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 Abstract: In the paper we present special program 
specification algebras and logics defined for classes of 
quasiary mappings. Informally speaking, such mappings 
are partial mappings defined over partial states (partial 
assignments) of variables. Conventional n-ary mappings 
can be considered as a special case of quasiary mappings.  
Such mappings better reflect properties of software 
systems. We describe methods of reducibility of the 
satisfiability problem in quasiary logics to the 
satisfiability problem in logics of n-ary mappings. The 
methods proposed can be useful for software verification. 
 Keywords: n-ary mapping, quasiary mapping, program 
algebra, specification logic. 

I. INTRODUCTION 
Algebraic approach to software system specification has 

the following two characteristics: 1) the formalism of many-
sorted algebras is used to model such systems; 2) special 
logics based on such many-sorted algebras are used to reason 
about system properties. In the literature various kinds of 
such algebras and logics are described (e.g. see [1, 2]).  

In this paper we present special algebras and logics 
defined for classes of quasiary mappings. Informally 
speaking, such mappings are partial mappings defined over 
partial states (partial assignments) of variables. Conventional 
n-ary mappings can be considered as a special case of 
quasiary mappings. Quasiary mappings better reflect 
properties of software systems therefore construction and 
investigation of algebras and logics of quasiary mapping is an 
important challenge. 

Proposed constructions are based on a composition-
nominative approach [3]. Principles of the approach 
(development of program notions from abstract to concrete, 
priority of semantics, compositionality of programs, and 
nominativity of program data) specify program models as 
composition-nominative systems which consist of 
composition, description, and denotation systems. A 
composition system defines semantic aspects of programs, a 
description system defines program descriptions (syntactic 
aspects), and a denotation system specifies meanings 
(referents) of descriptions. We consider semantics of 
programs as partial functions over a class of data processed 
by programs; compositions are n-ary operations over 
functions. Thus, a composition system can be specified by 
two algebras: data algebra and function algebra. Function 
algebra is the main semantic notion in program formalization. 
Terms of this algebra define syntax of programs (description 
system), and ordinary procedure of term interpretation gives a 
denotation system. 

The constructed program models form a base for 
developing special program logics called composition-

nominative logics (CNL). 
In this paper we continue our work on studying CNL [4–6] 

focusing on quasiary specification algebras and logics. The 
main questions under discussion concern satisfiability 
problems and their reduction to satisfiability problems in 
logics of n-ary mappings. 

II. QUASIARY MAPPINGS 
Quasiary mappings can be met in different branches of 

mathematics, logics, and computer science.  Informally 
speaking, such mappings appear when we use variables 
(names) to construct mapping arguments. Here we consider 
only usage of quasiary mappings in logic semantics and 
formal models of programs. 

The notion of quasiary predicate and function can be 
easily understood when we analyze Tarski’s definition of 
first-order language semantics. This semantics is based on the 
notion of interpretation which consists of two parts: 1) 
interpretation of predicate and function symbols in some 
structure, and 2) interpretation of individual variables in the 
domain of this structure. The latter are usually called variable 
assignments (or valuations) and can be represented by total 
mappings from a set of individual variables (names) V into 
some set of basic values A. The class of such total mappings 
will be denoted AV t→  or AV, and called total nominative 
sets. Thus, Tarski’s semantics interprets predicate and 
function symbols as total quasiary predicates and functions 
defined on the class AV of total nominative sets. In 
applications like model checking, program verification, 
automated theorem proving, etc., partial assignments 
(nominative sets) are often used instead of total assignments. 
The class of such partial mappings will be denoted 

pV A→  or VA, and called partial nominative sets (partial 
data); the term ‘partial is often omitted. Predicates and 
functions over nominative sets are called quasiary. This 
means that formulas and terms can be interpreted as quasiary 
predicates and functions respectively. 

