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Abstract

English. Deep Neural Networks achieve
state-of-the-art performances in several se-
mantic NLP tasks but lack of explanation
capabilities as for the limited interpretabil-
ity of the underlying acquired models. In
other words, tracing back causal connec-
tions between the linguistic properties of
an input instance and the produced clas-
sification is not possible. In this paper,
we propose to apply Layerwise Relevance
Propagation over linguistically motivated
neural architectures, namely Kernel-based
Deep Architectures (KDA), to guide argu-
mentations and explanation inferences. In
this way, decisions provided by a KDA
can be linked to the semantics of input ex-
amples, used to linguistically motivate the
network output.

Italiano. Le Deep Neural Network
raggiungono oggi lo stato dell’arte in
molti processi di NLP, ma la scarsa
interpretabilitd dei modelli risultanti
dall’addestramento limita la compren-
sione delle loro inferenze. Non é possibile
cioé determinare connessioni causali tra
le proprietd linguistiche di un esempio
e la classificazione prodotta dalla rete.
In questo lavoro, [’applicazione della
Layerwise Relevance Propagation alle
Kernel-based Deep Architecture(KDA)
é usata per determinare connessioni tra
la semantica dell’input e la classe di
output che corrispondono a spiegazioni
linguistiche e trasparenti della decisione.

1 Introduction

Deep Neural Networks are usually criticized as
they are not epistemologically transparent devices,
i.e. their models cannot be used to provide ex-
planations of the resulting inferences. An exam-
ple can be neural question classification (QC) (e.g.

(Croce et al., 2017)). In QC the correct category of
a question is detected to optimize the later stages
of a question answering system, (Li and Roth,
2006). An epistemologically transparent learning
system should trace back the causal connections
between the proposed question category and the
linguistic properties of the input question. For
example, the system could motivate the decision:
"What is the capital of Zimbabwe?” refers to a
Location, with a sentence such as: Since it is
similar to "What is the capital of California?”
which also refers to a Locat ion. Unfortunately,
neural models, as for example Multilayer Percep-
trons (MLP), Long Short-Term Memory Networks
(LSTM), (Hochreiter and Schmidhuber, 1997), or
even Attention-based Networks (Larochelle and
Hinton, 2010), correspond to parameters that have
no clear conceptual counterpart: it is thus difficult
to trace back the network components (e.g. neu-
rons or layers in the resulting topology) responsi-
ble for the answer.

In image classification, Layerwise Relevance
Propagation (LRP) (Bach et al., 2015) has been
used to decompose backward across the MLP lay-
ers the evidence about the contribution of indi-
vidual input fragments (i.e. pixels of the input
images) to the final decision. Evaluation against
the MNIST and ILSVRC benchmarks suggests
that LRP activates associations between input and
output fragments, thus tracing back meaningful
causal connections.

In this paper, we propose the use of a simi-
lar mechanism over a linguistically motivated net-
work architecture, the Kernel-based Deep Archi-
tecture (KDA), (Croce et al., 2017). Tree Ker-
nels (Collins and Duffy, 2001) are here used to
integrate syntactic/semantic information within a
MLP network. We will show how KDA input
nodes correspond to linguistic instances and by ap-
plying the LRP method we are able to trace back
causal associations between the semantic classifi-
cation and such instances. Evaluation of the LRP
algorithm is based on the idea that explanations



improve the user expectations about the correct-
ness of an answer and shows its applicability in
human computer interfaces.

In the rest of the paper, Section 2 describes the
KDA neural approach while section 3 illustrates
how LRP connects to KDAs. In section 4 early
results of the evaluation are reported.

