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Abstract
The fault detection problem for closed-loop, un-
certain dynamical systems is investigated in this
paper, using different deep-learning based meth-
ods. The traditional classifier-based method
does not perform well, because of the inherent
difficulty of detecting system-level faults for a
closed-loop dynamical system. Specifically, the
acting controller in any closed-loop dynamical
system works to reduce the effect of system-
level faults. A novel generative-adversarial-based
deep autoencoder is designed to classify data
sets under normal and faulty operating condi-
tions. This proposed network performs quite well
when compared to any available classifier-based
methods, and moreover, does not require labeled
fault-incorporated data sets for training purposes.
This network’s performance is tested on a high-
complexity building energy system data set.

1 Introduction
Fault detection and isolation enables safe operation of criti-
cal dynamical systems, along with cost effective system per-
formance and maximally effective control performance. For
this reason, fault detection and isolation research is of inter-
est in many engineering areas, such as aerospace systems
(e.g., [1; 2; 3; 4]), automotive systems (e.g., [5; 6; 7; 8; 9;
10; 11]), photovoltaic systems (e.g., [12; 13; 14; 15; 16; 17;
18]), and building heating and cooling systems (e.g., [20;
21]). For feedback-controlled dynamical systems subjected
to exogenous disturbances, fault detection and isolation be-
comes challenging because the controller expends effort to
compensate for the undesired effect of the fault.

In this paper, we will focus on the fault detection prob-
lem. The objective will be to successfully distinguish data
sets collected under faulty operating conditions from data
sets representative of normal operating conditions. We will
only investigate physical faults that affect the system dy-
namics. One can classify the approaches to fault detection
problems based on the assumption regarding system dynam-
ics, namely linear or nonlinear systems, and based on the use
of a system model for fault detection, either model-driven or
data-driven. Model-driven methods use a model for the dy-
namical system to detect the fault, whereas the data-driven
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methods do not make explicit use of a model of the physical
system. Next we provide a brief overview of the available
literature in all these categories.

The fault detection problem for linear systems was first
formulated in [22] and [23]. Both papers developed
Luenberger-observer based approaches, where the observer
gain matrix decouples the effects of different faults. The
observer-based approach was extended in [24] to include
fault identification by solving the problem of residual gen-
eration by processing the inputs and outputs of the system.
A model- and parameter-estimation based fault detection
method is developed in [25]. An observer-based fault detec-
tion approach, where eigenstructure assignment provides ro-
bustness to the effects of exogenous disturbances, is demon-
strated in [26]. Sliding-mode observers are used in [27] and
[28], who also provide fault severity estimates. Isermann
and Balle [29] provide an overview of fault detection meth-
ods developed in the 1990s, including state and output ob-
servers, parity equations, bandpass filters, spectral analysis
(fast Fourier transforms), and maximum-entropy estimation.

For nonlinear systems, fault detection methods primarily
use the concept of unknown input observability. Control-
lability and observability Gramians for nonlinear systems
are defined in [30]. De Persis and Isidori [31] develop a
differential geometric method for fault detection and isola-
tion. They use the concept of an unobservability subspace,
based on the similar notion for linear systems (see [32]).
The method guarantees the existence of a quotient subsys-
tem of a given system space, which is only affected by the
fault of interest. Martinelli [33] develops a generalized algo-
rithm to calculate the rank of the observable codistribution
matrix (equivalent to the observability Gramian for linear
systems) for nonlinear systems, and demonstrates its appli-
cability for several practical examples, such as motion of a
unicycle, a vehicle moving in three-dimensional space, and
visual-inertial sensor fusion dynamics.

For a model-based fault detection problem, Maybeck et
al. and Elgersma et al. used an assemble of Kalman filters
to match a particular fault pattern in [34] and [35], respec-
tively. Boskovic et al. [36] and [37] develop a multiple
model method to detect and isolate actuator faults, using
multiple hypothesis testing. In [9], a nonlinear observer-
based fault identification method has been developed for a
robot manipulator, which shows an asymptotic convergence
of the fault observer to the actual fault value. Dixon et al.
[5] develop a torque filtering based fault isolation for a class
of robotic manipulator systems. In [38], a model-based fault
detection and identification approach is developed, by using



a differential algebraic and residual generation method.