Quasiary mappings also appear in a natural way in 
denotational semantics of programs. In this semantics 
program states are represented as nominative sets, Boolean 
expressions as quasiary predicates of the type V

APr =VA
p→Bool, arithmetical expressions as quasiary functions of 

the type V
AFn = VA p→A, and program statements as bi-

quasiary  functions (program functions) of the type V
APF =VA

p→  VA. Semantics of structured statements is defined by 
the following compositions with conventional meaning:  
assignment composition AS x  (x is a parameter from V), 
composition of sequential execution •, conditional 
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composition IF, loop composition WH. For structural 
expressions we additionally use unary denomination 
composition ′x and various superpositions. 

Thus, we obtain a program algebra with three carriers: 
quasiary predicates, quasiary functions, and bi-quasiary 
functions (program functions).  Such algebras can be called 
algorithmic algebras.   

To extend such algebras to program specification algebras 
we add quantifiers and prediction composition ‘⋅’.  Prediction 
composition is simply a functional composition of a program 
function and a predicate. This composition is strong enough 
to represent Hoare assertions, and therefore, specification 
algebras with these compositions are rather expressive [7].  

In the rest of the paper we consider program specification 
algebras and logics of partial quasiary mappings.  

To emphasize a mapping’s partiality/totality we write the 
sign →p  for partial mappings and the sign →t  for total 

mappings. Given a partial mapping   µ, µ ′: D →p  D′ , d, 
d′ ∈ D we write:  
– µ(d)↓ (µ(d)↑) to denote that µ is defined (undefined) on d; 
– µ(d)↓= d′  to denote that µ is defined on d with a value  d′ ; 
– ( ) '( ')d dµ µ≅  to denote the strong equality. 

We omit proofs and some details of complicated 
definitions. 

III. QUASIARY SPECIFICATION ALGEBRAS 

We use the following set of composition symbols 
parameterized by V:  

1,..., 1,..., 1,...,{ , , , ' , , , , , , , , , }n n nv v v v v vV x
P F GCs x x S S S AS IF WH= ∨ ¬ ∃ = • ⋅  

Formal definitions of compositions can be found in [4, 7, 
8]. Compositions 1,..., nv v

PS , 1,..., nv v
FS , and 1,..., nv v

GS  are called 
superpositions and represent substitutions of quasiary 
functions into a predicate, function, and program function 
respectively. We also denote such compositions as v

PS , v
FS , 

v
GS . 
A tuple  ( ) , , ;V V V V V V

A A A ACs Pr Fn PF Cs=< >A  is called 
quasiary specification algebra (QSA) over V and A. 
 Variables used as composition parameters can be classified 
as essential in the sense that they can affect the result of 
composition application evaluation and as updatable in the 
sense that the values of these variables can change during 
evaluation.  Variable x is essential for denomination 
composition ' x , variable x is updatable for x∃  and xAS , 

variables 1,..., nv v are updatable for 1,..., nv v
PS , 1,..., nv v

FS , and
1,..., nv v

GS . 
 Now we describe the main properties of superpositions. 

Lemma 1 (superposition folding). Let 1,..., ny y y= , 

1' ',..., 'nf f f= ; 1,..., kx x x= , 1,..., kf f f= , 1' ',..., 'kh h h= , 

1,..., mv v v= , 1,..., mh h h= ,  1 1{ ,..., } { ,..., }n my y v v∩ =∅ . 
Then the following properties hold in ( )V V

A CsA : 
SSP. , , ,,( ( , , ), ', ') ( , )y x y x vx v

P P PS S p f h f h S p σ= , 

SSF. , , ,,( ( , , ), ', ') ( , )y x y x vx v
F F FS S f f h f h S f σ=  , 

SSG. , , ,,( ( , , ), ', ') ( , ))y x y x vx v
G G GS S g f h f h S g σ= , 

where 
, ,

1
, ,

1

( ', ( , ', '),..., ( , ', '),

( , ', '),..., ( , ', ')).

y x y x
kF F

y x y x
mF F

f S f f h S f f h

S h f h S h f h

σ =
 

 Lemma 2 (distributivity of superposition). The following 
properties hold in ( )V V

A CsA : 

S∨. ( , ) ( , ) ( , )v v v
P P PS p q f S p f S q f∨ = ∨ , 

S¬. ( , ) ( , )v v
P PS p f S p f¬ = ¬ , 

S=. 1 2 1 2( , ) ( ( , ) ( , ))v v v
P F FS h h f S h f S h f= = = . 