2 Training Neural Networks in Kernel
Spaces

Given a training set o € D, a kernel K(o0;,0;)
is a similarity function over D? that corresponds
to a dot product in the implicit kernel space,
i.e., K(0;,05) = ®(0;) - (o). Kernel functions
are used by learning algorithms, such as Support
Vector Machines (Shawe-Taylor and Cristianini,
2004), to efficiently operate on instances in the
kernel space: their advantage is that the projec-
tion function ®(0) = Z € R"™ is never explicitly
computed. The Nystrom method is a factorization
method applied to derive a new low-dimensional
embedding Z in a [-dimensional space, with [ < n
sothat G ~ G=XX", where G = XX is
the Gram matrix such that G;; = ®(0;)®(0;) =
K (0;,0;). The approximation G is obtained using
a subset of [ columns of the matrix, i.e., a selec-
tion of a subset L C D of the available exam-
ples, called landmarks. Given | randomly sam-
pled columns of G, let C' € RIPIX! be the ma-
trix of these sampled columns. Then, we can re-
arrange the columns and rows of G and define
X = [X1 Xo] such that:

o-[sf F-Lf

XJ X1 XJXo X)X,

where W = XlTXl, i.e., the subset of GG that con-
tains only landmarks. The Nystrom approxima-
tion can be defined as:

G~G=0cwfcT (1)

where W denotes the Moore-Penrose inverse of
W. If we apply the Singular Value Decomposition
(SVD) to W, which is symmetric definite posi-
tive, we get W = USV' = USU". Then it
is stralghtforward to see that Wi = USTIUT =
US~252UT and that by substitution G ~ G =
(CUSff)(C’US ) = XX'. Given an exam-
ple o € D, its new low-dimensional representation
1 is determined by considering the corresponding
item of C' as

NI

=cUS™

ISIN
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where ¢ is the vector whose dimensions contain
the evaluations of the kernel function between o
and each landmark o; € L. Therefore, the method
produces [-dimensional vectors.

Given a labeled dataset, a Multi-Layer Percep-
tron (MLP) architecture can be defined, with a spe-
cific Nystrom layer based on the Nystrom embed-
dings of Eq. 2, (Croce et al., 2017).

Such Kernel-based Deep Architecture (KDA)
has an input layer, a Nystrom layer, a possibly
empty sequence of non-linear hidden layers and a
final classification layer, which produces the out-
put. In particular, the input layer corresponds to
the input vector ¢, i.e., the row of the C' matrix
associated to an example o. It is then mapped to
the Nystrom layer, through the projection in Equa-
tion 2. Notice that the embedding provides also
the proper weights, defined by U S _%, so that the
mapping can be expressed through the Nystrom
matrix Hy, =U S72: it corresponds to a pre-
training stage based on the SVD. Formally, the
low-dimensional embedding of an input example
o, f=¢cH Ny = C US_% encodes the kernel
space. Any neural network can then be adopted:
in the rest of this paper, we assume that a tradi-
tional Multi-Layer Perceptron (MLP) architecture
is stacked in order to solve the targeted classifica-
tion problems. The final layer of KDA is the clas-
sification layer whose dimensionality depends on
the classification task: it computes a linear classi-
fication function with a softmax operator.

A KDA is stimulated by an input vector ¢ which
corresponds to the kernel evaluations K(o,l;)
between each example o and the landmarks [;.
Linguistic kernels (such as Semantic Tree Ker-
nels (Croce et al., 2011)) depend on the syntac-
tic/semantic similarity between the x and the sub-
set of /; used for the space reconstruction. We will
see hereafter how tracing back through relevance
propagation into a KDA architecture corresponds
to determine which semantic landmarks contribute
mostly to the final output decision.

3 Layer-wise Relevance Propagation in
Kernel-based Deep Architectures

Layer-wise Relevance propagation (LRP, pre-
sented in (Bach et al., 2015)) is a framework which
allows to decompose the prediction of a deep neu-
ral network computed over a sample, e.g. an im-



age, down to relevance scores for the single input
dimensions, such as a subset of pixels.