Data-driven approaches such as [39] and [40], use sys-
tem data to identify the state-space matrices, without using
any knowledge of system dynamics. In [41], for a class of
discrete time-varying networked systems with incomplete
measurements, a least-squares filter paired with a residual
matching (RM) approach is developed to isolate and esti-
mate faults. This approach comprises several Kalman fil-
ters, with each filter designed to estimate the augment sig-
nal, composed of the system state and a specific fault signal,
associated with it. An adaptive fault detection and diagno-
sis method is developed in [42], by implementing a clus-
tering approach to detect faults. For incipient faults, Har-
mouche et al. in [43] used a principal component analysis
(PCA) framework to transform a data set with faulty oper-
ating conditions into either principal or residual subspaces.
For nonlinear systems, although data-driven approaches are
effective in many fault identification scenarios, the quality
of fault detection greatly depends on the quality of available
training data and the training data span. Zhang et al. [4] pro-
posed merging data-driven and model-based methods in a
Bayesian framework. In [44], sparse global-local preserving
projections are used to extract sparse transformation vectors
from given data set. The extracted sparse transformation is
able to extract meaningful features from the data set, which
results in a fault related feature extraction, as shown in [44].

Generative adversarial networks (GANs) were introduced
in [45] as data generative models in a zero-sum game frame-
work. The training objective for a GAN is to increase the
error rate of the discriminative network that was trained
on an existing data set. Since their introduction, GANs
have been used to augment machine learning techniques
to do boosting of classification accuracy, generate sam-
ples, and detect fraud [46; 47; 48; 49; 50; 51; 52; 53;
54; 55]. GAN has been proposed as an alternative to
variational autoencoders [56; 57]. Several research pub-
lications propose algorithms that can distinguish between
“true” samples and samples generated by GANs [58; 59;
60; 61].

The remainder of the paper is organized as follows. We
provide a mathematical description of the fault detection
problem along with the proposed approach in Section 2.
In Section 3 we explain the architecture of an autoencoder
and we propose a GAN to generate and classify data sets
with normal and faulty operating conditions. A novel loss
function, suitable for the proposed GAN based autoencoder
network, is developed in Section 3. In Section 4, we first
train and test a support vector machine (SVM) based clas-
sifier, on labeled data sets; (labeling is done based on both
faulty and normal operating conditions). Subsequently, we
demonstrate a way to improve the performance of the de-
signed SVM, by training a GAN based autoencoder on a
Gaussian random data set, which represents data sets with
faulty operating conditions, for training the proposed GAN
based network. In Section 4, we show further improved per-
formance of our proposed GAN based network architecture
using a representative data set with faulty operating condi-
tions generated by taking linear combinations of vectors that
are orthogonal to the principal components of the normal
data set space. Finally, we summarize our findings in Sec-
tion 5.

2 The problem and the proposed method
2.1 Problem description
Figure 1 shows a schematic diagram of a closed-loop dy-
namical system. The dynamics of the system can be mathe-
matically defined as

ẋ = f(x, u, d)

y = g(x, u, d)
(1)

where x : [0,∞) → Rn is the n-dimensional vector
containing system states, u : [0,∞) → Rm is the m-
dimensional vector containing control inputs, d : [0,∞] →
Rp is the p-dimensional vector of exogenous disturbances,
f : Rn×Rm×Rp → Rn is an unknown nonlinear mapping
that represents the system dynamics, y : [0,∞] → Rq is a
vector of measurable system outputs, and g : Rn × Rm ×
Rp → Rq is an unknown nonlinear mapping that represents
the relationship of input to output.

Now we define a fault detection problem for the dynam-
ics in (1) as follows. Given any data set S containing sample
measurement pairs of u and y, identify an unwanted change
in the system dynamics. In order to further generalize the
fault detection problem, we will only use the data set rep-
resenting normal operating conditions. This restriction uses
the fact that having a data set that incorporates faulty oper-
ating conditions indicates either having the capabilities of
inserting system-level faults in the dynamics or having a
known system dynamics f (as in (1)). Developing either
of these aforementioned capabilities involves manual labor
and associated cost. We will further assume that the observ-
able part of the system described in (1) can be sufficiently
identified from the available data set with normal operating
conditions.