S∃. ( , )  ( ( , ' ), )v v x
P P PS xp f u S S p u f∃ = ∃ , u≠x, u v∉ , u is 

unessential for p  and f , 
(here “u is unessential for p  and f ” means that  

( ) ( ')p d p d≅   and ( ) ( ')f d f d≅ for any  d  and 'd  such that  

{ } { }|| ' ||u ud d− −= ). 
Superposition compositions are not distributive with 

respect to WH, therefore we simplify superpositions into 
program functions using the identity program function id.  

Lemma 3 (superpositions with program functions). The 
following properties hold in ( )V V

A CsA : 

SG. ( , ) ( , )v v
G GS g f S id f g= •  – superposition into program 

function, 
SP. ( , ) ( , )v v

P GS g p f S g f p⋅ = ⋅  – superposition with 
prediction composition. 

Lemma 4 (superposition simplification). The following 
properties hold in ( )V V

A CsA : 

SE. ( )PS p p= , ( )FS f f= , ( )GS g g= – superpositions 
with empty parameter list, 

SiD. (' , ) 'v
FS x f x=  if x v∉ , , (' , , )x v

FS x f h f= – 
superpositions into denomination functions, 

SwD. , ( , ' , ) ( , )x v v
PPS p x f S p f=  , , ( , ' , ) ( , )x v v

FFS h x f S h f=  
– superpositions with denomination function, 

ST. , , , , , ,( , , , ', ') ( , , ', , ')v x y z v y x z
P PS f h h f S f h h fϕ ϕ= , 

, , , , , ,( , , , ', ') ( , , ', , ')v x y z v y x z
F FS f f h h f S f f h h f= , 

, , , , , ,( , , , ', ') ( , , ', , ')v x y z v y x z
G GS g f h h f S g f h h f= – 

transposition of parameters. 
These properties will be used to construct superpositional 

normal forms for language expressions. 
Now we study relations between QSA ( )V V

A CsA  and QSA 
' '( )V V

A CsA  induced by the following two relations between 
sets of their names:  

1) there is a renomination bijection β : 'tV V→ , 

2) 'V  is an extension of V  ( 'V V⊆ ). 
In the first case β induces in a natural way new 

mappings ': tV V
P A APr Pr→β , ': tV V

F A AFn Fn→β , and 
': tV V

G A APF PF→β  with the following properties. 
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Theorem 1.  Mappings Cβ , Pβ , Fβ , and Gβ  define an 
isomorphism of QSA ( )V V

A CsA  and QSA ' '( )V V
A CsA . 

Theorem 2.  Let 'V V⊆ . Then inclusion mapping 
induces (ignoring variables from '  \U V V= ) an injective 
homomorphism of ( )V V

A CsA  into ' ( )V V
A CsA . 

Now we can study an algebra with mappings over total 
data that  “mimic” mappings over partial data. A special 
element ε (ε∉A) will represent a case when a value of a 
variable or a function is undefined. Let { }A A= ∪ε ε  and   
AεV= { }tV A ε→ ∪ . We construct a QSA ,ε ε( )V V

A CsA  with 
total data that “mimics” QSA ( )V V

A CsA .  Carriers of the new 

algebra are classes  ,
V V p
APr A Boolε ε →= , 

,
tV V

AFnT A Aε εε = → , and ,
V V Vp
APF A Aε ε ε→= .  

 Then we define mapping :  tV V
D A A+ → εε  that “add ε 

into a nominative set. This mapping induces mappings P
+ε , 

F
+ε  , and G

+ε  relating corresponding carriers.  

Theorem 3.  Mappings P
+ε , F

+ε  , and G
+ε  define an 

isomorphism of ( )V V
A CsA  and ,ε ε( )V V

A CsA . 
We treat n-ary operations as a special case of quasiary 

mappings with the set of variables N={1,…, n} and total 
data. In this case a total nominative set 1[1 ,..., ]na n a 

 is 
represented by a tuple 1( ,..., )na a . Thus, all algebra mappings 
are defined on a Cartesian product An.  Compositions from 
CsN  can be treated as compositions over n-ary mappings.  

