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Abstract 

The main goal of this paper is to compare 
different Vehicle Detection algorithms and to 
provide an effective comparison technique for 
developers and researchers. During this study, 
fine tunings are suggested to improve the 
implementations of these algorithms. Our focus 
on Support Vector Machines (SVM) and then 
Deep Learning based approaches. The SVM 
based vehicle detection implementation utilizes 
Histogram Oriented Gradients (HOG). The 
deep learning approach we consider is the 
YOLO implementation. Our evaluation 
employs 400 random frames extracted from a 
real world driving video. As stated by the 
experimental results, YOLO is more accurate 
with %81.9 success than SVM which only 
scored %57.8.  

1. Introduction 

According to the World Health Organization (WHO), 
1.25 million people die each year from traffic accidents 
[WHO15]. Prevention of traffic accidents and 
punishment of drivers who violate the rules are of great 
importance for humanity. Many municipalities are using 
automated camera system to detect cars that violates 
traffic rules. Proper operation of these systems is crucial 
to avoid further traffic accidents. 

It is estimated that 1 in every 10 cars in traffic will be 
composed of vehicles capable of self-driving in 2030 
and 1 in every 3 in 2050 [MKG+16]. It is obvious that 
the safety of future traffic will be directly linked to the 
quality of the software these vehicles will be using. For 
both software, detecting vehicles who violate the rules 
and self-driving vehicles, it is critical to identify images 
correctly.  

There are several techniques in the literature suited 
for vehicle detection task. Existing papers suggests 
using acoustic sensor networks [WCH17], wavelet and 
interest point based feature extraction [KB13], edge-
based constraint filters based vehicle segmentation 
[Sri02] and time spatial data [MRR10].  

Besides, there are also simulation-based approaches 
to help drivers. For example, [PYL+15] proposed an 
increased reality system to increase the driver's 
immediate attention. The system calculates the 
probability of collision with the vehicles in the same 
lane as the driver and colorizes the lanes according to 
the risk ratio. In [RSL+14], it is aimed to help middle-
aged and older drivers to make a left turn in running 
traffic. Drivers have been given hints to return with 
augmented reality for their left turns in different 
scenarios such as heavy traffic and flowing traffic. 

In this paper, we focus on SVM-based vehicle 
detection technique, where we can simplify vehicle 
detection problem to a classification problem by 
examining individual sections of image and classify 
whether it is a vehicle image or not a vehicle. On the 
other side, we consider Deep Learning approaches that 
automatically learn image features that are required for 
vehicle detection. There are different deep learning 
techniques such as Region-based Convolutional 
Network (R-CNN) [GDD+14], Fast R-CNN [Gir15], 
Faster R-CNN [RHG+17] and You Only Look Once 
(YOLO) [RDG+16]. We choose YOLO as it is the faster 
among these techniques [DU18]. The basic aim is to 
provide an effective comparison technique for 
developers and researchers. 

The organization of the paper is as follows: In Section 
2, we present vehicle detection techniques that we 
employ in our study. Section 3 provides the comparative 
study and Section 4 concludes the paper. 

2. Vehicle Detection Approaches 

Our study contains two major components. First 
phase is detecting vehicles using SVM and deep 
learning with YOLO. Second phase is comparing 
accuracy and performance of these two methods. 

As our starting point we utilized implementation of 
[Fu17] that includes a classical SVM approach using 
OpenCV and Histogram of Oriented Gradients (HOG) 
feature extraction as well as a deep neural network with 
YOLO tensor flow implementation using pre-trained 
weight object [Cho16]. To simplify the problem we only 
considered cars as vehicles. 
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2.1 SVM-based Vehicle Detection using HOG  

In this approach, we used supervised learning with 
pre-categorized images. We used the images provided 
by GTI vehicle database [GTI18].  There are 3425 
images of vehicle rears and 3900 images of road 
sequences not containing vehicles. All images are 64x64 
pixels. Figure 1 shows a vehicle image and a non-vehicle 
image. 

Figure 1: A vehicle image (left) and a non-vehicle 

image (right) in [GTI18]. 

First step to prepare the images for SVM classifier is 
to extract HOG features. The main purpose of HOG is 
to identify the image as a group of local histograms.  

HOG is not scale invariant. In order to use HOG we 
needed the same size for our training images. All our 
training set images were already the same size of 64x64 
so we were able to use our images directly. Figure 2 
shows our HOG implementation details. 

Figure 2: HOG Implementation. (The image source: 

https://software.intel.com/en-us/ipp-dev-reference-

histogram-of-oriented-gradients-hog-descriptor) 

 

The HOG technique counts the occurrences of the 
gradient orientation of the localized regions of an image. 
First image is divided into small connected cells, and for 
each cell gradient directions are calculated. Each cell is 
splitted into angular bins according to the gradient 
orientation. The pixel of each cell adds the weight 
gradient to the corresponding angular bin. Groups of 
adjacent cells are called blocks. The grouping of cells to 
blocks is the basis of normalization of histograms. This 
normalized group of histograms generates the block 
histogram and set of block histograms represents the 
descriptor [Int18]. Figure 3 shows a car image and the 
corresponding HOG transformation. 

 

Figure 3: HOG Transformation of a car image. 

To train the model we randomly split the data into 
two parts with respect to 5-fold. %80 percent is used for 
training and %20 percent is used for test, as suggested 
by most of the learning schemes. 

We explored different parameters and color spaces 
for our images to get better results. After some trial and 
error we managed to get %86.7 success rate. 

