
Optimizing a Semantically Enriched
Hypercat-enabled Internet of Things Data Hub

(Short Paper)

Ilias Tachmazidis1, Sotiris Batsakis3,1, John Davies2, Alistair Duke2, Grigoris
Antoniou1, and Sandra Stincic Clarke2

1 University of Huddersfield, Huddersfield, UK
2 British Telecommunications, Ipswich, UK

3 Technical University of Crete, Greece

Abstract. Large volumes of data is generated from the increasing num-
ber of sensor networks and smart devices. Such data is generated and
published in multiple formats, thus highlighting the significance of inter-
operability for the success of what has come to be known as the Internet
of Things (IoT). The BT Hypercat Data Hub provides a focal point for
the sharing and consumption of available datasets from a wide range of
sources. In this work, we present a series of optimizations applied on the
BT Hypercat Data Hub that enabled scalable SPARQL query answering
over relational databases and an access control mechanism that filters
SPARQL results based on user’s subscriptions.

1 Introduction

The number of interconnected smart devices is constantly increasing, producing
a huge amount of data that has to be represented and exchanged using common
data formats and protocols that form the Internet of Things (IoT), which is used
in applications such as smart cities. A smart city is based on the use of technol-
ogy in order to improve the efficiency, effectiveness and capability of various city
services, thus improving the quality of the inhabitants’ lives [10]. Such applica-
tion area is characterized by the vast variety of the technologies used, the types
and volumes of data, and the services and applications targeted [2]. Thus, devel-
oping successful smart city solutions requires the collection and maintenance of
relevant data in the form of IoT data, combined with scalable implementations
and efficient access control mechanisms.

Addressing interoperability issues by focusing on how interoperability could
be achieved between data hubs in different domains was a major objective for the
development of Hypercat [1], which is a standard for representing and exposing
Internet of Things data hub catalogues [3] over web technologies. In [8], the
semantic enrichment for the core of the Hypercat specification, namely an RDF-
based [5] equivalent for a JSON-based catalogue was proposed.

The BT Hypercat Data Hub supports access to the enriched data through
a SPARQL endpoint [6] combined with reasoning capabilities and the ability



Optimizing a Semantically Enriched Hypercat-enabled IoT Data Hub 65

Fig. 1. BT Data Hub Architecture.

to combine external data sources using federated queries [7]. In [7], the data in
the BT Hypercat Data Hub is stored in relational databases and since this data
is frequently updated, a dynamic solution based on a mapping from relational
databases to corresponding BT Hypercat Ontology concepts has been adopted.
Thus, instead of copying the existing data into an RDF triplestore, submitted
SPARQL queries are dynamically translated into a set of SQL queries on top of
the existing relational databases.

Although this approach was efficient for most querying and reasoning tasks,
scalability for certain queries was limited and certain optimization both on the
relational database schema and the corresponding ontology had to be employed.
In addition, the existing system did not supported an access control mechanism,
which is an important part of related systems [4]. In this work, these issues are
addresed, and both optimizations and an access control mechanism are proposed
and implemented, resulting in a scalable, industrial scale IoT system, integrating
Semantic Web technologies and access control.

This work is organized as follows: Section 2 contains background information
about the BT Hypercat Data Hub. Section 3 contains a description of the applied
optimizations to the SPARQL to SQL endpoint which enabled scalable SPARQL
query answering over relational databases. An access control mechanism over the
developed SPARQL endpoints is presented in Section 4, while conclusions and
future work are discussed in Section 5.

2 BT Hypercat Data Hub

In this section, we describe the basic components of the BT Hypercat Data Hub,
which aggregates and catalogues mulitple IoT data sources and exposes them
via a uniform RESTful API. Figure 1 presents the architecture of the data hub,
more specifically (for more details readers are referred to [7,9]):



66 I. Tachmazidis et. al.

Fig. 2. BT Hypercat Ontology.

– The BT Hypercat Ontology (see Figure 2) enables the publication of an RDF-
based Hypercat catalogue [8] as well as the translation of data stored in a
relational database into RDF format.

– RDF Adapters provide internally stored data in N-Triples format following
a systematic generation of URIs.

