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ABSTRACT
Human speech processing is often a multimodal process combining
audio and visual processing. Eyes and Ears Together proposes two
benchmark multimodal speech processing tasks: (1) multimodal au-
tomatic speech recognition (ASR) and (2) multimodal co-reference
resolution on the spoken multimedia. These tasks are motivated by
our desire to address the difficulties of ASR for multimedia spoken
content. We review prior work on the integration of multimodal
signals into speech processing for multimedia data, introduce a
multimedia dataset for our proposed tasks, and outline these tasks.

1 INTRODUCTION
Human use of natural language for communication is grounded
in real world entities, concepts, and activities. The importance
of the real world in language interpretation is illustrated in [18],
where participants were presented with a picture of an apple on
a towel, a towel without an apple, and a box. When they heard
the sentence “put the apple on the towel”, their gaze moved to the
towel without an apple, before the reader finished the complete
sentence “put the apple on the towel in the box”. Another example
of visual grounding in language understanding is the McGurk effect
[9]. When participants were exposed to the voiced alveolar stop
(“da”) sound, and to a video, whose lip movement indicates the
voiced bilabial stop (“ba”) sound, they perceived the bilabial sound
rather than the alveolar sound. Furthermore, it is reported that the
presence of a speaker’s face facilitates speech comprehension [19].
These experiments all demonstrate that human language processing
is affected by the context provided in visual signals.

Despite those findings, research on automatic speech recognition
(ASR) has generally focused only on audio signals, even if the use
of visual and contextual information could be considered (e.g., in
multimedia data where the audio is accompanied by a video data
stream and metadata). However, high word error rates (WERs)
of 30-40% are often reported for ASR of multimedia data from
contemporary sources such as YouTube videos and TV shows [1, 8].
More recent work on ASR for YouTube videos illustrates that much
lower WERs are possible [17], but the use of 100k hours of data for
system development is not feasible in many situations.

This paper presents two proposed multimodal speech processing
benchmark tasks motivated by the multimodal nature of human
language processing and the practical difficulty of automated spo-
ken data processing. The reminder of the paper is organised as
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follows: Section 2 reviews previous work on multimodal process-
ing of spoken multimedia data. Section 3 presents an audio-visual
dataset suitable for our proposed tasks. Section 4 introduces our
potential tasks for spoken multimedia understanding. Section 5
provides concluding remarks.

2 PRIORWORK

Figure 1: Comparison of the Grid corpus for AVSR (left) to
the CMU “How-to” corpus for multimodal ASR (right).

The integration of visual information into ASR systems is a long-
standing topic of investigation in the field of audio-visual speech
recognition (AVSR). Motivated by the McGurk effect [9], AVSR aims
to build noise-robust ASR systems by incorporating lip movement
into recognition of phonemes [15]. The most recent approach to
AVSR employs a multimodal deep neural network (DNN) to fuse
visual lip movement with audio features [13].

Although AVSR is known to be effective on noisy audio con-
ditions, application of the AVSR is limited to situations, where a
speaker frontal face is visible to enable lip movement features to be
extracted. Figure 1 shows a comparison of AVSR (Grid corpus) [2]
with multimodal ASR (CMU “How-to” corpus) [3, 16] 1. As shown
in the Grid corpus example, constraints on an AVSR dataset are: (1)
the presence of a speaker mouth region, and (2) precise synchroni-
sation of a visual signal with speech. Multimodal ASR can exploit
any available contextual information to improve ASR accuracy.

Recent work has begun to explore the use of more general mul-
timodal information in ASR. Figure 2 demonstrates a basic frame-
work for the integration of contextual information into ASR using
a DNN acoustic model [4] and a recurrent neural network (RNN)
language model with long short-term memory (LSTM) [5, 10]. In
this framework, a convolutional neural network (CNN) model ex-
tracts a fixed-length image feature vector from the video frame
within the time region of each utterance. The image feature vector
is concatenated with the audio feature vector for the DNN acous-
tic model. Alternatively, the image feature vector can be taken as
1The corpus was also used in the 2018 Jelinek workshop:
https://www.clsp.jhu.edu/workshops/18-workshop/
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the input of the first token of the RNN language model, before
the model reads embedded word tokens of the utterance. It should
be noted that the contextual feature vector does not need to be
extracted from a video frame, but can be taken from any feature
that represents the environment of the utterance being spoken.
Typically, the DNN acoustic model is used for ASR with a weighted
finite-state transducer [11], and the RNN language model re-scores
n-best hypotheses generated in the ASR decoding step.