Here we do not redefine compositions in this style 
assuming that it is a simple task. The term ‘unified’ means 
that all mappings have the same arity. 

Obtained algebra is called a unified n-ary specification 
algebra (NSA) and is denoted ( )N N

A CsA . The following 
proposition is practically an immediate consequence of 
Theorems 1–3. 

Theorem 4. Let 1{ ,..., }nV v v= , {1,..., }N n= ( 1n ≥ ), 

: tβ V N→ be a bijection,   ( )V V
A CsA  be QSA and 

,ε ( )N N
A CsA  be NSA ( ε A∉ ). Then mappings Cβ , ,PPβ ε+

FFβ ε+ , and GGβ ε+  define an isomorphism of QSA ( )V V
A CsA  

and NSA ,ε ( )N N
A CsA .  

IV. QUASIARY SPECIFICATION LOGIC 

To define a quasiary specification logic, denoted  QL  , we 
have to specify its semantic, syntactic, and interpretational 
components [4, 8]. 

Semantic components of QL   is based on the class of 
quasiary specification algebras ( )V V

A CsA  for different A. 
A syntactic component specifies the language of QL

constructed over signature , , ,( )V
Q

VCs Ps Fs PgsΣ = where Ps, 
Fs, and  Pgs  are respectively the sets of predicate symbols,  
ordinary function symbols, and program function symbols. 
For simplicity, we use the same notation for symbols of 
compositions and compositions themselves.  

For a given signature V
QΣ  the set of formulas ( )V

QFr Σ , the 

set of terms ( ),V
QTr Σ  and the set of programs  ( )V

QPg Σ  are 
defined by induction in a traditional way.  

Interpretational component is defined in the following 
way. Given V

QΣ  =(CsV , Ps, Fs, Pgs) and a set A we can define 

a QSA ( ) , , ;V V V V V V
A A A ACs Pr Fn PF Cs=< >A .  Composition 

symbols have fixed interpretation, but we additionally need 
interpretations : tPs V

AI Ps Pr→ , : tFs V
AI Fs Fn→ , and 

: tPgs V
AI Pgs PF→  of predicate, function, and  program 

function symbols respectively.   A tuple 
( , , , , )V Ps Fs Pgs

QJ A I I I= Σ  is called an QL -interpretation. 
Usually the prefix QL  is omitted. Given an interpretation  J  
we denote meanings in  J of a formula Φ , a term  t , and a 
program π  respectively    JΦ , Jt , and Jπ . 

QL -formula Φ  is satisfiable in an interpretation J if there 
exists an element d such that ( )J d TΦ ↓= . This is denoted 

, |Q J ≈ ΦL . Formula Φ is satisfiable in the logic QL ( |Q ≈ ΦL

), if there exists an interpretation J such that , |Q J ≈ ΦL . 
Formulas Φ and Ψ  are equisatisfiable, if they are both 
satisfiable or both unsatisfiable.  

QL -formula Φ is called valid in an interpretation J if there 
is no d such that ΦJ (d)↓= F. This is denoted  QL , J |= Φ, 
which means that Φ is not refutable in  J. A formula Φ is 
called valid in QL  if QL , J |= Φ for any interpretation  J. We 
shall denote this  QL  |= Φ, or just Φ=|  if the logic in hand is 
understood from the context. 

QL -formulas Φ and Ψ are equivalent, if for every J  
predicates ΦJ and ΨJ are identical. Such notion of 
equivalence can be also defined for terms and programs. 

Validity and satisfiability problems for QSL are related in 
the following way: Φ is valid in J  if and only if  ¬Φ is 
unsatisfiable in J.  

Let N={1,…,n}. We treat a unified n-ary specification 
logic NL  as a quasiary specification logic with a signature 

n
NΣ  =( {1,..., }n

nCs , Ps, Fs,  Pgs)  constructed over total 
nominative sets. This logic is semantically based on unified 
n-ary specification algebras. 

