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Abstract. Type inference for resources in Knowledge Graphs is a widely
studied problem, for which different approaches have been proposed, in-
cluding reasoning, statistical analysis, and the usage of the textual in-
formation related to the resources. We focus on the latter, exploiting
text classification techniques for predicting semantic types from textual
descriptions. In this paper we introduce NLP4Types, an online tool that
combines different standard NLP techniques and classifiers for predict
types based on DBpedia abstracts, as well as to collect feedback from
the users for those predictions.
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1 Introduction

Type statements, that is, assertions of types for entities, are the most basic and
fundamental piece of information for semantic resources. This information can be
generated by different means, including manual, automated and semi-automated
approaches. In this paper we cover DBpedia, which is generated automatically
from the information contained in Wikipedia, using a set of translation map-
pings, from the entries in tabular format contained the infoboxes of each page.
As not all pages contain infoboxes it is not always possible to generate type infor-
mation. According to our calculation, around a 16% of resources from Wikipedia
do not have any type mapped to DBpedia. We have also to take into account
that, even in those cases in which this information can be generated, it is not al-
ways complete or correct, as mappings are defined manually and collaboratively
by users.

In this paper we explore how textual abstracts can be exploited, using NLP
techniques, to classify entries into the DBpedia ontology. We combine document-
to-term matrix and Named Entity Recognition to train a model that we later
use to predict types from free text on our tool. We have evaluated our model
using K-fold evaluation and a well-known gold standard, obtaining high results.
The final result of this process is NLP4Types1, an online tool that allows user
to explore type predictions and to collect feedback from them.
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1http://nlp4types.linkeddata.es



2 Related Work

Typing resources on large datasets is a widely studied problem that has been
addressed during last decade, being SDType [7] the most prominent system.
SDType exploits the statistical information of property distribution to infer new
typing statements. Other approaches have been introduced, exploiting different
NLP-based techniques for type assignment based on text [3, 2]. In [5] a hier-
archy of Support Vector Machines (hSVM) is introduced for applying lexico-
syntactic patterns using a bag-of-words model, extracted from short abstracts
and Wikipedia categories. This work extends the Linked Hypernym Dataset
Framework [4], by the same authors, for extracting these pattern-based struc-
tures. These works introduce also the LHD Gold Standard dataset, which we use
in this paper, to measure the performance of our system and compare it to other
existing tools. This gold standard has been produced, as reported by authors,
using experts to assign types to a subset of the English DBpedia resources. We
have used it to evaluate our system, as it provides means for comparing our
contribution to both, hSVM and SDType.

3 Text Classification

We have implemented a pipeline in which different NLP techniques are combined,
for a total of seven steps. These are the main features of these steps: A) Get
Abstract text: get the text from available abstracts. All those resources that
do not have an abstract are discarded as they can not be used to train our
system. B) Named Entity Recognition: using DBpedia Spotlight [1] the
system detects the Named Entities (NE) on the text, obtaining their types.
The surface form of those entities is simply ignored and only the types (e.g.
Person, Organization) are used, adding them as new words to the text. C) Text
pre-process: apply several text normalization techniques on the abstracts (i.e.
stop words, lemmatization, and stemming). D) Data Vectorization: translate
textual data into a vector space model, using a Bag of Words approach. We apply
a TF-IDF metric to get a more discriminatory score. E) Training: train the
classifier, using the vectorized data generated before. We have used a Support
Vector Machine classifier, as they has been proven to be efficient, performing
at the state-of-the-art level2. F) Prediction: predict types either from test
data, reserved during the training phase, or from new unseen data. We use these
training and prediction steps when validating our approach against the gold
standard. G) Evaluation: evaluating the results obtained, comparing how
the predictions fit the labelled data. To reduce overfitting, we apply a 5-fold
evaluation and the aforementioned gold standard.

2https://nlp.stanford.edu/IR-book/html/htmledition/

support-vector-machines-and-machine-learning-on-documents-1.html



The system has been implemented in Python, including NLTK [6] and scikit-
learn [8] libraries for NLP and machine learning processing. The code is available
online.3

4 Evaluation

We have selected four main metrics for evaluating our results. In a general clas-
sification problem, if the predicted label is not the same as the expected one, the
prediction is computed as an error. However, when working with labels struc-
tured in a hierarchy, more flexible evaluation metrics can be defined to take this
into account. This is discussed in [5], where authors use the hierarchical preci-
sion, recall, and F-measure to evaluate the performance of different systems over
the same gold standard used in our evaluation. Thus, we use these metrics, plus
the regular accuracy, to evaluate our system.

We have executed our evaluation using the English version of the DBpedia
dataset, from the 2016-10 release, which contains a total of 3.048.742 resources
with both type and abstract. Resources that are typed only with owl:Thing are
not considered, as inferring this type is trivial and does not add any information
for the classification problem. We have executed a 5-fold evaluation over the
DBpedia resources, to obtain performance results. We have also evaluated it us-
ing the aforementioned gold standard, using only the resources with an abstract
associated. From the total of 2.092 resources, 1.825 meet this requirement.

The results obtained are depicted in Table 1. As we can see, the more data we
are able to use for training the system, the more precise it gets, obtaining around
a 95% of hierarchical F-measure when using the full training set. By using the
gold standard dataset, we can compare our system to hSVM and SDType4. As
we can see, in general, our system outperforms both hSVM and SDType over
the gold standard resources.

Table 1: Results of 5-Fold and Gold Standard (GS) evaluations

Resources Acc. hPrec hRecall hF-measure GS Acc. GS hPrec GS hRecall GS hF-meas.

NLP4Types 0,835 0,952 0,949 0,950 0,449 0,827 0,822 0,825

hSVM - - - - 0,548 0,890 0,665 0,761

SDType - - - - 0,338 0,809 0,641 0,715

5 NLP4Types

Based on the NLP pipeline introduced above, the online interface of NLP4Types
allows user to predict types from any free-text sample. The current version of
the tool includes a model trained with all the resources from DBpedia 2016-10,

3https://github.com/idafensp/NLP4Types
4We have included only the highest results reported, shown in Table 6 of the cited

paper by Kliegr et. al. [5]



which is used to predict types. Currently only types belonging to the DBpedia
ontology are predicted.

Once a prediction is obtained, the user can evaluate the result and provide
feedback. As shown in Figure 1, five different criteria are provided, to specify
whether the prediction is wrong or right, or how it should be improved. Once
the user selects one, it is asked for some extra feedback, including the expected
type, user expertise and text source. The main goal of this tool is to collect this
feedback and allow to analyze and improve the system and its evaluation

Fig. 1: Screenshot of the NLP4Types GUI

The system and interface described in this paper are the first steps on explor-
ing how NLP techniques can be applied to infer types in semantic Knowledge
Graphs. They set the foundation for future work in which the feedback collected
and the different techniques applied will provide a better insight on the problem
and its solutions.
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