– A SPARQL to SQL endpoint enables the dynamic translation of SPARQL
queries into SQL queries, using Ontop4.

– The BT SPARQL Endpoint queries internally available SPARQL to SQL
endpoints and combines SPARQL results, using Apache Jena5.

– Federated querying is enabled by providing a Jena endpoint that allows
federated queries over the BT SPARQL Endpoint and SPARQL endpoints
that are available through the Linked Open Data cloud.

3 Optimizing a SPARQL to SQL Endpoint

The BT Hypercat Data Hub has been successfully deployed as part of two use
cases. The first being the SimplifAI project, which is aimed at urban traffic
management and control in order to reduce traffic and improve air quality, and

4 http://ontop.inf.unibz.it/
5 https://jena.apache.org/index.html

http://ontop.inf.unibz.it/
https://jena.apache.org/index.html


Optimizing a Semantically Enriched Hypercat-enabled IoT Data Hub 67

the second being City Concierge, which is a use case of the CityVerve project
aiming to increase uptake of walking and cycling as a preferred travel mode in
Greater Manchester.

In order to provide the required functionality for both use cases, the SPARQL
to SQL endpoint needed to be optimized, thus ensuring rapid responses. How-
ever, the developed optimizations that are presented in this section, are based on
the assumption that the reader has already some understanding of the internal
functionality of a SPARQL to SQL endpoint (for details see [7,9]).

The first step towards the development of efficient mappings was to optimize
the ontology itself, namely:

– Restrict class hierarchy only to classes that are used by Ontop for mappings
(faster reasoning, duplicate reduction).

– Restrict property hierarchy only to properties that are used by Ontop for
mappings (faster reasoning, duplicate reduction).

– Delete domain and range assertions from properties when each class has a
separate Ontop mapping (duplicate reduction).

– Study Ontop’s reasoning capabilities, for the given ontology, in order to
ensure that reasoning does not lead to SQL plans that generate duplicate
results.

A thorough investigation of the developed ontology revealed certain ineffi-
ciencies. Thus, the ontology was reduced to a bare minimum (exclusively for
Ontop) in order to prevent duplicates. A close examination of the minimal on-
tology showed that the combination of the developed mappings and Ontop’s
reasoning capabilities could indeed lead to the unique generation of each RDF
resource.

Once the unique generation of each RDF resource is ensured, mappings
should be studied for potential inefficiencies in terms of generated SQL plans.
More specifically, the use of an SQL function (such as TO TIMESTAMP() for
time, unnest() for arrays and ST AsText() for PostGIS geometry) in a given
mapping, is translated into a separate subquery. Such subqueries are inefficient
as they are not indexed and they could lead to unnecessary self-joins over a given
SQL table. Thus, columns representing time or PostGIS geometry need to be
translated into a simpler form (such as character), while columns representing
arrays need to be stored in a separate SQL table. For example, the following
SQL table:

TABLE feed(id uuid NOT NULL, updated bigint, tag character

varying[], the_geom geometry);

should be translated into the following SQL tables6:

6 In order to keep the initial database intact, VIEW and MATERIALIZED VIEW
were considered. However, both solutions deteriorate the performance because On-
top’s reasoner is able to retrieve the initial table schema, and thus, each mapping is
translated into a separate subquery (regardless of whether an SQL function is used
or not). In order to overcome this issue, new SQL tables need to be defined, which



68 I. Tachmazidis et. al.

TABLE sparql_feed(id uuid NOT NULL, updated character varying,

the_geom character varying);

TABLE sparql_feed_tag(id uuid NOT NULL, tag character varying

NOT NULL);

based on the following data translations:

INSERT INTO sparql_feed (id, updated, the_geom)

SELECT id, TO_TIMESTAMP(feed.updated) AS updated,

ST_AsText(feed.the_geom) AS the_geom

FROM feed

INSERT INTO sparql_feed_tag (id, tag)

SELECT feed_tag.id, feed_tag.tag

FROM (SELECT feed.id, unnest(feed.tag) AS tag

FROM feed) AS feed_tag

Thus, mappings should be based on the SQL tables sparql feed and sparql feed tag
(instead of feed), hence retrieving each field without the need for data transla-
tion based on SQL functions. Note that the key of sparql feed is id, while the key
of sparql feed tag is id,tag in order to allow an efficient join operation between
the two tables based on id.

