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Abstract. We focus our attention on the link prediction problem for
knowledge graphs, which is treated herein as a binary classification task
on neural embeddings of the entities. By comparing, combining and ex-
tending different methodologies for link prediction on graph-based data
coming from different domains, we formalize a unified methodology for
the quality evaluation benchmark of neural embeddings for knowledge
graphs. This benchmark is then used to empirically investigate the po-
tential of training neural embeddings globally for the entire graph, as
opposed to the usual way of training embeddings locally for a specific
relation. This new way of testing the quality of the embeddings evalu-
ates the performance of binary classifiers for scalable link prediction with
limited data. Our evaluation pipeline is made open source, and with this
we aim to draw more attention of the community towards an impor-
tant issue of transparency and reproducibility of the neural embeddings
evaluations.
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1 Introduction

1.1 Link prediction

There are two major ways of measuring the quality of (neural) embeddings of
entities in a Knowledge Graph for link prediction tasks, inspired by two different
fields: information retrieval [1–5] and graph-based data mining [6–11]. Informa-
tion retrieval inspired approaches seem to favor the mean rank measurement and
its variants (mean average precision, top k results, mean reciprocal rank), and
graph-based data mining approaches recur to the standard evaluation measure-
ments of classifiers based on false positive rate to true positive rate curves (e.g.,
ROC AUC, F-measure). While both of the techniques measure the quality of the
embeddings, they however may or may not be suitable for particular link pre-
diction tasks. Consider the popular mean rank (and its variants) that measures
the ability of a retrieval system to score a true result on top of all other possible
candidates. Applied to the knowledge graph completion task [1], typically, one
would consider all links, i.e., assertions of relations of type (ei, rk, ej) ∈ KG, as
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true and all other possible assertions that are not in the Knowledge Graph as
negative (i.e., (ēi, ri, ēj) 6∈ KG). If we use mean rank as our metric to measure
the performance of a classifier for link prediction we might have the following
problems.
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Fig. 1. Simple KG and a link prediction
task. Bold links known to exist, dashed
links are unknown.

Consider a simple KG, consisting
of three entities e1, e2, e3 and one re-
lation r1, and assume that we only
know about the existence of the link
(e1, r1, e2), as depicted in Fig. 1. Our
only true link (example for a pre-
diction system) is t1 = (e1, r1, e2)
and our negative links are n1 =
(e1, r1, e3), n2 = (e3, r1, e1), n3 =
(e2, r1, e3), n4 = (e3, r1, e2), n5 =
(e2, r1, e1). Our predictor fr1 of posi-
tive links for relation r1 can be trained
in such a way that it outputs the high-
est score for the true link and slightly
lower scores for the negative links, i.e.,
fri(t1) = 0.99, fri(ni) = 0.98. Obvi-
ously, fri(t1) would be ranked above
all fri(ni), yielding a perfect mean

rank = 1 score. However, if we now wanted to use fri as our binary predictor
Pri(ei, rk, ej) = 1 if fri(ei, rk, ej) > 0.5, and Pri(ei, rk, ej) = 0 if fri(ei, rk, ej) ≤
0.5, we would have a predictor Pri which predicts all links to be true. Obviously,
we could have tuned (e.g., identify the suitable threshold from a few samples)
our predictor to have a threshold of 0.99 (i.e., ∀i, 0.5 < fri(ni) < 0.99), but
that would be a non-flexible predictor. In other words, the mean rank measure
may evaluate certain embeddings to be of good quality, while they may actu-
ally be bad for a specific link prediction task. We believe that the mean rank
measurement should be used to judge the quality of the embeddings for the
reconstruction [5] of the original knowledge graph that was used to train the
embeddings, as opposed to predict new links.

Link prediction as binary classification task Mean rank based link pre-
diction pipeline does not individuate the performance of entity embeddings to
predict a specific relation, as it gives a scalar evaluation of overall performance.
Such a performance description is akin to describing the whole population distri-
bution with its mean value only. In the bioinformatics field, link prediction is a
very important problem, and it is formulated as a binary classification task [10].
This is different from the reconstruction setting. Instead of asking to which
other entity among all possible entities e1, . . . , en the entity e1 is more probable
to be connected with a link r1, we ask what is the probability of having a link
P ((e1, r1, e2) = 1)? An example of P ((e1, r1, e2) = 1) could be asking:
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What is the probability that the gene TRIM28 (= e1) has function
(= ri) negative regulation of transcription by RNA polymerase II (= ej)?

Indeed, a predictor P that ranks (e1, r1, e2) first among all other possible
completions of (e1, r1, x),∀x ∈ KG,x 6= e2 is not a strong enough link predictor.
Apart from the fact that many of these potential negative examples would not
even make sense biologically, i.e., x 6∈ range(has function), the predictor P
risks to accept too many false positives before it correctly classifies all the true
positive examples. For the rest of this paper we focus on evaluation strategies of
link prediction tasks for knowledge graphs, where link prediction is formulated
as a binary classification problem.

