5 Related Work

In order to model workflows, various concepts have been proposed in the last years.
Most of these concepts aim at detecting or avoiding infeasible or suboptimal config-
urations when modeling workflows. For instance, approacheslike MVP-L [12] have

been designed specifically for expressing relationships between the various aspects of a
development project. Other efforts propose state or UML activity charts as a means of
workflow specification and execution [13]. The DYNAMITE [14]system suggests dy-
namic task nets for expressing baseline plans and for supporting ad-hoc plan decompo-
sition. Recent approaches include XML-based languages like BPEL4WS for concerting
tasks carried out by web services [15]. As no single approachhas gained broad accep-
tance yet, configurable process modeling languages have been suggested [11], too. The
latter aim at defining a core language to express and maintaingeneral knowledge that
can be easily translated back and forth process models used by commercial applications,
such as SAP’s Event-Driven Process Chains.

Regarding workflow planning and enactment support, severalsystems have been
implemented. The MILOS system [16] is a process-centered environment that aims to
support software development activities. MILOS supports ad-hoc changes to plans as
well as interleaved planning and enactment, however the system relies on manual user
feedback for determining the current enactment state. Workbrain [17] merges Organi-
zational Memory and the workflow concept. For structural planning a CBR application
is integrated and can be utilized by a human workflow planner before the respective
workflow will be enacted. By providing retrieval on workflow characterizations the
CBR application allows users to describe a problem and retrieves similar solutions that
can be used to construct new workflows.

Similar to CAKE, CBRFlow [18] combines workflow technology with conversa-
tional CBR for coping with changing and unpredictable environments. For realizing the
concept of workflow modification during runtime workflow instances can be annotated
with cases that consist of a set of question-answer pairs andone action. After the an-
notation these cases can be directly used as assistance for decision-making processes
because of representing additional knowledge, maybe in form of instructions, which
can be used during workflow execution. Modifications on the workflow definitions is
done by workflow modelers and no search facility on workflow definitions is supported.
However, both Workbrain and CBRFlow approaches lack techniques for accessing ex-
ternal information sources.

Capturing workflow enactment information by observing users and their activities
is suggested in [19]. Here, the authors capture rather low-level events (opening docu-
ments, selecting commands) received from tools deployed within the organization. A
similar idea is followed by Fenstermacher [20], but the dataobserved is focused more
on the documents viewed and altered than the tools. Schwarz [21] introduces a formal
and explicit model of knowledge-intensive tasks and discusses how tool events can be
captured automatically and collated semantically. Similarity matching is used to present
information relevant to the current task pro-actively.

6 Conclusion

In this paper, the CAKE workflow modelling approach has been discussed, and an algo-
rithm has been described how to track current work progress using context information.
The latter information allows short-term planning as well as user notifications if devi-
ations from the original plan are detected, leading to quality assurance or discussion

of further workflow modifications. Using CBR, the tracking approach will improve as
more tasks and their premises are stored in the case base, andit will continue to work
even if ad-hoc modifications are applied to the underlying workflows in order to reflect
a new situation.

While first results are encouraging, modeling workflows and applying the approach
presented to the geographical information management application domain is work in
progress. As next steps, a student research group at the University of Trier will imple-
ment information agents, allowing to determine destination contexts.

Further work includes to enhance progress tracking in orderto find deviations from
the underlying workflow definition. Then, these deviations could be used to either
present warnings to the users or to enhance workflow definitions in terms of process
mining by adding alternatives, detecting sub-workflows etc.

References

1. Wargitsch, C., Wewers, T., Theisinger, F.: Workbrain: merging organizational memory and
workflow management systems. In: Proceedings of KI’97 Workshop on Knowledge-Based
Systems for Knowledge Management in Enterprises, Freiburg, Germany, 21st Annual Ger-
man Conference on AI’97 (1997)

2. van Elst, L., Aschoff, F.R., Bernardi, A., Maus, H., Schwarz, S.: Weakly-structured work-
flows for knowledge-intensive tasks: An experimental evaluation. In: Proceedings of the
18th International Workshops on Enabeling Technologies: Infrastructures for collaborative
enterprises, Linz, Austria, IEEE Computer Society (2003) 340–345

3. Freßmann, A., Maximini, K., Maximini, R., Sauer, T.: Collaborative agent-based knowledge
support for empirical and knowledge-intense processes. In: MATES 2005 / CIA 2005. Vol-
ume 3550 of LNAI., Koblenz, Germany, Springer-Verlag (2005)

4. Freßmann, A., Maximini, K., Maximini, R., Sauer, T.: CBR-based execution and planning
support for collaborative workflows. In: Workshop ”Similarities - Processes - Workflows”
on the Sixth International Conference on Case-Based Reasoning (ICCBR 2005), Chicago,
Illinois (USA) (2005)