We wanted to test the classifier on a large scale 
images. We found raw driving video data on KITTI 
Vision Benchmark Suite [KIT18]. We modified the 
code to make it work on 1392 x 512 pixels which is the 
resolution of raw driving video data.  
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The 64x64 pixel block of search windows is used to 
search the entire frame. We used 50% percent overlap 
for search windows. For each window, our SVM 
classifier is used to detect if there is a vehicle or not. 
Figure 4 shows how search windows are used. 

Figure 4: Search Windows (The image source: 

https://raw.githubusercontent.com/JunshengFu/vehicle-

detection/master/examples/search_windows.png ) 

To get the exact locations of vehicles, heat map 
generation is used with the windows that may have 
vehicle. Figure 5 shows a successfully detected vehicle 
using SVM. 

Figure 5: Vehicle Detected with SVM 

2.2 Deep Learning based Vehicle Detection 

We chose the YOLO technique for this purpose. 
YOLO uses deep neural network to detect objects. Yolo 
approaches object detection as a simple single 
regression problem to find bounding boxes class 
probabilities. YOLO is trained on full images and it 
predicts multiple bounding boxes using single neural 
network. First, YOLO model accepts an image as input 
then divides it into an SxS grid. Each cell of this grid 

estimates the B bounding boxes and C class 
probabilities. The bounding box has 5 components: x, y, 
w, h and confidence. The (x, y) are center coordinates of 
the box. The (w, h) are dimensions. The confidence 
score tells us if there is any shape in the box. If the score 
is zero then there should be no object in the cell.  Each 
grid cell makes B predictions, so there are total of S x S 
x B x 5 outputs. The network predicts one class 
probability per cell that results S x S x C total 
probabilities. Figure 6 shows YOLO object detection 
and Figure 7 shows YOLO execution pipeline. 
 

Figure 6: YOLO Object Detection [RDG+16] 

Figure 7: YOLO Pipeline [RDG+16] 

We utilized [Fu17] code, which employs tensorflow 
implementation of YOLO [Cho16]. It uses pre-trained 
YOLO_small network, which has 20 classes as follows: 
"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", 
"car", "cat", "chair", "cow", "dining table", "dog", 
"horse", "motorbike", "person", "potted plant", "sheep", 
"sofa", "train","tv monitor". Since vehicle is already 
known as “car”, we were able to use precomputed 
settings and apply it directly to our inputs. We used 30% 
threshold, cells whose car class score is 0.3 or more are 
selected. Figure 8 shows a successfully detected vehicle 
using YOLO.  
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Figure 8: Vehicle Detected with YOLO 

3. Comparing SVM and YOLO 

We tested both algorithms on the same randomly 
selected raw driving video data. Random data contains 
400 images with total of 266 vehicles in them. 

  
Test results are evaluated in 3 categories; 

 Positive : Vehicle detected correctly 
 Negative: Vehicle is not detected. 
 False Positive: Non-vehicle is detected as 

vehicle. 
 

Figure 9 shows a sample snapshot of our 

experimental study employing SVM-based technique. 

SVM generated a lot of false positives. In some frames, 

SVM identified road signs, trees and pedestrians as 

vehicles. These false negatives may be avoided if a pre 

road line detection is performed. Thus, we can limit 

SVM search window within actual road. 

 

 

Figure 9: Sample Snapshot of SVM-based technique. 

 

Figure 10 shows a sample snapshot of our 

experimental study employing deep learning based 

YOLO technique.  YOLO downscales images to 

448x448 which causes distortions.  With pre road or line 

detection, we can send smaller and more useful 

segments to YOLO to avoid distortions and get better 

results.  

 

 

Figure 10: Sample Snapshot of YOLO technique. 

 

Both algorithms failed to detect vehicles, which are 

further ahead. We may be able to detect these further 

vehicles with SVM using higher resolution data. 

However higher resolution data would require more 

computation and therefore the performance would be 

worse. As for YOLO, which downscales pictures to 

448x448 pixels, it is useless to use higher resolution 

data. 

Figure 11: Test results for SVM 

 



 

 

 

Figure 12: Test results for YOLO 

 

Figure 13: Overall Test Results. 
 

Our test results shows that YOLO’s success rate is 
81.9%, 218 out of 266, and SVM’s is %57.8, 154 out of 
266. It also has significantly lower false positives with 5 
against SVM’s 84. When we apply false negatives 
YOLO’s success rate drops to 80.4% and SVM’s drops 
to 44%.  

One reason of high false positives of SVM is that 

unlike YOLO, who can classify 20 different types, SVM 

can only identify vehicles. YOLO lowers the class 

probability if there is another possible object in the 

frame, which lowers the chance of false positives.  

We processed the entire video using Asus Nvdia 

Geforce 1060 gpu. YOLO performed up to 42 fps while 

SVM reach just 4 fps.  This is because YOLO is 

lightweight and use single neural network on given 

frame. On the other hand, SVM needs recursive 

calculations with multiple sliding window calculations. 

 

4. Conclusion and Future Work 

In this paper, we looked into two different vehicle 

detection algorithm implementations and test them 

against real world traffic data. 

Our results showed that deep neural network with 

YOLO performed more accurate results. YOLO also 

performed faster which makes it more suited for real 

time tasks. 

With our approach we are able to find strong and 

weak sides of both models. Thus, we managed to 

implement and suggest fine tunings. Our approach has 

potential to be used to compare different algorithms and 

to be used to find fine tunings. 
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