How much multi-relational are knowledge graphs? Typically, in the sta-
tistical relation learning field the link prediction algorithms embed both entities
and relations in the same embedding space, and then use binary operators de-
fined on these representations to represent a labelled link (i.e., a triple). For
instance, given a function γ that associates entities or relations to its vector
space embeddings, a predictor f(e1, r1, e2) might output the score by evaluating
a standard Euclidean dot product f(e1, r1, e2) = 〈γ(e1) + γ(r1), γ(e2)〉. And if
γ(r1) 6= γ(r2) then we expect 〈γ(e1) + γ(r1), γ(e2)〉 and 〈γ(e1) + γ(r2), γ(e2)〉
to output very different scores, disambiguating thus links with relation r1 or r2

between the two entities e1 and e2.

e1 e2

e1 e2

r1
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Fig. 2. Flattening a Knowledge Graph.

One might ask how it is possible to construct link predictors by only con-
sidering the embeddings of the entities? Can we flatten the KG, by introducing
the restriction that each pair of entities must have at most one unlabelled link
(Fig. 2), and come up with a strategy of disambiguating links with different
relations? To better demonstrate the argument, below in Table 1 we provide
the statistics of pairwise count of links in the WN11 Knowledge Graph (original
WordNet dataset [12] brought down to 11 relations as in [1]), we can see that
only 0.133% of all pairs are connected with more than one link. In other words
the multi-relationness of this graph is really low.

Perhaps not directly, but similarly, some works have considered embedding
the entities without the relations [10, 5] (although the potential pitfalls of flat-
tening the links are not raised there). In [5] the link prediction of a hierarchical
transitive closure is proposed to be treated without learning an embedding for the
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relation # links # sources # targets

derivationally related form 31867 16737 16737
hypernym 37221 36347 9795
member of domain region 983 118 925
synset domain topic of 3335 3170 313
member of domain usage 675 25 635
member meronym 7928 3238 7858
similar to 86 82 82
has part 5142 2062 4223
also see 1396 727 828
verb group 1220 1038 1038
instance hypernym 3150 2622 419

a =#pairs (multi) b =#pairs (total) a/b (%)
124 93003 0.133%

Table 1. Statistics on the connectivity of the entities per relation in WN11 knowledge
graph.

hierarchical relation (e.g., hypernym). In the bioinformatics domain a similar
idea of learning embeddings separately for each relation ri is proposed, further
enhanced by considering binary classifiers operating on the learned embeddings
to predict links of type ri [10].

1.2 Contribution of this work

We investigate empirically the potential of training neural embeddings globally
for the entire graph, as opposed to training embeddings locally for a specific
relation ri. This is different to what has been previously done [5, 10], and opens
new ways of assessing the quality of the neural embeddings. By comparing, com-
bining and extending different methodologies for link prediction on graph-based
data coming from different domains, we present a unified methodology for the
quality evaluation of neural embeddings for link prediction tasks for knowledge
graphs. The link prediction problem is treated here as a binary classification task
on entity embeddings. The evaluation steps required for an effective assessment
of the quality of the knowledge graph embeddings are formalized. Our evaluation
pipeline is made open source [13], and with this we aim to draw more attention of
the community towards an important issue of transparency and reproducibility
of the results.

2 Methods

2.1 Preparation of the datasets for neural embedding training

The preparation of datasets for neural embedding training is inspired by the
methodology presented in [10]. In the following we present our generalized ap-
proach to this problem, as we think it is crucial for the transparent and repro-
ducible evaluation pipeline, and has not been detailed enough in other work. In
addition to local retained graphs, where only triples of a specified relation ri
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were removed (as used in [10]), we also consider global retained graphs for all
relation ∀ri ∈ KG.

Let PosKG denote all the existing links in the KG, i.e., triples (ei, ri, ej) ∈
KG, and let NegKG denote the non-existing links (ēi, ri, ēj) 6∈ KG, with the
restrictions that |PosKG| = |NegKG| (number of elements is equal), and ēi ∈
domain(ri), and ēj ∈ range(ri), as in [10]. The former restriction (|PosKG| =
|NegKG|) ensures that we do not have imbalanced classes for the binary predic-
tion (see [8] for more details), we therefore sample negatives at random with the
sample size equal to the number of positive examples. Potentially, the set of all
possible negative examples is much bigger than the set of all positive examples
(because we are enumerating many more possible connections in the graph, ex-
cluding the existing ones). The latter restriction on the domain and the range
of a relation fixes attention to the most probable and semantically consistent
negative links. Then, PosKG forms the set of all positive examples, analogously,
NegKG – set of sampled negative examples (see Section 1.1). To test the quality
of the embeddings and their ability to classify examples for a specific relation,
we split for each considered relation ri the set of positive and negative links of
type ri (Posri , Negri) in a given train/test ratio α ∈ [0, 1] (α = 0.8 in [10]).
To simplify the notation, we let αPosri represent the train split of all positive
examples for links with type ri, and (1 − α)Posri represent the test split of all
positive examples. Similarly, for the negative examples (i.e., train split αNegri
and test split (1− α)Negri). Essentially, when we say (α = 0.8)Posri we mean
the set consisting of 80% of positive examples of type ri (we hope that the abuse
of notation will increase comprehension). Fig. 3 employs a set-theoretic depic-
tion of the sets of all positive and negative links, as well as their subsets for links
restricted to a specific type ri, and divisions into train and test splits.

