
Isolated Features Detection in Feature Models⋆

Pablo Trinidad, David Benavides, and Antonio Ruiz-Cortés

Dpto. de Lenguajes y Sistemas Informáticos
University of Seville

Av. de la Reina Mercedes S/N, 41012 Seville, Spain
{trinidad, benavides, aruiz}@tdg.lsi.us.es

Abstract Feature models are commonly used to describe software product lines
in terms of features. Features are linked by relations, which may introduce errors
in the model. This paper gives a description of isolated features and statesthe
detection of them, as the first step in their treatment. Two implementations are
given to automatically support isolated features detection and a third one that
uses both and improves the performance.

1 Isolated Features in Feature Models

1.1 Introduction

Software Product Lines (SPL) approach is being used in organizations to shift from
developing separated and similar products one by one, to developing products from a
set of existing assets. A successful software reuse, highersoftware quality and lower
time-to-market are some of the benefits of applying SPL. A good understanding of
the domain where SPL are to be applied is needed. One of the ways of describing the
requirements of a SPL is feature modeling.

Feature modeling is a declarative way to represent a domain of applications in terms
of visible end-user’s features. Features are externally visible characteristics that can
differentiate one product from the others. Depending on thecontext they may refer to
requirements, components or source code (feature orientedprogramming).

When modeling SPL using feature models(FM), it is important to check for the cor-
rectness of the model. Errors may be introduced because of badly defined relationships
among features. Correctly defining the set of products within the SPL and checking for
the absence of features that may not appear in any product areexamples of activities
to be realized for this debugging. Many times, FM are big enough to avoid a manual
handling of them, therefore an automation on debugging FM isneeded.

1.2 Preliminaries

There are several notations for representing FM [2,3,4]. Czarnecki’s notation defines
the domain in terms of features using a hierarchical representation. A feature is drawn

⋆ This work was partially funded by the Spanish Ministry of Science and Technology under
grant TIC2003-02737-C02-01 (AGILWEB)



2 Pablo Trinidad, David Benavides, and Antonio Ruiz-Cortés

as a box with its representative name. Four different kinds of relations among features
may be used: mandatory, optional, alternative and or-relation. Relations are stablished
among a parent feature and one (in the case of mandatory or optional) or more (in the
case of alternative and or-relation) feature’s children. Besides these relations types, two
more non-hierarchical relations are defined in order to represent more complex FM:
depends and excludes. Figure 1 represents a Home Integration System (HIS) SPL using
Czarnecki’s notation. When defining one FM some mistakes can be made, usually as a

HIS

Supervision 
systems

Control Services

fire intrusion flood

light control temperature

appliances 
control

Video on 
Demand

Internet 
Conection

ADSL WirelessPower Line

Mandatory Feature Optional Feature

Alternative Relation Or Relation

Depends

Excludes

Figure 1. HIS Feature Model. Power Line is an isolated feature

consequence of an unappropiate use of depends or excludes constraints[8]. These con-
straints can cause some features not to appear in any productin the FM. For example,
notice in Figure 1 the mutex betweenPower Line andLight control features. It means
that there could be no product with both features at the same time. Light control is a
full mandatory feature, so it appears in every product. Although,Power Line feature is
represented as an alternative ofInternet Connection, no product can contain it because
it is incompatible withLight Control. Therefore,Power Line is an isolated feature.

1.3 Isolated Features Treatment

When defining the relations among features, errors can be introduced in the model. One
common error is making a feature not to appear in any product of the product family
defined in the FM. It is important to be able to detect such features and being able to
give solutions to them. At first, we define the concept of isolated features:

Isolated Feature A feature in a FM which does not appear in any of the products
described within the FM.

Detecting isolated features is only the first step in a three-steps treatment process:

1. Detecting isolated features in a FM
2. Detecting the relationship/s that cause isolated features to appear
3. Giving possible solutions to avoid a feature to be isolated.



Isolated Features Detection in Feature Models 3

2 Our proposal

2.1 Isolated Features Detection

In this paper we deal with the automated detection of isolated features in FM. We base
our proposal on the definition of feature commonality. In [1], a feature commonality is
defined as the ratio of products containing that feature, andis a powerful tool to detect
isolated features.

