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 Abstract: The optimization of the balanced layout of a 
set of 3D-objects in a container is considered. We define 
combinatorial configurations describing the 
combinatorial structure of the problem. A mathematical 
model of the problem is presented. The model takes into 
account the placement constraints, the mechanical 
characteristics and the combinatorial features of the 
problem. 
 Keywords: Balanced Layout, 3D-objects, Combinatorial 
Configurations, Phi-function Technique. 

I. INTRODUCTION 
Balanced layout problems belong to the class of NP-hard 

placement problems [1] and are the subject of the study of 
computational geometry, and the methods for their solution 
are a new branch of the theory of operations research [2, 3]. 
The essence of the problem lays in the search for the optimal 
placement of a given set of 3D-objects in a container, taking 
into account, so called, behavior constraints, which ensure the 
balance of the system under consideration [4], [5].  

II. PROBLEM FORMULATION 
Let Ω  be a container of height H  that can take the form 

of a cuboid, cylinder, paraboloid of rotation, or truncated 
cone. The container Ω  is defined in the global coordinate 
system Oxyz , where Oz  is the longitudinal axis of 
symmetry. We assume that container Ω  is divided by 
horizontal racks into sub-containers jΩ , 

{1, ..., }mj J m∈ = . We denote distances between racks jS  

and 1jS +  by ,jt ,mj J∈  
1

m
j

j
t H

=
=∑ . The center of the 

lower base of container Ω  is located in the origin of the 
global coordinate system Oxyz . 

Let { , }i nА i J= ∈  be a set of homogeneous 3D-objects 
given by their metrical characteristics. Each object i  of 
height ih  and mass im , is defined in its local coordinate 
system i i i iO x y z , ni J∈ . The location of object i  inside 
container Ω  is defined by vector ( , , )i i i iu v z= θ , where 
( , )i iv z  is a translation vector in the global coordinate 
system Oxyz ,  iθ  is a rotation angle of object i  in the 
plane i i iO x y , where ( , )i i iv x y= , and the value of iz , 

ni J∈ , is uniquely defined by sub-container jΩ , mj J∈ , in 
which object i  will need to be placed. 

 In contrast to the BLP problems, where a priori the 
requirement for placing objects in specific sub-containers 

jΩ , mj J∈ , is known, in this study the problem of the 
balanced layout of objects is formulated, which involves 
generation and selection of a partition of the set A  into non-
empty subsets  jA , mj J∈ . Here jA  is a subset of objects 

which have to be placed on  rack jS  inside jΩ .  
On placement of object i , ni J∈ , inside subcontainer 

jΩ  the following constraints are imposed 

 1
1

j

i l i
l

z t h−
=

= +∑ ,                                   (1) 

where .mj J∈  We consider that 0 0t =  and ni J∀ ∈  there 

exists *
mj J∈ : * .i j

h t≤
 

Let j
n nJ J⊆  be a set of indexes of objects which are 

placed in sub-container jΩ , mj J∈ ,  

1

m
j

n n
j

J J
=

=


, i j
n nJ J = ∅ , mi j J≠ ∈ ;         (2) 

| |j
jk A=  is the number of objects which are placed in 

sub-container jΩ , 0jk > , mj J∈ ,   

1

m
j

j
k n

=
=∑ .                                   (3) 

In addition, the following placement constraints have to 
be taken into account: 

1 2
int inti i = ∅  , 1 2

j
ni i J< ∈ , ,mj J∈          (4) 

j
i ⊂ Ω , j

ni J∈ , ,mj J∈                           (5) 
j

jh t≤ , max{ , }jj j
nih h i J= ∈ , mj J∈ .          (6)  

 
We designate a system, formed as a result of the 

placement of objects i  of the set А  in container Ω  by 

AΩ , and a system of coordinates of AΩ by sO XYZ , where 
( ( ), ( ), ( ))s s s sO x v y v z v=  is the mass center of AΩ   
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n
i

i
M m

=
= ∑  is the mass of system AΩ  and sO X Ox , 

sO Y Oy , sO Z Oz . 
We consider the deviation of the center of mass sO  of 

system AΩ  from given point 0 0 0( , , )x y z  as an objective 
function.  

Combinatorial Balanced layout Problem (CBLP). Define 
such variant of the partition of the object set A  into 
nonempty subsets jA , ,mj J∈  and the corresponding 
placement parameters ( , , )i i i iu v z= θ  of objects i , 

ni J∈ , taking into account relations (2)–(6), that the 
objective function will reach its minimum value. 