Based on the following prefixes that are used in order to shorten URIs:

bt-sensors: http://api.bt-hypercat.com/sensors/
bt-hypercat: http://portal.bt-hypercat.com/ontologies/bt-hypercat#

the following mapping maps the data property feed updated of class Feed :

Mapping ID mapping:feed updated
Target (Triple Template) bt-sensors:feeds/{sparql feed.id}

bt-hypercat:feed updated
{sparql feed.updated} .

Source (SQL Query) SELECT sparql feed.id, sparql feed.updated
FROM sparql feed

Note that the SQL variables that are used in order to generate RDF triples
following the triple template (see Target) should match the columns that belong
to the key (here sparql feed.id) of the corresponding SQL table. This is important
in order to eliminate self-joins. If the key contains more columns than those used
in the RDF triple pattern to be generated, then self-joins cannot be eliminated
and each mapping for the given table will be translated as a separate subquery.
Allowing self-joins can be manageable for relatively small tables (containing
thousands of rows, provided that the table is indexed), but can be prohibitive
for larger tables (containing millions of rows).

provide a manually created view over the existing data in a format that allows fast
SPARQL queries.



Optimizing a Semantically Enriched Hypercat-enabled IoT Data Hub 69

Finally, the following guidelines should be taken into consideration in order
to avoid SPARQL queries that lead to excessive SQL query plans (after the
dynamic translation from SPARQL to SQL), namely:

– Avoid generic triple patterns such as “?s ?p ?o” as they will be translated
using all available mappings (a UNION of all defined mappings), leading to
an excessive SQL query plan. Thus, the predicate within each triple pattern
should be specified.

– Avoid using DISTINCT as it deteriorates severely performance since the
final results would be sorted and filtered for unique values at the end of the
SQL query plan.

– Retrieve specific Feeds by filtering (namely using FILTER). Restricting the
search space early (e.g., retrieving a feed based on its id) leads to more
efficient SQL query plans.

– Avoid OPTIONAL as each OPTIONAL is translated into a LEFT OUTER
JOIN. If used, all OPTIONAL should be put at the end of the query in order
to improve query translation.

– Use LIMIT as limiting the amount of required results could speed up the
query execution.

By applying the aforementioned optimizations to the BT Hypercat Data Hub,
queries that were unresponsive in the non-optimized system were executed in less
than a second by the optimized system. The optimized system was able to handle
efficiently queries over multiple SQL tables, containing millions of records.

4 Access Control Mechanism

An access control mechanism has been implemented for the SPARQL to SQL
endpoint and the SPARQL to SPARQL endpoint while retaining the high level of
performance achieved by the above mentioned optimizations. The proposed ac-
cess control mechanism allows user access management at the feed level, namely
if users have access to a feed then they also have access to any information
contained within that feed.

Access control is enforced in two stages, first the given query is examined
syntactically. Since the system supports SPARQL 1.0, only a subset of SPARQL
constracts is relevant. Indeed, WHERE is the main point of interest in terms of
enforcing access control. More specifically, the WHERE clause could contain feed
URIs, defined as constants, that users have no access to. Consider the following
SPARQL query:

PREFIX hypercat: <http://portal.bt-hypercat.com/ontologies/bt-hypercat#>
BASE <http://api.bt-hypercat.com/>
SELECT ?f1
WHERE {
<sensors/feeds/00000000-0000-0000-0000-000000000001>
hypercat:feed id ?f1.

}



70 I. Tachmazidis et. al.

Note that this query should be allowed to execute only if users have access to feed
<http://api.bt-hypercat.com/sensors/feeds/00000000-0000-0000-0000-000000000001>.

In the case that query execution cannot be denied by syntactic analysis, the system
still needs to ensure that users do not have access to results based on variables that
are bound with information from restricted feeds. Consider the following example:

PREFIX hypercat: <http://portal.bt-hypercat.com/ontologies/bt-hypercat#>
SELECT ?f1
WHERE {

?feed hypercat:feed id ?f1.
?feed hypercat:feed creator ?f2.