Definition 1 (Feature Commonality).Number of products where the feature appears
respecting to the total number of products of the SPL.

An isolated feature appears in no product, so it would have a zero commonality.
According to this, and based on Definition 1, we define the nextconcepts :

Definition 2 (Isolated Feature).Let M be a FM and f the feature which commonality
we know. Feature f is isolated iff its commonality is zero.

Isolated(f,M) ⇐⇒ (Commonality(f,M) = 0)

2.2 Implementation

Taking into account the previous definitions, automated detection depends on automated
support for calculating commonality for every feature in a FM. We propose three differ-
ent alternatives for detecting isolated features taking the leverage on CSP and variation
degree to calculate commonality:

– Using Constraint Satisfaction Problems (CSP):In [1], we used Constraint Sat-
isfaction Problems(CSP) to represent FM, allowing to realize different operations
for extracting relevant information and reasoning on them.One of the stated opera-
tions isComm, that can be used to calculate commonality. For each featurein the
feature model,Comm is used to detect if its commonality is zero.

– Using Variation Degree:In [7] variation degree of a feature is defined as the num-
ber of possible instantiations below this feature. An algorithm to calculate this vari-
ation degree is proposed, but it only determines the exact variation degree with one
dependency (depends or excludes relation) or none. If thereare multiple dependen-
cies, only an approximation can be given, calculating the low and upper bounds
where the variation degree takes values from. The results comming from variation
degree algorithm can be taken to calculate commonality[6],but only bounds can
also be obtained. If the low bound is zero for a feature, it is potentially isolated, but
a precise result cannot be calculated.

– Using CSP and Variation Degree:To obtain a better performance in isolated fea-
tures detection, we propose a detection method in two phasesthat uses both previ-
ous alternatives:
1. Calculate commonality from variation degree for every feature in the FM con-

sidering all the dependencies. If exact values are obtainedfor some features, it
can be used to check if they are isolated or not. In the case of obtaining bounds,
if one feature had a zero low bound, it is candidate for being checked if it is
isolated or not in next phase.



4 Pablo Trinidad, David Benavides, and Antonio Ruiz-Cortés

2. Every potentially-isolated feature detected in the phase one, is checked to be
isolated or not using CSPs.

3 Conclusions and Future work

In this paper, we give a definition of isolated feature and thepath to follow to treat them.
As a first step, Feature commonality calculation is proposedto detect them, and three
different implementations are given to automate the detection. There is still a gap to
cover in detecting the relationships causing isolated features to appear and giving solu-
tions to them. Our future work will focus on proposing solutions to these problems. We
think our proposal can still be improved by finding a better model of the CSP problem
and using CSP compilation techniques. Our final objective isthe integration of these
and other debugging techniques into a tool for feature modeling.

References

1. D. Benavides, Ruiz A. Cortés, and P. Trinidad. Automated reasoning on feature models.
LNCS, Advanced Information Systems Engineering: 17th International Conference, CAiSE
2005, 3520:491–503, 2005.

2. K. Czarnecki and U.W. Eisenecker.Generative Programming: Methods, Techniques, and
Applications. Addison–Wesley, may 2000. ISBN 0–201–30977–7.

3. M. Griss, J. Favaro, and M. d’Alessandro. Integrating feature modeling with the RSEB. In
Proceedings of theFifthInternational Conference on Software Reuse, pages 76–85, Canada,
1998.

4. K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature–Oriented Domain Analy-
sis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, Software Engineering
Institute, Carnegie Mellon University, November 1990.

5. J. Henk Obbink and Klaus Pohl, editors.Software Product Lines, 9th International Con-
ference, SPLC 2005, Rennes, France, September 26-29, 2005, Proceedings, volume 3714 of
Lecture Notes in Computer Science. Springer, 2005.

6. P. Trinidad, D. Benavides, and Ruiz A. Cortés. Automated inconsistencies detection in feature
models.SPLC 2006(submitted), 2006.

7. Thomas von der Massen and Horst Lichter. Deficiencies in feature models. In Tomi Mannisto
and Jan Bosch, editors,Workshop on Software Variability Management for Product Derivation
- Towards Tool Support, 2004.

8. Thomas von der Maßen and Horst Lichter. Determining the variation degree of feature models.
In Obbink and Pohl [5], pages 82–88.