5. Freßmann, A., Maximini, R., Sauer, T.: Towards collaborative agent-based knowledge sup-
port for time-critical and business-critical processes. In Althoff, K.D., Dengel, A., Bergmann,
R., Nick, M., Roth-Berghofer, T., eds.: Professional Knowledge Management. Volume 3782
of LNAI., Kaiserslautern, Germany, Springer-Verlag (2005) 421–430

6. Freßmann, A., Sauer, T.: Collaboration patterns for adaptive software engineering processes.
In: Self-Organization and Autonomic Informatics, IOS Press (2005) 304–312

7. Sauer, T., Maximini, K., Maximini, R., Bergmann, R.: Supporting collaborative business
through integration of knowledge distribution and agile process management. In Lehner, F.,
Nsekabel, H., Kleinschmidt, P., eds.: Multikonferenz Wirtschaftsinformatik 2006 (MKWI
2006), GITO-Verlag Berlin (2006) 349–361

8. Eberhard Fuhr, E.P.: Hessische Verfassungs- und Verwaltungsgesetze (in German). C.H.
Beck (2005)

9. Bergmann, R., Breen, S., Göker, M., Manago, M., Wess, S.:Developing Industrial Case-
Based Reasoning Applications: The INRECA Methodology. LNAI 1612. Springer (1999)

10. Corkill, D.D.: Collaborating software: Blackboard andmulti-agent systems & the future. In:
Proceedings of ILC 03 International Lisp Conference, New York, NY (2003)

11. van der Aalst, W., Dreiling, A., Gottschalk, F., Rosemann, M., Jansen-Vulle, M.: Config-
urable process models as a basis for reference modeling. In:Business Process Management
Workshops: BPM 2005. Volume 3812 of LCNS., Springer-Verlag(2006) 512–518

12. Bröckers, A., Lott, C.M., Rombach, H.D., Verlage, M.: MVP-L language report version 2
(1997)

13. Wodtke, D., Weißenfels, J., Weikum, G., Dittrich, A.K.,Muth, P.: The mentor workbench
for enterprise-wide workflow management. In Peckham, J., ed.: Proceedings of the ACM
SIGMOD International Conference on Management of Data, Tucson, AZ, ACM Press (1997)
576–579

14. Heimann, P., Joeris, G., Krapp, C.A., Westfechtel, B.: DYNAMITE: Dynamic task nets
for software process management. In: Proceedings of the 18th International Conference on
Software Engineering, IEEE Computer Society (1996) 331–341

15. Buhler, P.A., Vidal, J.M.: Towards adaptive workflow enactment using multiagent systems.
Volume 6., Springer Science + Business Media (2005) 61–87

16. Maurer, F., Dellen, B., Bendeck, F., Goldmann, S., Holz,H., Ktting, B., Schaaf, M.: Merg-
ing project planning and web-enabled dynamic workflow for software development. IEEE
Internet Computing4(3) (2000) 65–74

17. Wargitsch, C., Wewers, T., Theisinger, F.: An organizational-memory-based approach for
an evolutionary workflow management system - concepts and implementation. In: Proceed-
ings of HICSS’98 Thirty-First Annual Hawaii InternationalConference on System Sciences,
Washington, DC, IEEE Computer Society (1998) 174–183

18. Weber, B., Wild, W.: Towards the agile management of business processes. In Althoff,
K.D., Dengel, A., Bergmann, R., Roth-Berghofer, T., eds.: WM2005: Professional Know-
ledge Management Experiences and Visions, Kaiserslautern, Germany, German Research
Center for Artificial Intelligence (DFKI GmbH) (2005) 375–382

19. Johnson, P.M., Kou, H., Agustin, J., Chan, C., Moore, C.,Miglani, J., Zhen, S., Douane,
W.E.: Beyond the personal software process: Metrics collection and analysis for the differ-
ently disciplined. In: Proceedings of the 2003 International Conference on Software Engi-
neering, Portland, OR (2003)

20. Fenstermacher, K.: Revealed processes in knowledge management. In Althoff, K.D., Dengel,
A., Bergmann, R., Nick, M., Roth-Berghofer, T., eds.: WM2005: Professional Knowledge
Management Experiences and Visions, Kaiserslautern, Germany, German Research Center
for Artificial Intelligence (DFKI GmbH) (2005) 443–454

21. Schwarz, S.: A context model for personal knowledge management. In: Proceedings of the
2nd International Workshop of Modelling and Retrieval of Context (MRC 2005). (2005)