Figure 2: Framework for integration of visual features into
ASR. A convolutional neural network (CNN) extracts a fixed-
length vector from a video frame, which is appended to ei-
ther an audio feature vector or fed to the neural language
model before reading embedded word tokens.

A number of interesting findings have been reported in the exist-
ing work on multimodal ASR. Gupta et al. extracted object features
and scene features from a video frame randomly chosen fromwithin
the time range of each utterance [3]. They used these features to
adapt the DNN acoustic model and the RNN language model. Scene
features were particularly effective in improving recognition of
utterances being spoken outside. It is likely that enabling the acous-
tic model to know that the audio input may contain background
noise implicitly transforms the audio features into a cleaner rep-
resentation. Moriya and Jones investigated whether video titles
can provide the RNN language model with background context of
each video [12]. They represented each video title as the average
of embedded words in the title, and found that the adapted model
predicted “keywords” of a video better than the non-adapted model
(i.e., “fish” in a fishing video).

Huang et al. conducted a new line of work that connects speech
transcription with vision. In [7], they propose a method to align
entities in a video with actions that produce the entities. Their goal
was to jointly resolve linguistic ambiguities (e.g,. “oil mixed with
salt” can be referred to as “the mixture”), and visual ambiguities (e.g.,
“yogurt” can look similar to “dressing”). This approach was further
extended to a multimodal co-reference resolution system which
links entities in a video with the objects in a transcription, and even
with referring expressions (e.g., “it”) [6]. Their systemwas evaluated
on the YouCook2 dataset, a collection of unstructured cooking
videos [20]. Although spoken transcriptions are accompanied by

video data, the transcriptions are simplified to imperative sentences
and do not represent real utterances that are actually spoken in
videos. We believe that this may form an interesting new task to
analyse environments (video) of utterances (speech) being spoken.

3 DATASET
This section outlines the CMU “How-to” corpus [16]. The corpus
contains instruction videos from YouTube, speech transcriptions
and various types of meta-data (e.g., video titles, video description,
the number of likes). An example image from the corpus is shown
in Figure 1. Audio conditions of videos vary, e.g. some of the videos
are recorded outdoors with background noise present. The corpus
was used for experiments in [3] and [12]. Two different setups of
the corpus are provided: 480 hours of audio and 90 hours of audio.
In the both setups, development and test partition remain the same.
In [12], symbols and numbers in the transcription were removed
or expanded to words. In addition, regions of transcription that are
likely to be a mismatch with audio were rejected. For this reason,
the experimental results in [3] and [12] are not directly comparable.
We propose the creation of a standardised version of the corpus for
development of common multimodal ASR task.

4 TASK DESCRIPTION
We propose two tasks for investigation with spoken multimedia
content: multimodal ASR and multimodal co-reference resolution.

4.1 Multimodal ASR
Multimodal ASR is a conventional ASR task that focuses on the use
of multimodal signals in ASR with effectiveness measured using
standard WER. The two main goals of this task are: (1) identifying
visual or contextual features that contribute to the improvement
of ASR systems; (2) exploring suitable ASR system architectures
for better exploitation of visual or contextual features. The former
encourages participants to explore alternative features available
in videos and meta-data in ASR, e.g., temporal features. The latter
aims to explore unconventional architectures for ASR systems, e.g.,
use of a end-to-end neural architecture [14].

4.2 Multimodal Co-reference Resolution
The goal of multimodal co-reference resolution aims to bridge the
gap between the speech modality and the visual modality. We plan
to provide participants with ASR transcription containing pronouns
and referred objects appearing in a video with the task of resolving
the pronouns. Effectiveness may be measured using F1 scores, as
in [6]. Such resolution may find utility in reducing WER in second
pass ASR decoding.

5 CONCLUSION
This paper presents potential tasks for multimodal spoken content
analysis. The motivation for the use of multimodal grounding in
ASR arises from the multimodal nature of human language under-
standing and from the poor performance of ASR systems, when
applied to multimedia data. Section 2 highlights existing work on
integration of multimodal signals into ASR. Section 3 introduces
a multimodal dataset suitable for use in the proposed tasks, and
Section 4 outlines details of two proposed tasks.
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