We assume that the problem has at least one feasible 
solution. 

Note. Restrictions on the axial and centrifugal moments 
of the system and allowable distances between objects may 
also be given. 

III. MATHEMATICAL MODEL 
Now we define special combinatorial configurations 

describing the discrete structure of the CBLP problem. Some 
basic approaches for mathematical modelling of optimization 
problems on combinatorial configurations are described in 
e.g., [6, 7]. 

The variants of partition of the set A  into non-empty 
subsets jA , mj J∈ , are determined by both the number of 
elements in each subset and the order of the subsets.  

Let us consider the sub-containers and the assumed 
corresponding sets of objects jA , mj J∈ . Then the tuple of 

natural numbers 1 2( , , ..., )mk k k , such that 
1

m
j

j
k n

=
=∑ , 

determines possible number jk  of objects in each sub-

container jΩ .  The number of all such tuples is equal to the 
number of compositions of the number n  of length m  [8], 

which is 1
1

m
nC −
− .  

Let us derive in what ways it is possible to decompose n  
various objects from a set A  into m sub-containers jΩ , 

mj J∈ , if in sub-containers there are accordingly 

1 2, , ..., mk k k  objects, and sets of objects jA , mj J∈ , 

inside corresponding sub-containers jΩ , mj J∈ , are not 
ordered. 

Without loss of generality, we will distinguish the objects 
with the same values of metrical characteristics, height ih  
and mass im  (for example, consider them to be different in 
number). 

We order the elements of set A . To each object we 
assign the number of the sub-container into which it is 

expected to be placed. We get a tuple consisting of n  
elements that form a permutation with repetitions from m  
numbers 1, 2, ..., ,m  in which the first element is repeated 1k  
times, the second element is repeated 2k  times, ..., the last 
element is repeated mk  times. 

The total number of permutations is equal to  

1 2
1 2

!( , , , ..., )
! ! ... !m

m

nP n k k k
k k k

=
⋅ ⋅ ⋅

.                    (8) 

Then the number of variants of partitions of various 
objects from set A  to m  sub-containers jΩ , provided that 
each sub-container contains at least one object and the order 
of placing objects inside the sub-container is not important, is 
equal to 

1 2
1 2

...
( , , , ..., )

m
m

k k k n
P n k k k

+ + + =
=∑

1 2 1 2...

!
! ! ... !

m mk k k n

n
k k k+ + + = ⋅ ⋅ ⋅∑  

Note that the number of summands in the sum is equal to 
1

1
m
nN C −
−= . 

To generate subsets jA , mj J∈ , we introduce a special 
combinatorial configuration [9]. 

Rather complex combinatorial configurations can 
formally be described and generated using tools of 
construction of compositional κ -images of combinatorial 
sets (κ -sets) proposed in [10]. A combinatorial set is 
considered as a set of tuples that constructed from a finite set 
of arbitrary elements (so-called generating elements) 
according to certain rules. Permutations, combinations, 
arrangements, and binary sequences are the examples of 
classical combinatorial sets. 

The basic idea of generation of κ -sets is introduced in 
[10]. However, the problem of generating κ -sets of more 
complicated combinatorial structure remains the open 
problem. Just one of such special cases is studied in [11].  

The problem of generating κ -sets is based on special 
techniques of generating base combinatorial sets. The base 
sets can be defined as combinatorial sets with the known 
descriptions: both classical combinatorial sets (permutations, 
combinations, arrangements, tuples) or non-classical 
combinatorial sets (permutations of tuples, compositions of 
permutations, permutations with a prescribed number of 
cycles, etc.). Generation algorithms for some of base 
combinatorial sets are presented in, e.g., [12-15].  

We denote ( , )n m  the set of compositions of the 
number n  of length m  (which corresponds to the partition of 
different objects from set A  to m  sub-containers jΩ , 

mj J∈ , provided that each sub-container contains at least 
one object and the order of objects inside the sub-container is 
not important). Wherein, 1

1( , ) m
nn m N C −
−= = . 

Let 1( , ..., ) ( , )mk k n m= ∈  ,
1

m
j

j
k n

=
=∑ , 1jk ≥ , mj J∈ .  