By treating the problem of evaluation of the quality of the embeddings in
this set-theoretic approach, we now define the following datasets:

1. PosKG − (1 − α)Posri a local retained graph on ri – training corpus for
unsupervised learning of local to ri entity embeddings γri(ei) (in Fig. 3 this
set is demarcated with bold contour in the upper left corner),

2. PosKG−
⋃
ri

(1−α)Posri a global retained graph on all relations ri – training
corpus for unsupervised learning of global entity embeddings γ(ei),

3. ∀ri, αPosri
⋃
αNegri – train examples for the binary classifier on ri,

4. ∀ri, (1− α)Posri
⋃

(1− α)Negri – test examples for the binary classifier ri.

We also note the following properties, which must hold and serve as validation
criteria for the generation of train and test data. In particular,

1. PosKG − (1− α)Posri ⊆ PosKG, PosKG −
⋃
ri

(1− α)Posri ⊆ PosKG local
and global retained graphs must be subgraphs of full graph,

2. PosKG −
⋃
ri
αPosri =

⋃
ri

(1− α)Posri the difference between the full and
retained global graphs are the positive links, which we use in the test set,
i.e., the embeddings will be used to predict these positive links,

3. ∀ri, αPosri
⋂

(1−α)Posri = ∅, αNegri
⋂

(1−α)Negri = ∅ there should be
no link shared between the train and test sets,
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training embeddings
on 

train classifier

test classifier

Fig. 3. Schematic representation of the pipeline for the evaluation of the embeddings.
NegKG and its derivations (e.g., αNegri) appear bigger visually to indicate that the
elements are sampled from a much bigger set of all possible negative links.

4. ∀ri∀xi, x̄i ∈ Negri , x̄i 6∈ KG all generated negative links do not exist in the
original full graph.

The last two properties reflect what is usually done in the literature during
the generation of negative links, and for this work we also conform to these
two properties. However, we elaborate more on the issue, where the negative
examples set generation is disjoint from the positive examples set in Section 4.

2.2 Training neural embeddings

In this work we employ a fast and scalable unsupervised neural embedding
model [11], which aims at learning entity embeddings, each of which is described
by a set of discrete features (bag-of-features) coming from a fixed-length dictio-
nary. The model is trained by assigning a d-dimensional vector to each of the
discrete features in the set that we want to embed directly. Ultimately, the look-
up matrix (the matrix of embeddings - latent vectors) is learned by minimizing
the following loss function∑

(a,b)∈E+,b−∈E−

Lbatch(sim(a, b), sim(a, b−1 ), . . . , sim(a, b−k )).
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In this loss function, we need to indicate the generator of positive entry pairs
(a, b) ∈ E+, and the generator of negative entities b−i ∈ E−, similar to the k-
negative sampling strategy proposed by Mikolov et al. [14]. In our setting, for
each entity ei in the knowledge graph, E+ is the generator of entities (a = ei, b =
ej) from the local PosKG − (1 − α)Posri or global PosKG −

⋃
ri

(1 − α)Posri
retained graphs, and E− is the generator of a negative entity b− = ēj , such
that (ei, ēj) 6∈ KG. Lbatch denotes that we minimize the objective function for
the small subsets of elements drawn from E+ and E− (mini-batching). The
similarity function sim is task-dependent and should operate on d-dimensional
vector representations of the entities, in our case we use the standard Euclidean
dot product. This model (and implicitly the embeddings are) is trained with the
StarSpace toolkit [4]. The aforementioned embedding scheme is different from a
multi-relational knowledge graph embedding task, since we do not require the
explicit embeddings for the relations (Section 1.1).

Please note that since we are learning embeddings for the entities from the
retained graphs (some links are excluded), the algorithm may miss to learn
an embedding for an entity. That is, suppose that during the generation of the
retained graph all connectivities ∀x, (ek, x) ∈ KG of an entity ek are not assigned
to the retained graph ∀x, (ek, x) 6∈ PosKG − (1 − α)Posri , then the algorithm
will not learn an embedding γ(ek), which will lead us to a situation where all the
pairs ∀x, (ek, x) ∈ KG will be missing during training or testing of the binary
classifier (depending whether these pairs are assigned to to the train or test sets).
Obviously, the amount of possible missing embeddings is inversely proportionate
to the α parameter, i.e., the more information we include during the embedding
learning phase, the fewer embeddings will be missed.