2.2 Proposed method description
For the fault detection problem described in Section 2.1, we
develop a GAN based deep autoencoder, which uses data
set with normal operating conditions (let us define this data
space as S0), to successfully identify the presence of faulty
operating conditions in a given data set. In order to do
that, we take the principal components of S0 and use the or-
thogonals to those principal components to define a vector
space S1. Now, the training objective of our proposed GAN
is to “refine” S1, to calculate S2 ⊆ S1, such that S1 be-
comes a representative of the data set that contains system-
level faulty operating conditions. The purpose of our deep
autoencoder is to learn the data structure of S0, by going
through the process of encoding and decoding. Upon se-
lecting an encoding dimension, we map the GAN generated
space S2 to the selected encoding dimension space. Let us
designate the encoded representation of S0 as S∗0 , and S2

as S∗2 . Our final step is to design a classifier, which takes
S∗0 and S∗2 for training. Furthermore, this entire training
process, of both GAN and the deep autoencoder, is done
simultaneously by defining a cumulative loss function.

In order to motivate the requirement of doing an orthog-
onal transformation on S0 to define S1, we demonstrate a
case of defining S1 using Gaussian random noises, and fol-
low the aforementioned training process of the proposed
network. Moreover, a single SVM based classifier is trained
on labeled normal and fault-incorporated data sets, to com-
pare performance with our proposed network for two dif-
ferent cases (orthogonal transformation and Gaussian-noise
based prior selection).



Figure 1: A closed-loop dynamical system.

3 Proposed deep-learning based method
3.1 Overview of autoencoder networks
Autoencoders are multilayer computational graphs used to
learn a representation (encoding) for a set of data, for the
purpose of dimensionality reduction or data compression. In
other words, the training objective of our proposed deep au-
toencoder is to learn the underlying representation of a data
set with normal operating conditions while going through
the encoding transformations. A deep enough autoencoder,
in theory, should be able to extract a latent representation
signature from the training data, which can then be used to
better distinguish normal and faulty operation. An autoen-
coder comprises two different transformations, namely en-
coding and decoding. The architecture of an autoencoder
was first introduced and described by Bengio et al. in [62].
The encoder takes an input vector x ∈ Rd and maps it to a
hidden (encoded) representation xe ∈ Rd′

, through a con-
volution of deterministic mappings. The decoder maps the
resulting encoded expression into a reconstruction vector x′.
We will use the notation E and G for the encoder and de-
coder of the autoencoder respectively.

Let the number of layers in the autoencoder network be
2n + 1, and let yi denote the output for the network’s ith
layer. Then

y0 = x,x′ = y2n+1

yi = σi(w
t
iyi−1 + bi),∀i ∈ [1, 2n+ 1] .

Let θi = {wi, bi} denote the parameters of the ith layer and
σi : R → R be the activation function selected for each
layer of the autoencoder. Let us also define θ = {θi}2n+1

i=1 .
θ defined for this autoencoder is optimized to minimize

the average reconstruction error, given by

θ = arg min
θ

1

m
√
d

m∑
i=1

L(xi,x
′
i) (2)

where L is square of Euclidean distance, defined as
L(x,x′) , ‖x−x′‖2, andm ∈ N is the number of available
data points.

Our proposed autoencoder is trained on the normal data
set, mentioned in Section 4.1. 90% of the normal data (data
span one year, with 5 minute resolution) is used to train the
autoencoder, and the rest 10% is used for testing. Figure 2

shows both training and testing performance of our autoen-
coder with encoding dimension 100, with increase in train-
ing epochs. Furthermore, selecting the proper encoding di-
mension is crucial for the following classifier to perform op-
timally. Figure 2 also demonstrates that the true positive ac-
curacy rate from the classifier decreases when we decrease
the encoding dimension. This signifies the loss of valuable
information, if we keep decreasing the encoding dimension.
For our application, we selected an encoding dimension of
100.