We introduce a combinatorial set ( )   that is a 
composition image of combinatorial sets ( κ -set) 

( , )n m ; 1k
nC , 2

1
k
nC , 3

2
k
nC , …, 

1
m
m

k
nC

−
, generated by sets 
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0nI , 1nI , 2nI , …, 1mnI
−

, where 1 ...i in n k k= − − − , 

1mi J −∈ , 
0n nI J= , 

0 0 0
1 0 11 2\{ , , ..., }n n n

n n kI I j j j= , 0 0 0 1
11 2( , , ..., )n n n k

nkj j j C∈ , 

 
1 1 1

2 1 21 2\{ , , ..., }n n n
n n kI I j j j= ,  1 1 1 2

2 11 2( , , ..., )n n n k
k nj j j C∈ , 

… 
2 2 2

1 2 11 2\{ , , ..., }m m m
m m m

n n n
n n kI I j j j− − −

− − −
= ,  

2 2 2 1
1 21 2( , , ..., )m m m m

m m
n n n k

k nj j j C− − − −
− −

∈ , 

 
1 1 1

1 1 2{ , , ..., }m m m
m m

n n n
n kI j j j− − −

−
= ,  

1 1 1
11 2( , , ..., )m m m m

m m
n n n k

k nj j j C− − −
−

∈ . 

 
Note that  
 

0 1 1
... {1, 2, ..., },

mn n n nI I I J n
−

∪ ∪ ∪ = =  

s tn nI I∩ =∅ , 0
1 {0,1, ..., 1}ms t J m−≠ ∈ = − . 

 
Each element ( ) ( )q ∈   can be described in the form 

1 1 1 21 1( ) ( , ..., , ..., , ...,k k k kq q q q q+ +=
 

1 1 1... , ..., ),
m m mk k k kq q
− −+ + +  

where 0 0 0 1
1 11 1 2( , ..., ) ( , , ..., )n n n k

k nkq q j j j C= ∈ , 

1 1 1 2
1 1 2 2 11 1 2( , ..., ) ( , , ..., )n n n k

k k k k nq q j j j C+ + = ∈ , 

… 
1 1 1

1 1 1 1... 1 2( , ..., ) ( , , ..., ) .m m m m
m m m m m

n n n k
k k k k k nq q j j j C− − −

− − −+ + + = ∈

The cardinality of set ( )   is derived by (9).  
An element ( )q   of the set ( )   is said to be a tuple of 

partition of the set А into subsets jA , .mj J∈  
Now we define the vector of the basic variables of the 

problem СBLP: ( , , ),u v z= θ  where 2
1( , ..., ) n

nv v v= ∈R , 

1( , ..., ) n
nθ = θ θ ∈R , 2( , )i i iv x y= ∈R , , ,i i ix y θ  are 

continuous variables, 1( , ..., ) ,n
nz z z= ∈R ,iz  ,ni J∈ are 

discrete variables defined by (1). 
The values of variables ,iz  ,ni J∈  are determined in the 

order given by elements ( )q   of combinatorial set ( )  : 
 

1
1

i i

s
q l q

l
z t h−

=
= +∑ ,                                  (10) 

where 
  

1

1 1 2

1 2 1 1 2

1,  if ,
2,  if    < ,
...

,  if   +...+ < +...+ ,m m

i k
k i k k

s

m k k k i k k k−

≤
 ≤ += 

 + ≤ +

 

 
1, 2, .., ,i n= {1, 2, .., },iq n∈ ( ) ( ).q ∈   

Let us formalize placement constraints (4)-(6), using phi-
function technique. 

We consider two objects 1  and 2  with variable 

parameters 1 1 1 1( , , )u v z= θ 3∈R , 2 2 2 2( , , )u v z= θ 3∈R , 
where 1 1 1( , ),v x y= 2 2 2( , ),v x y=  1 1 1, ,x y θ 2 2 2, ,x y θ  are 
continuous variables and 1z , 2z  are discrete variables.  

By definition [2, 3] a phi-function is a continuous 
function, therefore we extend the concept to discrete 
variables 1z , 2.z  

Definition 1. Function 12 1 2( , )u uϒ  is called a D-phi-
function of 3D-objects 1  and 2  if function 

0 0
12 1 1 1 2 2 2( , , , , , )v z v zϒ θ θ  is a phi-function 

0 0
12 1 1 1 2 2 2( , , , , , )v z v zΦ θ θ  of objects 1  and 2  for fixed 

values 0
1 1z z=  and 0

2 2z z= .  
Definition 2. Function 12 1 2 12( , , )u u u′ϒ  is called a quasi 

D-phi-function of 3D-objects, 1  and 2  if function 
0 0

12 1 1 1 2 2 2 12( , , , , , , )v z v z u′ϒ θ θ  is a quasi-phi-function 
0 0

12 1 1 1 2 2 2 12( , , , , , , )v z v z u′Φ θ θ  of objects 1  and 2  for 

fixed values 0
1 1z z=  and 0

2 2z z= .  
Here 12u  is the vector of auxiliary continuous variables 

that is used to constructs a quasi phi-function of two objects 
1  and 2 . 