Formally, let f : R? — R* be a positive real-
valued function taking a vector # € R? as input: f
quantifies, for example, the probability of Z char-
acterizing a certain class. The Layer-wise Rele-
vance Propagation assigns to each dimension, or
feature, x4, a relevance score Rl(jl) such that:

f(z) =~ Y ,RY 3)

Features whose score Rﬁll) > 0 (ord Rg) < 0)
correspond to evidence in favor (or against) the
output classification. In other words, LRP allows
to identify fragments of the input playing key roles
in the decision, by propagating relevance back-

wards. Let us suppose to know the relevance score
R;Hl) of a neuron j at network layer [ + 1, then it

(Li+1)

can be decomposed into messages I7;,” ;  sentto
neurons ¢ in layer /:
l+1 (1,14+1)
Z rY @

Hence the relevance of a neuron ¢ at layer / can be

defined as:
(1l
= > RV (5)
JE(+1)

Note that 4 and 5 are such that 3 holds. In this

work, we adopted the e-rule defined in (Bach et
(LI+1) .

al., 2015) to compute the messages R, ; ', i.e.
Rz(f_l;rl) Zij RUHD)

zj + € - sign(z;) 7

where z;; = z;w;; and € > 0 is a numerical stabi-
lizing term and must be small. Notice that weights
w;; correspond to weighted activations of input
neurons. If we apply LRP to a KDA it implic-
itly traces the relevance back to the input layer,
i.e. to the landmarks. It thus tracks back syntac-
tic, semantic and lexical relations between a ques-
tion and the landmark and it grants high relevance
to the relations the network selected as highly dis-
criminating for the class representations it learned;
note that this is different from similarity in terms
of kernel-function evaluation as the latter is task
independent whereas LRP scores are not. Notice
also that each landmark is uniquely associated to
an entry of the input vector ¢, as shown in Sec 2,
and, as a member of the training dataset, it also
corresponds to a known class.

4 Explanatory Models

LRP allows the automatic compilation of justifica-
tions for the KDA classifications: explanations are
possible using landmarks {¢} as examples. The
{¢} that the LRP method produces as the most ac-
tive elements in layer O are semantic analogues of
input annotated examples. An Explanatory Model
is the function in charge of compiling the linguis-
tically fluent explanation of individual analogies
(or differences) with the input case. The mean-
ingfulness of such analogies makes a resulting ex-
planation clear and should increase the user confi-
dence on the system reliability. When a sentence
o is classified, LRP assigns activation scores 7’@ to
each individual landmark ¢: let L) (or L(-)) de-
note the set of landmarks with positive (or nega-
tive) activation scores.

Formally, an explanation is characterized by a
triple e = (s, C, 7) where s is the input sentence,
C is the predicted label and 7 is the modality of the
explanation: 7 = +1 for positive (i.e. acceptance)
statements while 7 = —1 correspond to rejections
of the decision C'. A landmark ¢ is positively acti-
vated for a given sentence s if there are not more
than k — 1 other active landmarks! ¢ whose acti-
vation value is higher than the one for /, i.e.

{0 e L) 0 £onry >0 >0} <k

A landmark is negatively activated when: |{{' €
L&) o0 £ A7 < 18 < 0} < k. Positively
(or negative) active landmarks in Ly are assigned
to an activation value a(¢,s) = +1 (—1). For all
other not activated landmarks: a(¢, s) = 0.

Given the explanation e = (s, C, 7), a landmark
£ whose (known) class is Cy is consistent (or in-
consistent) with e according to the fact that the
following function:

6(C, C) -all,q) - 7
is positive (or negative, respectively), where
0(C",C) = 20pron(C" = C) — 1 and ko, is the
Kronecker delta.

The explanatory model is then a function
M(e, Lj;) which maps an explanation e, a sub set
L, of the active and consistent landmarks L for e
into a sentence in natural language. Of course sev-
eral definitions for M (e, L) and Ly, are possible.

'k is a parameter used to make explanation depending on
not more than k landmarks, denoted by L.