In the next subsection, we give the formulation of our
proposed generative model. Our generative model is in the
spirit of the well-known GAN [45]. Our proposed model
will essentially generate samples that are not from the train-
ing data population. So clearly, unlike GAN, here the ob-
jective is not to fool the discriminator but to learn which
samples are different. We will first formulate our proposed
model and then comment on the relationship of our model
with GAN in detail.

3.2 Our proposed generative model
We will use x1 to denote a sample of the data from the nor-
mal class, i.e., the class for which the training data is given.
Let pdata be the distribution of the normal class. We will de-
note a sample from the abnormal class by x2. In our setting,
the distribution of the abnormal class is unknown, because
the training data does not have any samples from the abnor-
mal class. Our generative model will generate sample x2

from the unknown distribution, pnoise. Note, here we will
use the terminology “data” and “noise” to denote the nor-
mal and abnormal samples. Let pz be the prior of the noise
in the encoding space, i.e., x2 ∼ pnoise = G(pz). Further-
more, letD be the discriminator (a multilayer perceptron for
binary classification), such that

D(x) =

{
1, if x ∼ pdata
0, if x ∼ pnoise

We will solve for E , G, and D in a maximization problem
with the error function V as follows:

V (D, E ,G) = Ex1∼pdata ((1− L(x1,G(E(x1))))

+ log(D(x1))) + Ez∼pz
log(1−D(G(z))) (3)

Note that here, L is as defined in Eq. 2. Furthermore, L
is normalized in [0, 1]. Now, we will state and prove some
theorems about the optimality of the solutions for the error
function V .



Theorem 1. For fixed G and E , the optimal D is

D∗(x) =
pdata(x)

pdata(x) + pnoise(x)
(4)

Proof. Given G and E , V (D, E ,G) can be written as:

V̄ (D) = Ex1∼pdata (log(D(x1))) + Ez∼pz
log(1−D(G(z)))

=

∫
x

(pdata(x) log(D(x)) + pnoise(x) log(1−D(x)))

The above function achieves the maximum at D∗(x) =
pdata(x)

pdata(x)+pnoise(x)
.

Theorem 2. With D∗ and fixed E , the optimal G is attained
when x1 ∼ pdata and x2 ∼ pnoise has zero mutual informa-
tion.

Proof. Observe, from Eq. 3, the first term is maximized if
and only if the loss, L, is zero. Hence, when D = D∗ and E
are fixed, the objective function, V reduces to

Ex1∼pdata (1− L(x1,G(E(x1)))) +H(x1,x2)

−H(x1)−H(x2)

The first term goes to zero, 1, when the reconstruction is
perfect, then, the remaining term is maximized iff,

H(x1,x2)−H(x1)−H(x2) = 0

where H(.) and H(., .) denote the marginal and joint en-
tropies, respectively. Note that, the LHS of the above ex-
pression is the mutual information, which is denoted by
I(x1,x2). Hence, the claim holds.

Theorem 2 signifies that x1 ∼ pdata and x2 ∼ pnoise
have zero mutual information, i.e., the distributions pdata and
pnoise are completely uncorrelated. This is exactly what we
intend to get, i.e., we want to generate abnormal samples
that are completely different from the normal samples (train-
ing data). Now, we will talk about how to choose the prior
pz after commenting on the contrast of our proposed formu-
lation with [45]. In GAN [45], the generator is essentially
mimicking the data distribution to fool the discriminator. On
the contrary, because our problem requires that samples be
generated from outside training data, our proposed genera-
tor generates samples outside the data distribution. Note that
one can choose the Wasserstein loss function in Eq. 3 sim-
ilar to [48]. Below we will mention some of the important
characteristics of our proposed model.

• Though we have called it a GAN based autoencoder,
clearly the decoder G is generating the samples and
hence acts as a generator in GAN.

• In Equation 3, on samples drawn from pdata, au-
toencoder (i.e., both encoder and decoder) acts, i.e.,
G(E(x1)) should be very closed to x1, when x1 ∼
pdata. On the contrary, on z ∼ pz , only the decoder
(generator G) acts. Thus, the encoder is learned only
from pdata, while the decoder (generator) is learned
from both pdata and pz .