The placement constraints (4)-(6) are described by the 
system of inequalities 1( , ) 0,uϒ τ ≥  

*
2 ( ) 0uϒ ≥ , where the 

inequality 1( , ) 0uϒ τ ≥  describes the non-overlapping 
constraints and the inequality *

2 ( ) 0uϒ ≥ describes the 
containment constraints 

 

1 1( , ) min{ ( , ), },j
mu u j Jϒ τ = ϒ τ ∈  

1 2 1 21 2
1 21 ( , ) min{ ( , , ), },j j j

q q q q nq qu u u u q q Jϒ τ = ϒ < ∈ (11) 

1 2 1 2( , ),j
q q nu q q Jτ = < ∈

**
2 2( ) min{ ( ), },j

mu u j Jϒ = ϒ ∈

* *
2 ( ) min{ ( ), }

i i
j j

q q i nu u q Jϒ = ϒ ∈ ,       (12) 
 

1 2 1 21 2
( , , )j

q q q qq q u u uϒ
 
is the function that describes 

non-overlapping of objects 1q  and 
2q , 

1 1 1 1 1
( , , , ),q q q q qu x y z= θ  

2 2 2 2 2
( , , , ),q q q q qu x y z= θ  
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* ( )
i iq quϒ  is the function that describes non-overlapping of 

objects iq  and * 3 / intj jΩ = ΩR . 

Thus, in relations (11), (12) for fixed values 
1qz  and 

2qz , we have:
1 21 2

( , )j
q qq q u uϒ  is a phi-function [16] 

1 21 2
( , )q qq q u uΦ  for objects 1q  and 2q

 
or

 
 a quasi-phi-

function [17] 
1 2 1 21 2

( , , )q q q qq q u u u′Φ   for objects 1q  and 

2q ; * ( )
i iq quϒ  is a phi-function 

*
( )

j

ii
qq uΩΦ

 
for objects 

iq  and * jΩ  . 
If the minimum allowable distances between objects are 

given, adjusted phi-functions (quasi-phi-functions) are used 
for the corresponding pairs of objects [16, 17]. 

Mathematical model of the CBLP problem can be 
defined as follows: 

 
* *( , ) min ( , )F u F uτ = τ  s.t. ( , )u Wτ ∈ ,         (13) 

 

2
*

1{( , ) : ( , ) 0, ( ) 0, ( ) 0}W u u u uσ= τ ∈ ϒ τ ≥ ϒ ≥ µ ≥R , (14) 
 

where  
 

2 2 2
0 0 0( ) ( ( , ) ) ( ( , ) ) ( )s s sF u d x v z x y v z y z z= = − + − + −

 
( , , ),u v z= θ  1( , ..., )nv v v= , 1( , ..., )nθ = θ θ , 

 
 ( , )i i iv x y= , ni J∈ , 1( , ..., )nz z z= ,  

function 1( , )uϒ τ  is described by (11) with 
1

m j

j=
Ξ = Ξ , 

1 2 1 2{( , ) : }j j
nq q q q JΞ = < ∈ , 

1 21 1 2( , ..., ) ( , )j
s q q nu q q Jτ = τ τ = < ∈  is a vector of 

auxiliary variables for quasi phi-functions, s = Ξ , function 
*
2 ( )uϒ  is defined by (12), elements of vector z  are given by 

(10), ( ) 0uµ ≥  describes behavior constraints. 
CBLP problem can be represented as a mixed integer 

programming (MIP) problem, using approach with boolean 
variables.  

However, unlike (13)-(14), this approach leads to 
increasing the number of discrete variables of the model and 
therefore increases the dimension of the CBLP problem in 
MIP form. 

IV. CONCLUSION 
 We study the problem of the balanced layout of 3D-objects 
within a container divided by horizontal racks onto sub-
containers.  

A mathematical model has been constructed that takes 
into account not only the geometrical and behavior 
constraints, but also combinatorial features of the problem 

associated with the construction of partitions of the set of 
placed objects into sub-containers. 
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