}

It is insufficient to check only returned results (here ?f1 ) since other variables (here
?feed and ?f2 ) might attempt to extract information from feeds that the user has no
access to. Thus, the query is rewritten internally so that the SELECT clause would
contain all variables in the WHERE clause (here ?f1, ?feed and ?f2 ), even though
users will be provided with results only for requested variables (here ?f1 ), provided
that access is allowed (to all variables). Note that results might be combined from
different feeds, while in order to access a triple through Ontop either a fixed URI
(syntactic analysis) or a variable (result checking over all variables) would be used
within the triple. Moreover, by checking all variables for the given query, manipulating
results through FILTER becomes ineffective.

Finally, in order to ensure that a given ASK query provides the same level of
access control, after it is syntactically checked for allowed URIs, it is translated into a
SELECT query with LIMIT 1. Thus, the result of an ASK query is true if users have
access to at least one result of the equivalent SELECT query, or false otherwise.

It is worth mentioning that integrating the access control mechanism to the opti-
mized system has not affected the performance of the SPARQL endpoints since query
times remained almost identical regardless of whether the access control mechanism
was enabled or not.

5 Conclusion

In this work, a series of applied optimizations to the BT Hypercat Data Hub has been
presented, thus scaling up SPARQL query answering over relational databases. In ad-
dition, an access control mechanism that filters SPARQL results based on user’s sub-
scriptions has been proposed. Both query optimization and access control mechanisms
that were addressed in this work are critical factors for the successful deployment of a
large scale IoT system. Future work includes further semantic enrichment by enabling
GeoSPARQL queries. In addition, spatiotemporal reasoning is a prominent direction
that could provide richer knowledge by combining data coming from both the BT
Hypercat Data Hub and the LOD cloud.

References

1. Pilgrim Beart. Hypercat 3.00 Specification, 2016.
2. Mathieu d’Aquin, John Davies, and Enrico Motta. Smart cities’ data: Challenges

and opportunities for semantic technologies. IEEE Internet Computing, 19(6):66–
70, 2015.



Optimizing a Semantically Enriched Hypercat-enabled IoT Data Hub 71

3. John Davies and Mike Fisher. Internet of Things - Why Now? Jnl Institute of
Telecommunications Professionals, 7(3), September 2015.

4. Giorgos Flouris, Irini Fundulaki, Maria Michou, and Grigoris Antoniou. Controlling
access to rdf graphs. In Future Internet Symposium, pages 107–117. Springer, 2010.

5. Patrick Hayes. RDF Semantics. In W3C Recommendation, 2004.
6. Eric PrudHommeaux, Andy Seaborne, et al. SPARQL query language for RDF.

W3C recommendation, 15, 2008.
7. Ilias Tachmazidis, Sotiris Batsakis, John Davies, Alistair Duke, Mauro Vallati,

Grigoris Antoniou, and Sandra Stincic Clarke. A hypercat-enabled semantic in-
ternet of things data hub. In The Semantic Web - 14th International Conference,
ESWC 2017, Portorož, Slovenia, May 28 - June 1, 2017, Proceedings, Part II,
pages 125–137, 2017.

8. Ilias Tachmazidis, John Davies, Sotiris Batsakis, Grigoris Antoniou, Alistair Duke,
and Sandra Stincic Clarke. Hypercat RDF: Semantic Enrichment for IoT. In
Semantic Technology - 6th Joint International Conference, JIST 2016, Singapore,
Singapore, November 2-4, 2016, Revised Selected Papers, pages 273–286, 2016.

9. Ilias Tachmazidis, Sotiris Batsakis John Davies, Alistair Duke, Mauro Vallati, Grig-
oris Antoniou, and Sandra Stincic Clarke. A Hypercat-enabled Semantic Internet of
Things Data Hub: Technical Report. https://arxiv.org/abs/1703.00391, March
2017.

10. A.M. Townsend. Smart Cities: Big Data, Civic Hackers, and the Quest for a New
Utopia. WW Norton & Company, 2013.


	Optimizing a Semantically Enriched Hypercat-enabled Internet of Things Data Hub (Short Paper)