2.3 Binary operators for link representation

Based on the embeddings of the nodes of the graph, we can come up with different
ways of representing a link between an entity ei and ej . This is usually achieved
with a binary operator op that combines entitiy embeddings representations
γ(ei), γ(ej) into one single representation of the link (ei, ri, ej). Popular choices
for this operator include operations that preserve the original d dimension of the
entity embeddings to represent links (e.g., element-wise sum or mean [7]), as well
the operations that combine entitiy embeddings, such as concatenation [11]. The
definitions of these operators are given in Table 2; we use them in our experiments
and evaluation.

2.4 Repeated random sub-sampling validation

To quantify confidence in the trained embeddings, we perform the repeated ran-
dom sub-sampling validation for each classifier fri . That is, for each relation ri
we generate k times: retained graph PosKG − (1− α)Posri corpus for unsuper-
vised learning of entity embeddings γri(ei)) and train αPosri

⋃
αNegri and test

(1− α)Posri
⋃

(1− α)Negri splits of positive and negative examples. Link pre-
diction is then treated as a binary classification task with a logistic regression
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Operator op definition Link representation Comments

sum(γ(ei), γ(ej)) : Rn × Rn 7→ Rn sum(γ(ei), γ(ej)) =


γ(ei)i + γ(ej)i

.

.

.
γ(ei)n + γ(ej)n

 element-wise sum of the two
vectors

mean(γ(ei), γ(ej)) : Rn × Rn 7→ Rn mean(γ(ei), γ(ej)) =


(γ(ei)i + γ(ej))/2

.

.

.
γ(ei)n + γ(ej)n)/2

 element-wise arithmetic mean
of the two vectors

concat(γ(ei), γ(ej)) : Rn × Rn 7→ R2n concat(γ(ei), γ(ej)) =

[
γ(ei)
γ(ej)

]
concatenation of the two vec-
tors (double the size of origi-
nal embedding)

Table 2. Binary operators for link representation from the entity embeddings
γ(ei), γ(ej).

classifier fri(op(γ(ei), γ(ej))) 7→ [0, 1] defined on the link representation pro-
duced by the binary operator (e.g., op = sum). The performance of the classifier
is measured with the standard performance measurement based on false positive
rate to true positive rate curves. We, in particular, report the F1 score (i.e.,
F-measure with equal weights for precision and recall).

3 Results

In this section we report on the possibility of training the embeddings ∀ei ∈
KG, γ(ei) once on the retained graph PosKG −

⋃
ri
Posri on all relations ri,

and evaluating it separately on all train αPosri and test examples (1−α)Posri
for each relation ri. We evaluate the quality of local and global embeddings and
study the influence of the choice of the binary operator (e.g., sum, concatena-
tion) used in the logistic regression classifier fri(op(γ(ei), γ(ej))), as well as the
size (controlled by α) of the retained local and global graphs, applied to the
WN11 knowledge graph. All of our results are presented as averages of 10 re-
peated random sub-sampling validations (Section 2.1). We therefore report mean
F-measure scores and their standard deviations. All embeddings are trained with
fixed hyperparameters: embedding size is set to d = 50 and number of epochs
is 10. The neural embeddings are trained with the StarSpace toolkit [4]. Clas-
sification results are obtained with the scikit Python library [15], grouping of
data and their statistical analysis are performed with Pandas [16]. All of our
experiments were performed on a modern desktop PC with a quad core Intel i7
CPU (clocked at 4GHz) and 32 Gb of RAM.

Table 3 regroups averaged cross-validation scores of the fri binary classifiers
per relations ri. These scores are split per increasing amount of information
(controlled by α) which is available during the unsupervised learning phase of
the neural embeddings. This models the realistic scenario where links represent
an ever growing knowledge about the domain, and where we want to predict
new links that might emerge in future. Overall, the unsupervised training phase
seem to be quite robust to limited amounts of information (i.e., training embed-
dings with only 20% of links vs. training with 80% of available links), as average
F-measure score for all relations ri seem to be affected only slightly in both



