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Abstract Feature models are commonly used to describe software product lines
in terms of features. Features are linked by relations, which may intecgluors

in the model. This paper gives a description of isolated features and #tates
detection of them, as the first step in their treatment. Two implementations are
given to automatically support isolated features detection and a third ohe tha
uses both and improves the performance.

1 Isolated Features in Feature Models

1.1 Introduction

Software Product Lines (SPL) approach is being used in azghons to shift from
developing separated and similar products one by one, telajgng products from a
set of existing assets. A successful software reuse, hggfeware quality and lower
time-to-market are some of the benefits of applying SPL. Adganderstanding of
the domain where SPL are to be applied is needed. One of the efalescribing the
requirements of a SPL is feature modeling.

Feature modeling is a declarative way to represent a donfajopdications in terms
of visible end-user’s features. Features are externallipkd characteristics that can
differentiate one product from the others. Depending orctirgext they may refer to
requirements, components or source code (feature oripnbgdamming).

When modeling SPL using feature models(FM), it is importardtteck for the cor-
rectness of the model. Errors may be introduced becausalbf tafined relationships
among features. Correctly defining the set of products withé SPL and checking for
the absence of features that may not appear in any produexamaples of activities
to be realized for this debugging. Many times, FM are big goto avoid a manual
handling of them, therefore an automation on debugging Fhvéxled.

1.2 Preliminaries

There are several notations for representing FM [2,3,4ar@zcki’s notation defines
the domain in terms of features using a hierarchical reptatien. A feature is drawn
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as a box with its representative name. Four different kirfdelations among features
may be used: mandatory, optional, alternative and orioglaRelations are stablished
among a parent feature and one (in the case of mandatoryionaPtor more (in the
case of alternative and or-relation) feature’s childressiBes these relations types, two
more non-hierarchical relations are defined in order toesgmt more complex FM:
depends and excludes. Figure 1 represents a Home Integ&titem (HIS) SPL using
Czarnecki's notation. When defining one FM some mistakes eandxle, usually as a
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Figure 1. HIS Feature Model. Power Line is an isolated feature

consequence of an unappropiate use of depends or excluatsaints[8]. These con-
straints can cause some features not to appear in any priodihet FM. For example,
notice in Figure 1 the mutex betwePower Line andLight control features. It means
that there could be no product with both features at the same Light control is a
full mandatory feature, so it appears in every product. ddtlfh,Power Line feature is
represented as an alternativdrternet Connection, no product can contain it because
it is incompatible withLight Control. ThereforePower Line is an isolated feature.

1.3 Isolated Features Treatment

When defining the relations among features, errors can tadinted in the model. One
common error is making a feature not to appear in any produttteoproduct family
defined in the FM. It is important to be able to detect suchufest and being able to
give solutions to them. At first, we define the concept of ismaldeatures:

Isolated Feature A feature in a FM which does not appear in any of the products
described within the FM.

Detecting isolated features is only the first step in a tisteps treatment process:

1. Detecting isolated features in a FM
2. Detecting the relationship/s that cause isolated featur appear
3. Giving possible solutions to avoid a feature to be isolate
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2 Our proposal

2.1 Isolated Features Detection

In this paper we deal with the automated detection of isdléatures in FM. We base
our proposal on the definition of feature commonality. In fLfeature commonality is
defined as the ratio of products containing that feature j@acgowerful tool to detect
isolated features.

Definition 1 (Feature Commonality). Number of products where the feature appears
respecting to the total number of products of the SPL.

An isolated feature appears in no product, so it would havera zommonality.
According to this, and based on Definition 1, we define the nertepts :

Definition 2 (Isolated Feature).Let M bea FM and f the feature which commonality
we know. Feature f isisolated iff its commonality is zero.

Isolated(f, M) <= (Commonality(f, M) = 0)

2.2 Implementation

Taking into account the previous definitions, automatedat&in depends on automated
support for calculating commonality for every feature inN. BVe propose three differ-
ent alternatives for detecting isolated features takiegdkierage on CSP and variation
degree to calculate commonality:

— Using Constraint Satisfaction Problems (CSP)In [1], we used Constraint Sat-
isfaction Problems(CSP) to represent FM, allowing to eeadlifferent operations
for extracting relevant information and reasoning on theme of the stated opera-
tions isComm, that can be used to calculate commonality. For each featuhe
feature modelComm is used to detect if its commonality is zero.

— Using Variation Degree:In [7] variation degree of a feature is defined as the num-
ber of possible instantiations below this feature. An &tbar to calculate this vari-
ation degree is proposed, but it only determines the exaiattian degree with one
dependency (depends or excludes relation) or none. If sHrermultiple dependen-
cies, only an approximation can be given, calculating the amd upper bounds
where the variation degree takes values from. The resufltsréong from variation
degree algorithm can be taken to calculate commonalityf@éj,only bounds can
also be obtained. If the low bound is zero for a feature, ibieptially isolated, but
a precise result cannot be calculated.

— Using CSP and Variation DegreeTo obtain a better performance in isolated fea-
tures detection, we propose a detection method in two pliaaesses both previ-
ous alternatives:

1. Calculate commonality from variation degree for eventdiee in the FM con-
sidering all the dependencies. If exact values are obtdorezbme features, it
can be used to check if they are isolated or not. In the casletaiong bounds,
if one feature had a zero low bound, it is candidate for beimgcked if it is
isolated or not in next phase.
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2. Every potentially-isolated feature detected in the pha®e, is checked to be
isolated or not using CSPs.

3 Conclusions and Future work

In this paper, we give a definition of isolated feature andbidh to follow to treat them.

As a first step, Feature commonality calculation is propdeedkttect them, and three
different implementations are given to automate the dieteciThere is still a gap to

cover in detecting the relationships causing isolatedifeatto appear and giving solu-
tions to them. Our future work will focus on proposing sabuis to these problems. We
think our proposal can still be improved by finding a betteidelmf the CSP problem

and using CSP compilation techniques. Our final objectivthésintegration of these
and other debugging techniques into a tool for feature nioglel
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