Now we will study a problem how to relate  QL  and NL  
with respect to the satisfiability problem, namely, given  QL -
formula Φ  construct  NL -formula nΦ such that Φ  and nΦ
will be equisatisfiable.  We do this in several steps: 
─ introducing a logic QUL with unessential variables,  
─ constructing a superpositional normal form sΦ  of Φ in 

QUL , 
─ introducing a logic QURL with finitely restricted sets of 

updatable variables, 
─ constructing a unified superpositional normal form uΦ of 

sΦ in QURL , 
─ constructing from sΦ a formula tΦ of logic QUR

TL  with total 
data, 

─ translating  tΦ  into NL -formula nΦ , 
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─ proving equisatisfiability of  Φ  and nΦ .  
Logic QL   being a rather powerful logic still is not 

expressible enough to represent various important 
transformations. Therefore we introduce as its extension a 
logic with unessential variables denoted QUL . Here  U  is  an 
infinite set of variables such that ∅=∩UV . Unessential 
variables do not affect the meaning of formulas (terms, 
programs)  [4,8]. An additional requirement is that 
unessential variables are not updatable by programs. The 
signature of QUL  is ,V U

QΣ  = (CsV ∪U , Ps, Fs, Pgs). 

The following statement is a consequence of Theorem 2. 
Lemma 5 ( QUL  is a model-theoretic conservative extension 
of  QL ). Let   QUL -interpretation UJ  be an  
unessential  extension of QL -interpretation J , ( )V

QFrΦ∈ Σ , 

( )V
Qt Tr∈ Σ , ( )V

QPgπ∈ Σ . Then  

(Φ ) Φ U
U
P J J
ι = , ( ) U

U
F J J
ι t t= , and ( ) U

U
G J J
ι π π= . 

Introduction of QUL permits to formulate transformations 
rules based on properties presented in Lemmas 1–4. 

QUL -formula Φ is said to be in superpositional normal 
form, if the following conditions hold:  

SP. For each subformula (Ψ, )v
PS t  of formula Φ we have 

that Ψ∈Ps; 
SF. For each subformula of the form ( , ')v

FS t t  we have that 
t∈Fs; 

SG. For each subformula of the form (π, )v
GS t  we have 

that π id= . 
Lemma 6. Let ( )V U

QFr ∪Φ∈ Σ .  Then, using 
transformation specified by Lemmas 1-4, a superpositional 
normal form  sΦ of Φ can be constructed such that sΦ ≈ Φ . 

In a similar way we can define transformations that first  
lead to a formula tΦ of logic QUR

TL  with total data and then to 

formula nΦ  of logic NL . 
V. REDUCTION OF THE SATISFIABILITY PROBLEM 
Combining all obtained results, we can prove the 

following main theorem that states reducibility of the 
satisfiability problem in quasiary specification logics with 
finitely restricted sets of updatable variables to the 
satisfiability problem in n-ary specification logics. 

Theorem 5. Let Φ be a QURL -formula and  nΦ  be a NL -
formula obtained by the above-described transformations. 
Then Φ and  nΦ  are equisatisfiable. 

Results of such kind permit to use existing satisfiability 
checkers for classical predicate and program logics, based on 
n-ary mappings, to check satisfiability of formulas for 
quasiary logics. 

VI. CONCLUSION 

In this paper, we have developed special program 
specification algebras and logics defined for classes of 
quasiary mappings. These algebras and logics reflect such 

features of software systems as partiality of data, partiality 
and unrestricted arity of predicate and functions, sensitivity to 
unassigned variables. For the constructed logics some laws of 
classical logic fail. We have studied relations of quasiary 
logics to logics of n-ary mapping. Obtained results 
demonstrate that logics of quasiary mappings are more 
powerful and expressive than logics based on n-ary 
mappings. We have developed methods of reduction of the 
satisfiability problems in quasiary logics to the satisfiability 
problems for logics based on n-ary mappings. Such methods 
can be useful for construction and investigation of logics for 
program reasoning. 
 Future work on the topic will include construction of 
calculi for important fragments of the considered logics. 
Also, a prototype of software systems for theorem proving in 
quasiary specification logics should be developed. First steps 
in this direction are made in [9, 10].  
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