Global and local evaluation of link prediction tasks with neural embeddings 97

α = 0.2

relation
Local Global

sum concatenation mean sum concatenation mean

member of domain region 0.94 ± 0.02 0.94 ± 0.02 0.91 ± 0.05 0.91 ± 0.06 0.94 0.73 ± 0.14
member meronym 0.96 ± 0.02 0.98 ± 0.01 0.95 ± 0.02 0.98 ± 0.02 0.99 0.96 ± 0.04

similar to 0.93 ± 0.02 0.95* 0.91 ± 0.07 0.66 ± 0.17 0.70 ± 0.21 0.55 ± 0.03
instance hypernym 0.66 ± 0.03 0.67 ± 0.04 0.66 ± 0.03 0.61 ± 0.07 0.63 ± 0.06 0.60 ± 0.06
has part 0.90 ± 0.03 0.92 ± 0.04 0.90 ± 0.03 0.88 ± 0.06 0.91 ± 0.08 0.80 ± 0.09
derivationally related form 0.76 ± 0.01 0.77 0.76 ± 0.01 0.83 ± 0.15 0.84 ± 0.15 0.83 ± 0.15
also see 0.82 ± 0.09 0.83 ± 0.09 0.82 ± 0.09 0.83 ± 0.13 0.84 ± 0.14 0.81 ± 0.11
verb group 0.89 ± 0.02 0.91 0.88 ± 0.02 0.88 ± 0.04 0.90 ± 0.04 0.85 ± 0.07
member of domain usage 0.91 ± 0.03 0.92 ± 0.03 0.88 ± 0.04 0.88 ± 0.08 0.90 ± 0.08 0.61 ± 0.05
hypernym 0.72 ± 0.06 0.72 ± 0.06 0.71 ± 0.06 0.71 ± 0.14 0.72 ± 0.15 0.71 ± 0.14
synset domain topic of 0.65 ± 0.01 0.68 ± 0.01 0.64 ± 0.01 0.64 ± 0.06 0.65 ± 0.05 0.64 ± 0.06

averaged values 0.82 ± 0.11 0.84 ± 0.03 0.81 ± 0.10 0.80 ± 0.12 0.82 ± 0.12 0.73 ± 0.12

α = 0.5

member of domain region 0.93 ± 0.02 0.93 ± 0.02 0.90 ± 0.03 0.92 ± 0.01 0.92 ± 0.02 0.90 ± 0.02
member meronym 0.97 ± 0.01 0.98 ± 0.01 0.97 ± 0.01 0.97 ± 0.02 0.98 ± 0.01 0.96 ± 0.02
similar to 0.90 ± 0.03 0.92 ± 0.01 0.90 ± 0.03 0.89 ± 0.04 0.92 ± 0.01 0.90 ± 0.03
instance hypernym 0.65 ± 0.04 0.66 ± 0.03 0.65 ± 0.05 0.62 ± 0.04 0.63 ± 0.06 0.61 ± 0.04
has part 0.85 ± 0.02 0.85 0.85 ± 0.02 0.83 ± 0.05 0.83 ± 0.06 0.83 ± 0.05
derivationally related form 0.67 ± 0.01 0.68 0.67 ± 0.01 0.68 ± 0.12 0.70 ± 0.11 0.68 ± 0.12
also see 0.76 ± 0.13 0.77 ± 0.13 0.76 ± 0.13 0.76 ± 0.13 0.76 ± 0.13 0.76 ± 0.13
verb group 0.85 ± 0.01 0.87 0.85 ± 0.01 0.85 0.86 0.85
member of domain usage 0.86 ± 0.08 0.86 ± 0.08 0.85 ± 0.08 0.85 ± 0.10 0.85 ± 0.10 0.85 ± 0.09
hypernym 0.64 ± 0.04 0.65 ± 0.04 0.64 ± 0.04 0.61 ± 0.12 0.63 ± 0.13 0.61 ± 0.12
synset domain topic of 0.64 ± 0.02 0.68 ± 0.03 0.64 ± 0.02 0.62 ± 0.04 0.67 ± 0.06 0.62 ± 0.05

averaged values 0.79 ± 0.12 0.80 ± 0.11 0.78 ± 0.12 0.78 ± 0.13 0.79 ± 0.12 0.77 ± 0.13

α = 0.8

member of domain region 0.85 ± 0.01 0.80 ± 0.09 0.84 ± 0.01 0.83 ± 0.01 0.80 ± 0.11 0.82 ± 0.02
member meronym 0.96 ± 0.01 0.97 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.97 ± 0.01 0.96 ± 0.01
similar to 0.83 ± 0.02 0.84 ± 0.01 0.83 ± 0.03 0.82 ± 0.05 0.84 ± 0.02 0.81 ± 0.05
instance hypernym 0.65 ± 0.05 0.69 ± 0.09 0.65 ± 0.05 0.66 ± 0.06 0.67 ± 0.07 0.66 ± 0.06
has part 0.69 ± 0.01 0.69 0.70 ± 0.04 0.68 ± 0.02 0.67 0.69 ± 0.05
derivationally related form 0.92 ± 0.04 0.99 0.92 ± 0.04 0.91 ± 0.05 0.99 0.91 ± 0.05
also see 0.94 ± 0.04 0.99 0.92 ± 0.05 0.92 ± 0.06 0.99 0.89 ± 0.08
verb group 0.71 ± 0.01 0.72 0.71 ± 0.01 0.71 ± 0.01 0.72 0.70 ± 0.01
member of domain usage 0.80 ± 0.08 0.85 ± 0.01 0.79 ± 0.08 0.79 ± 0.10 0.84 ± 0.01 0.78 ± 0.10
hypernym 0.60 ± 0.02 0.77 ± 0.12 0.60 ± 0.02 0.57 ± 0.01 0.69 ± 0.09 0.57 ± 0.01
synset domain topic of 0.65 ± 0.03 0.70 ± 0.04 0.63 ± 0.03 0.63 ± 0.04 0.72 ± 0.08 0.62 ± 0.04