A general explanatory model would be:

“s1is C since it is similar to £ ”
VeeLf ift>0

“ s is not C since it is different
from ¢ whichis C'”
Vie L, ifTt <0

./\/l(e, Lk) =

“sis C but I don’t know why ”
ifLp=10

where L;,LI; C Ly, are the partitions of landmarks
with positive (and negative) relevance scores in
Ly, respectively. Here we provide examples for
two explanatory models, used during the experi-
mental evaluation. A first possible model returns
the analogy only with the (unique) consistent land-
mark with the highest positive score if 7 = 1
and lowest negative when 7 = —1. The ex-
planation of a rejected decision in the Argument
Classification of a Semantic Role Labeling task
(Vanzo et al., 2016), described by the triple e; =
(’vai in camera da letto’, SOURCEBgiNGING, —1)»

18:

I think ”in camera da letto” IS NOT [SOURCE] of
[BRINGING] in ”Vai in camera da letto” (LU:[vai]) since
it’s different from ”sul tavolino” which is [SOURCE] of
[BRINGING] in “Portami il mio catalogo sul tavolino”
(LU:[porta])

The second model uses two active land-
marks: one consistent and one contradictory
with respect to the decision. For the triple
e1 = (’vaiin camera da letto’;, GOALMorion, 1)
the second model produces:

I think ”’in camera da letto” IS [GOAL] of [MOTION] in
”Vai in camera da letto” (LU:[vai]) since it recalls al
telefono” which is [GOAL] of [MOTION] in ”Vai al telefono
e controlla se ci sono messaggi” (LU:[vai]) and it IS NOT
[SOURCE] of [BRINGING] since different from ”sul
tavolino” which is the [SOURCE] of [ BRINGING] in

” Portami il mio catalogo sul tavolino” (LU:[portami))

4.1 Evaluation methodology

In order to evaluate the impact of the produced ex-
planations, we defined the following task: given a
classification decision, i.e. the input o is classified
as C, to measure the impact of the explanation e
on the belief that a user exhibits on the statement
“o € C'is true”. This information can be mod-
eled through the estimates of the following prob-
abilities: P(o € C) that characterizes the amount

of confidence the user has in accepting the state-
ment, and its corresponding form P(o € Cle),
i.e. the same quantity in the case the user is pro-
vided by the explanation e. The core idea is that
semantically coherent and exhaustive explanations
must indicate correct classifications whereas inco-
herent or non-existent explanations must hint to-
wards wrong classifications. A quantitative mea-
sure of such an increase (or decrease) in confi-
dence is the Information Gain (IG, (Kononenko
and Bratko, 1991)) of the decision 0o € C'. Notice
that IG measures the increase of probability corre-
sponding to correct decisions, and the reduction of
the probability in case the decision is wrong. This
amount suitably addresses the shift in uncertainty
—loga(P(-)) between two (subjective) estimates,
i.e.,, P(o € C)vs. P(o € Cle).

Different explanatory models M can be also
compared. The relative Information Gain 4
is measured against a collection of explanations
e € Ty generated by M and then normalized
throughout the collection’s entropy &£ as follows:

1 1
Im=—=r— I(e

ecTym
where I(e) is the IG of each explanation?.

5 Experimental Evaluation

The effectiveness of the proposed approach has
been measured against two different semantic pro-
cessing tasks, i.e. Question Classification (QC)
over the UIUC dataset (Li and Roth, 2006) and Ar-
gument Classification in Semantic Role Labeling
(SRL-AC) over the HuRIC dataset (Bastianelli et
al., 2014; Vanzo et al., 2016). The adopted archi-
tecture consisted in a LRP-integrated KDA with 1
hidden layers and 500 landmarks for QC, 2 hid-
den layers and 100 landmarks for SRL-AC and a
stabilization-term ¢ = 10e~5.

We defined five quality categories and asso-
ciated each with a value of P(o € Cle), as
shown in Table 1. Three annotators then inde-
pendently rated explanations generated from a col-
lection composed of an equal number of correct
and wrong classifications (for a total amount of
300 and 64 explanations, respectively, for QC and
SRL-AC). This perfect balancing makes the prior
probability P(o € C') being 0.5, i.e. maximal en-
tropy with a baseline IG = 0 in the [—1, 1] range.
Notice that annotators had no information on the

More details are in (Kononenko and Bratko, 1991)



Category P(o € Cle) 1—P(o € Cle)
V.Good 0.95 0.05
Good 0.8 0.2
Weak 0.5 0.5
Bad 0.2 0.8
Incoher. 0.05 0.95

Table 1: Posterior probab. w.r.t. quality categories

Model QC SRL-AC
One landmark 0.548 0.669
Two landmarks 0.580 0.784

Table 2: Information gains for two Explanatory
Models applied to the QC and SRL-AC datasets.

system classification performance, but just knowl-
edge of the explanation dataset entropy.