• Unlike GAN, here we do not have a two player min
max game, instead we have a maximization problem
over all the unknown parameters. Intuitively, this can
be justified, because we are not generating counterfeit
samples.

How to choose prior pz
If we do not know anything about the structure of the data,
i.e., about pdata, an obvious choice of prior for pz is a uni-
form prior. In this work, we have used PCA to extract the
inherent lower-dimension subspace containing the data (or
most of the data). This is essential not only for the selec-
tion of pz but for the selection of the encoding dimension
as well. By the construction of our proposed formulation,
the support of pz should be in the encoding dimension, i.e.,
in Rd′

. Given the data, we will choose d′ to be the num-
ber of principal directions along which the data has > 90%
variance. The span of these d′ bases will give a point, S, on
the Grassmannian Gr(d′, d), i.e., the manifold of d′ dimen-
sional subspaces in Rd. The PCA suggests that “most of
the data” lies on S. In order to make sure that the generator
generates pnoise different from pdata, we will use the prior pz
as follows.

Let N ∈ Gr(d′, d) be such that N 6= S. Let {ni}d
′

i=1 be
the bases of N . We will say a sample z ∼ pz if zi = xtni,
for all i, for some x ∼ pdata. Without any loss of generality,
assume 2d′ > d; then, we can select the first d − d′ nis to
be orthogonal to S (this can be computed by using Gram-
Schmidt orthogonalization). The remaining {ni}s we will
select from the bases of S.

4 Results
In this section, we will present experimental validation of
our proposed GAN based model. Recall that in our setting,
we have only the “normal” samples in the training set and
both “normal” and “faulty” samples in the testing set. In
the training phase, we will use our proposed GAN based
framework to generate samples from the population that are
uncorrelated to the normal population. We will teach a dis-
criminator to do so. Then, in the testing phase, we will show
that our trained discriminator can distinguish “normal” from
“faulty” samples with high prediction accuracy. Further-
more, we will also show that using the prior, as suggested in
Section 3.1, gives better prediction accuracy than the Gaus-
sian prior.

4.1 Dataset

We use simulation data from a high-fidelity building energy
system emulator. This emulator captures the building ther-
mal dynamics, the performance of the building heating, ven-
tilation, and air conditioning (HVAC), as well as the build-
ing control system. The control sequences that drive op-
eration of the building HVAC are representative of typical
existing large commercial office buildings in the U.S. We
selected Chicago for the building location, and we used the
typical meteorological year TMY3 data as simulation input.
The data set comprises normal operation data and data rep-
resentative of operation under five different fault types. We
use these labeled data sets for training an SVM based clas-
sifier. The five fault types are the following: constant bias
in outdoor air temperature measurement (Fault 1), constant
bias in supply air temperature measurement (Fault 2), con-
stant bias in return air temperature measurement (Fault 3),
offset in supply air flow rate (Fault 4), and stuck cooling
coil valve (Fault 5). Table 1 summarizes the characteristics
of the data set including fault location, intensity, type, and
data length.



Faulty
Component

System Time of
Year

Fault
Intensity

Data Length

- Building
HVAC

Jan-Dec - Yearly

Outdoor air
temperature sensor

Mid-floor
AHU

Feb, May,
Aug, Nov

±2,±4 ◦C Monthly

Supply air
temperature sensor

Mid-floor
AHU

Aug −2 ◦C Monthly

Return air
temperature sensor

Mid-floor
AHU

May-Jun +4 ◦C Monthly

Supply air flow rate
set point

Mid-floor
AHU

May-Jun −0.1 kg/s Monthly

Cooling coil valve
actuator

Mid-floor
AHU

Aug 25%, 50% Monthly

Table 1: Data set includes normal and fault scenarios sampled at 1 minute resolution. AHU is air handling unit.