averaged values 0.78 ± 0.12 0.82 ± 0.12 0.77 ± 0.12 0.77 ± 0.13 0.80 ± 0.12 0.76 ± 0.12

Table 3. Comparison of the F-measure scores of the binary classifiers that use different
binary operators for link representation. The scores are given for local and global
evaluation of neural embeddings, with varying amount of available information about
the connectivity of the WN11 knowledge graph. Scores presented without confidence
intervals indicate small variance (i.e., σ < 0.01).
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local and global settings. We can notice that the concatenation binary opera-
tor outperforms other link representations, and all its predictions lie within the
0.79−0.84 range. This observation might be caused by the fact that the output of
the concatenation operator has twice the amount of dimensions to represent in-
formation (i.e., concat(γ(ei), γ(ej)) ∈ R2d vs. sum(γ(ei), γ(ej)) ∈ Rd). Besides,
unlike sum and mean, it naturally encodes directionality of links (i.e., assymetric
relations concat(γ(ei), γ(ej)) 6= concat(γ(ej), γ(ei))).

Depending on the connectivity of the knowledge graph, retaining some ratio
(i.e., 1 − α) of available links may have severe consequences on the number
of missing embeddings for the entities with very low incoming and outgoing
links. In Table 4 we group F-measure scores for the concatenation operator, and
additionally, report the percentage of missing embeddings in both train and test
dataset splits for each relation ri. As expected, pre-training the embeddings on
only 20% of all relations (PosKG−

⋃
ri
Posri) will miss many entities compared

to the local setting (PosKG − Posri), where we train on 20% only for a specific
relation ri and on 100% of links for rj 6= ri. 29.38 % vs. 3.7 % of missed training
examples for global and local settings respectively, analogously, 59.47 % vs. 7.8 %
for test examples. This makes a big difference in confidence of our link prediction
binary classifier fri trained locally or globally, even if the final F-measure scores
are quite comparable. However, if we consider α = 0.8 then the percentage of
missing examples for train (0.56%) and test (5.69%) splits for global setting are
tolerable, with 0.13% and 2.19% for the local approach respectively. Obvious
advantage of the global approach is scalability in both time and space. We train
and store only one neural model (embedding vectors are stored implicitly in the
weight matrix of the hidden layer) for the global approach, and we need to train
and store embeddings locally for as many models as there are relations in the
knowledge graph. For the WN11 KG, if we consider α = 0.8, we need on average
≈ 25 sec to train one global model, and we require on average ≈ 32 seconds
to train a model per relation for the local approach (averaged over 10 repeated
random sub-sampling validations). Since we have 11 relations, we thus need ≈ 25
seconds vs. ≈ 352 seconds for d = 50 and 10 epochs. The time needed to train
these models will obviously grow as we increase the embedding dimension and
the number of epochs. Spacewise, the global approach needs 21 Mb and the local
242 Mb, as in the case of time complexity, the memory needed to store bigger
models (d > 50) will increase.

4 Discussion

4.1 Related work

The most focused study of the link prediction problem for the large scale (un-
labelled) graph-based data mining has been conducted in [8], to the best of our
knowledge. The focus of that work is on negative sample generation, and the au-
thor emphasize that the link prediction problem is a hugely imbalanced binary
prediction task, where the number of negative samples is orders of magnitude
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α = 0.2

relation
Local Global

F-measure train miss (%) test miss(%) F-measure train miss (%) test miss (%)