5.1 Question Classification

Experimental evaluations® showed that both the
models were able to gain more than half the bit re-
quired to ascertain whether the network statement
is true or not (Table 2). Consider:

I think ”What year did Oklahoma become a state ?” refers
to a NUMBER since recalls me "The film Jaws was made in

what year ?”

Here the model returned a coherent supporting ev-
idence, a somewhat easy case as for the available
discriminative pair, i.e. “"What year”. The sys-
tem is able to capture semantic similarities even in
poorer conditions, e.g.:

1 think ”Where is the Mall of the America ?” refers to a
LOCATION since recalls me ”What town was the setting for
The Music Man ?” which refers to a LOCATION.

This high quality explanation is achieved even if
with such poor lexical overlap. It seems that richer
representations are here involved with grammati-
cal and semantic similarity used as the main in-
formation involved in the decision at hand. Let us
consider:

I think ”Mexican pesos are worth what in U.S. dollars ?”
refers to a DESCRIPTION since it recalls me ”What is the

Bernoulli Principle ?”

Here the provided explanation is incoherent, as ex-
pected since the classification is wrong. Now con-
sider:

1 think ”What is the sales tax in Minnesota ?” refers to a

NUMBER since it recalls me ”What is the population of

Mozambique ?” and does not refer toa ENTITY since
different from ”What is a fear of slime ?”.

3For details on KDA performance against the task, see
(Croce et al., 2017)

Although explanation seems fairly coherent, it is
actually misleading as ENTITY is the annotated
class. This shows how the system may lack of
contextual information, as humans do, against in-
herently ambiguous questions.

5.2 Argument Classification

Evaluation also targeted a second task, that is Ar-
gument classification in Semantic Role Labeling
(SRL-AC): KDA is here fed with vectors from
tree kernel evaluations as discussed in (Croce et
al., 2011). The evaluation is carried out over
the HuRIC dataset (Vanzo et al., 2016), including
about 240 domotic commands in Italian, compris-
ing of about 450 roles. The system has an accuracy
of 91.2% on about 90 examples, while the training
and development set have a size of, respectively,
270 and 90 examples. We considered 64 explana-
tions for measuring the 1G of the two explanation
models. Table 2 confirms that both explanatory
models performed even better than in QC. This is
due to the narrower linguistic domain (14 frames
are involved) and the clearer boundaries between
classes: annotators seem more sensitive to the ex-
planatory information to assess the network deci-
sion. Examples of generated sentences are:

1 think con me” is NOT the MANNER of COTHEME in
”Robot vieni con me nel soggiorno? (LU:[vieni])” since it
does NOT recall me ’lentamente” which is MANNER in
" Per favore segui quella persona lentamente (LU:[segui])”.
It is rather COTHEME of COTHEME since it recalls me
”mi” which is COTHEME in ”Seguimi nel bagno
(LU:[seguil)”.

6 Conclusion and Future Works

This paper describes an LRP application to a KDA
that makes use of analogies as explanations of a
neural network decision. A methodology to mea-
sure the explanation quality has been also pro-
posed and the experimental evidence confirms the
effectiveness of the method in increasing the trust
of a user upon automatic classifications. Future
work will focus on the selection of subtrees as
meaningful evidences for the explanation, or on
the modeling of negative information for disam-
biguation as well as on more in depth investigation
of the landmark selection policies. Moreover, im-
proved experimental scenarios involving users and
dialogues will be also designed, e.g. involving fur-
ther investigation within Semantic Role Labeling,
using the method proposed in (Croce et al., 2012).
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