4.2 Application of SVM on simulated dataset
Support vector machines are statistical classifiers originally
introduced by [63] and [64], later formally introduced by
[65]. In this subsection, we will briefly demonstrate the
use of SVMs for classifying properly labeled datasets with
normal and various faulty operating conditions. SVM sep-
arates a given set of binary labeled training data with a hy-
perplane, which is at maximum distance from each binary
label. Therefore, the objective of this classification method
is to find the maximal margin hyperplane for a given train-
ing data set. For our work, a linear separation is not possi-
ble (i.e., to successfully draw a line to separate faulty and
normal data sets); that motivates the necessity of using a ra-
dial basis function (RBF) kernel ([66]), along with finding a
non-polynomial hyperplane to separate the labeled datasets.

Before describing SVM classification in detail, the RBF
kernel (see [64]) on two samples xi and xj is defined as

Kij , K(xi, xj) = exp
(
−‖xi − xj‖

2

2σ2

)
, (5)

where ‖xi − xj‖ denotes the square of the Euclidean dis-
tance, and σ is a user-defined parameter, selected to be unity
for this work.

A Scikit learning module available in Python 3.5+ is used
for implementation of SVM on the building HVAC data set.
Specifically, NuSVC is used with a cubic polynomial kernel
function to train for normal and faulty data classification. As
the nu value represents the upper bound on the fraction of
training error, a range of nu values from 0.5 to 0.9 are tried
during cross validation of the designed classifier. Table 2
shows the confusion matrix for the designed SVM classifier,
for data sets labeled “normal” and “fault type 1,” where the
true positive accuracy rate is less than 50%. This finding,
as mentioned before, justifies the need to develop an adver-
sarial based classifier, which uses the given normal data to
create representative faulty training dataset.

Table 2: Confusion matrix for simulated building environ-
ment data set using SVM classifier

True diagnosis
Normal Fault 1 Total

Pr
ed

ic
tio

n Normal 43.27% 56.73% 100%
Fault 52.18% 47.82% 100%

4.3 Data set using Gaussian noise
In Table 3, the confusion matrix is shown for the GAN based
autoencoder, where Gaussian noise is used as an input to
GAN, for representing a training class of fault types for
the GAN based autoencoder. From left to right, the values
in Table 4, denote true positive rate (TPR), false positive
rate (FPR), false negative rate (FNR), and true negative rate
(TNR). Although in Table 3, the normal data set gives more
than 90% TPR, the faulty data set gives around 40% TPR.
We can conclude that Gaussian noise as an initial represen-
tative of a faulty data set does not represent a completely
different faulty data set from the normal data set.

Table 3: Confusion matrix for building data set using
Gaussian-noise generator

True diagnosis
Normal Fault Total

Pr
ed

ic
tio

n Normal 93.10% 6.90% 100%
Fault 58.40% 41.60% 100%

4.4 Data set using PCA and orthogonal
projection

Table 4 shows the confusion matrix for the same high fi-
delity building data set, where PCA is used to generate an
initial representative of a fault-incorporated data set as in
Section 3.2. For the sake of completeness, a few other con-
fusion matrix terms are also calculated as follows: TPR is
92.30%, TNR is 72.80%, FPR is 22.76%, FNR is 27.20%,
accuracy (ACC) is 82.55%, positive predictive value (PPV)
is 77.24%, negative predictive value (NPV) is 90.43%, false
discovery rate (FDR) is 22.76%, and finally, false omission
rate (FOR) is 9.57%. Table 4 shows better classification
performance, compared to both the other methods described
before.

Table 4: Confusion matrix for building data set using PCA
transformation

True diagnosis
Normal Fault Total

Pr
ed

ic
tio

n Normal 92.30% 7.70% 100%
Fault 27.20% 72.80% 100%



Figure 2: Change in true positive accuracy with change in encoding dimension (left); Training and testing performance of the
proposed autoencoder with encoding dimension 100 (right)