member of domain region 0.94 ± 0.02 2.80 ± 0.78 5.50 ± 0.39 0.94 30.0 ± 1.3 64.0 ± 1.4
member meronym 0.98 ± 0.01 0.08 ± 0.05 0.17 ± 0.02 0.99 38 ± 13 75 ± 13
similar to 0.95 0.88 ± 2.00 4.0 ± 1.9 0.70 ± 0.21 14.0 ± 3.8 42.0 ± 6.5
instance hypernym 0.67 ± 0.04 12 ± 14 21.0 ± 6.9 0.63 ± 0.06 34 ± 12 67.0 ± 5.7
has part 0.92 ± 0.04 0.44 ± 0.14 2.2 ± 3.5 0.91 ± 0.08 38 ± 13 71 ± 11
derivationally related form 0.77 0.89 ± 0.08 2.80 ± 0.14 0.84 ± 0.15 26 ± 16 50 ± 9
also see 0.83 ± 0.09 1.90 ± 0.43 12 ± 10 0.84 ± 0.14 32 ± 19 53 ± 12
verb group 0.91 0.23 ± 0.23 0.64 ± 0.24 0.90 ± 0.04 19 ± 16 41 ± 15
member of domain usage 0.92 ± 0.03 6.1 ± 15.0 7.3 ± 14.0 0.90 ± 0.08 33 ± 9 67.0 ± 9.5
hypernym 0.72 ± 0.06 15 ± 18 29.0 ± 8.8 0.72 ± 0.15 29 ± 18 64.0 ± 8.3
synset domain topic of 0.68 ± 0.01 0.16 ± 0.12 1.00 ± 0.19 0.65 ± 0.05 31 ± 16 59.0 ± 7.7

averaged values 0.84 ± 0.03 3.7 ± 5.2 7.8 ± 9.4 0.82 ± 0.12 29.38 ± 7.21 59.47 ± 11.30

α = 0.5

member of domain region 0.93 ± 0.02 1.60 ± 0.31 4.60 ± 0.43 0.92 ± 0.02 9.90 ± 0.64 28.0 ± 1.7
member meronym 0.98 ± 0.01 0.04 ± 0.02 0.13 ± 0.05 0.98 ± 0.01 12 ± 13 31 ± 13
similar to 0.92 ± 0.01 0.58 ± 0.82 2.2 ± 2.4 0.92 ± 0.01 1.10 ± 0.66 7.8 ± 4.6
instance hypernym 0.66 ± 0.03 4.8 ± 8.2 15.0 ± 5.8 0.63 ± 0.06 11.0 ± 8.8 34.0 ± 6.9
has part 0.85 0.22 ± 0.05 0.80 ± 0.17 0.83 ± 0.06 12 ± 13 28.0 ± 9.4
derivationally related form 0.68 0.25 ± 0.02 0.89 ± 0.10 0.70 ± 0.11 7.4 ± 15.0 13 ± 14
also see 0.77 ± 0.13 5.4 ± 16.0 11 ± 17 0.76 ± 0.13 7 ± 15 16 ± 17
verb group 0.87 0.06 ± 0.07 0.21 ± 0.17 0.86 1.30 ± 0.25 5.8 ± 1.0
member of domain usage 0.86 ± 0.08 0.65 ± 0.26 2.0 ± 0.6 0.85 ± 0.10 9.6 ± 1.0 30.0 ± 5.6
hypernym 0.65 ± 0.04 4.4 ± 7.2 14.0 ± 6.2 0.63 ± 0.13 5.4 ± 7.0 26 ± 14
synset domain topic of 0.68 ± 0.03 1.9 ± 4.0 0.76 ± 0.07 0.67 ± 0.06 8.1 ± 4.3 21.0 ± 4.7

averaged values 0.80 ± 0.11 1.8 ± 2.0 4.67 ± 5.73 0.79 ± 0.12 7.75 ± 3.87 21.84 ± 9.73

α = 0.8

member of domain usage 0.80 ± 0.09 0.26 ± 0.14 1.90 ± 0.73 0.80 ± 0.11 1.40 ± 0.25 8.3 ± 1.9
member meronym 0.97 ± 0.01 0.01 0.06 ± 0.04 0.97 ± 0.01 1.10 ± 0.08 7.00 ± 0.59
similar to 0.84 ± 0.01 0 0 0.84 ± 0.02 0 0
instance hypernym 0.69 ± 0.09 0.01 ± 0.04 8.7 ± 5.5 0.67 ± 0.07 0.30 ± 0.17 12.0 ± 5.5
has part 0.69 0.08 ± 0.03 0.53 ± 0.19 0.67 1.00 ± 0.11 6.10 ± 0.59
derivationally related form 0.99 0.03 ± 0.01 0.25 ± 0.07 0.99 0.16 ± 0.03 1.00 ± 0.15
also see 0.99 0.09 ± 0.08 0.68 ± 0.50 0.99 0.22 ± 0.12 1.30 ± 0.61
verb group 0.72 0.01 ± 0.02 0.12 ± 0.20 0.72 0.09 ± 0.08 0.76 ± 0.61
member of domain region 0.85 ± 0.01 0.64 ± 0.14 3.20 ± 0.55 0.84 ± 0.01 1.70 ± 0.28 9.2 ± 1.2
hypernym 0.77 ± 0.12 0.31 ± 0.02 8.20 ± 0.14 0.69 ± 0.09 0.34 ± 0.02 10.00 ± 0.17
synset domain topic of 0.70 ± 0.04 0 0.57 ± 0.18 0.72 ± 0.08 0.17 ± 0.20 6.0 ± 5.6

averaged values 0.82 ± 0.12 0.13 ± 0.19 2.19 ± 3.21 0.80 ± 0.12 0.58 ± 0.59 5.69 ± 4.31

Table 4. F-measure scores for the binary classifiers that use concatenation operator
for link representation, together with the percentage of missed embeddings due to
limited available information on the connectivity of the WN11 knowledge graph. Scores
presented without confidence intervals indicate small variance (i.e., σ < 0.01).
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higher than the number of positive examples. In the bioinformatics commu-
nity Alshahrani et al. [10] proposed to circumvent the problem of imbalanced
classes for the binary classification problem by considering negative links that
have a biological meaning, truncating thus many potential negative links that
are highly improbable biologically speaking. They do this by restricting all the
negative links to have the same domain and range as the positive links (i.e.,
they do not consider highly improbable links of type genei has function
drugj , drugj 6∈ range(has function)). Link prediction for the entire knowl-
edge graph is then treated as a set of binary classification tasks (one for each
relation). Both of these works agree that link prediction should be treated as a
binary classification task. Some works have focused their attention on the strate-
gies for data splitting, producing biased train and test examples, such that the
implicit information from the test set may leak into the train set [17, 18]. In [18],
authors show that the random splits for the common knowledge graph evaluation
benchmarks (Wordnet [12] and Freebase [19]) may bias the classification results
for the symmetric relations. Solutions to unbiased evaluations include curated
data splits where no such information leakage is present. Kadlec et al. [3] have
mentioned that fair optimization of hyperparameters for competing approaches
should be considered, as some of the reported KG completion results are signif-
icantly lower than what they potentially could be. Evaluation of the machine
learning tasks that use link information from the knowledge graphs and neural
embeddings is explored in [20, 21].

As a general remark, in most of the works, link prediction is evaluated with
the mean rank metric and its variants from the information retrieval community
(e.g., mean reciprocal rank, top k results, mean average precision), which we
believe is not the most suitable metric for link prediction. As we pointed out in
Section 1.1, the probability to have a new link (ei, ri, ej) is different from asking
if the entity ej is part of the set of the most probable entities, among all existing
entities in the knowledge graph, to be connected to ei with the relation ri.

We believe that the evaluation of the quality of the embeddings for the link
prediction task has received much less attention than the methodologies for
training the embeddings in the literature. While most of the works do perform
extensive evaluation of their embedding approaches, the exact steps and implica-
tions of negative sample generation, random train and test data splits, amount
of information involved in the unsupervised learning, are either not very well
detailed for an easy and fair reproducibility of the results, or are presented as a
secondary remark.

4.2 Negative example generation for link prediction

In general, the link prediction problem for knowledge graphs is different from
other classification problems where positive and negative examples are well de-
fined. Obtaining a representative test set with a prototypical distribution is often
not trivial [8], and usually what is done is that we randomly remove some links
which we then use as our test positives. Moreover, during the generation of neg-
ative links both for train and test sets, we impose that no negative link appears
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as a training positive or test positive. We therefore implicitly leak information
about the test positives when we generate train negatives. In other words, dur-
ing the generation of negative links (ēi, ri, ēj) 6∈ KG) we should account to the
possibility that this link might actually turn out to be true, and our binary
classifiers should be robust and generalize well to these realistic situations. As
our future work we would like to study further the implications of the negative
example generation.

5 Conclusions

In this paper we focus on link prediction for knowledge graphs, treated as a
binary classification problem on entity embeddings. In this work we provide our
first results of the evaluation of different strategies for training neural embed-
dings of entities on the WN11 knowledge graph. These early findings lead us to
suggest that: i) if the number of multi-relational connectivities of nodes is low
compared to the total number of connections, then the graph can be flattened and
treated as an unlabelled graph (i.e., no two nodes are connected with more than
one link), provided that we disambiguate the links with separate binary classi-
fiers for each relation ri; ii) training embeddings once globally and using them
in binary classifiers for each relation ri gives a comparable classification error
(F-measure ≈ 0.8 averaged over all relations on WN11) to embeddings trained
locally for each relation separately. The global approach to training embeddings
is more scalable as it requires only one neural model to represent all entities, as
opposed to having as many models as there are relations in the knowledge graph.
The confidence in our results is, of course, proportionate to the amount of in-
formation (percentage of all available links) that we include in the unsupervised
training. Depending on the incoming and outgoing degrees of the entities in the
graph, the global approach may fail to embed many entities. Thus, the global
approach is less robust to limited availability of information then the local ap-
proach. Finally, we make our code for the evaluation pipeline for link prediction
tasks open source [13], and hope that it will trigger a standardized benchmark
for the evaluation of the knowledge graph embeddings.
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