4.5 Comparison of results
We demonstrated three different methods for the fault detec-
tion problem, applied to a high complexity building data set.
The SVM classifier, despite using labeled data sets, gives
poor TPRs for our data set. Our proposed GAN based deep
autoencoder network is trained and tested using two dif-
ferent training approaches. First, we use a Gaussian-noise
based data set as a representation of space S1 (as in Section
2) to train the designed GAN and simultaneously find a rep-
resentative class for a data set with faults, i.e., S∗2 . Although
the Gaussian-noise based data set gives much better TPR for
the normal data set than the SVM, it performs poorly when
identifying a data set with faulty conditions. Second, we use
orthogonal transformation on the normal data set to generate
S2, and subsequently our proposed GAN based autoencoder
is trained on this new S2 to generate S∗2 . Although the or-
thogonal transformation based training approach gives sim-
ilar TPRs for the normal data set, it gives significantly better
performance for the data set with faulty conditions than the
Gaussian-noise based training approach.

4.6 Group testing
In this section, we will do some statistical analysis of the
output produced by our proposed framework. More specif-
ically, we will do group testing in the encoding space, i.e.,
we will pass the generated noise and the data through the
trained encoder and perform a group test. However, because
we do not know the distribution of the data and noise in the
encoding space, we cannot do a two-sample t-test. We will
develop a group testing scheme for our purpose. Let

{
y1
i

}

and
{
y2
i

}
be two sets of samples in the encoding space gen-

erated using our proposed network. Let
{
C1

i := y1
i

(
y1
i

)t}
and

{
C2

i := y2
i

(
y2
i

)t}
be the corresponding covariance

matrices capturing the interactions among dimensions. We
will identify each of the covariance matrices with the prod-
uct space of Stiefel and symmetric positive definite (SPD)
matrices, as proposed in [67].

Now, we perform the kernel based two-sample test to
find the group difference [68] between

{
C1

i

}
and

{
C2

i

}
.

In order to use their formulation, we first define the intrin-
sic metric we will use in this work. We will use the gen-
eral linear (GL)-invariant metric for SPD matrices, which
is defined as follows: Given X,Y as two SPD matrices,

the distance, d(X,Y ) =

√
trace

(
(Log (X−1Y ))

2
)

. For

the Stiefel manifold, we will use the canonical metric [69].
On the product space, we will use the `1 norm as the prod-
uct metric. As the kernel, we will use the Gaussian RBF,
which is defined as follows: Given C1 = (A,X) and
C2 = (B, Y ) as two points on the product space, the kernel,
k (C1, C2) := exp

(
−d2 (C1, C2)

)
. Here, d is the product

metric. Given
{
C1

i

}N1

i=1
and

{
C2

i

}N2

i=1
, the maximum mean



discrepancy (MMD) is defined as follows:

MMD
({
C1

i

}
,
{
C2

i

})2
=

1

N2
1

∑
i,j

k
(
C1

i , C
1
j

)
−

2

N1N2

∑
i,j

k
(
C1

i , C
2
j

)
+

1

N2
2

∑
i,j

k
(
C2

i , C
2
j

)
(6)

For a level α test, we reject the null hypothesis H0 =
{ samples from the two groups are from same distribution}
if MMD < 2

√
1/maxN1, N2

(
1 +
√
− logα

)
. Finally,

we conclude from the experiments that for our proposed
framework, we reject the null hypothesis with 95% confi-
dence.

5 Conclusion
A novel GAN based autoencoder is introduced in this paper.
This proposed network performs very well when compared
to an SVM based classifier. Although the SVM classifier
uses labeled training data for classification, it still gives less
than 50% TPR for our high complexity simulated data set.
On the other hand, the proposed GAN based deep autoen-
coder gives significantly better performance for two differ-
ent types of training scenarios. The proposed GAN based
autoencoder is initially trained on a random Gaussian data
set. Next, orthogonal projection is used to generate a data
set that is perpendicular to the given normal data set. This
orthogonally projected data set is used as an initial fault-
incorporated data set for our proposed GAN based autoen-
coder for training. Confusion matrices for both training sce-
narios are presented, and both of them perform very well
compared to the SVM based classification approach. Fi-
nally, a statistical group test demonstrates that our encoded
normal and GAN based fault-incorporated data spaces (i.e.,
data sets in S∗0 and S∗2 spaces, respectively) are statistically
different, and subsequently validates the favorable perfor-
mance of our proposed network.
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