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ABSTRACT
With the shift from the traditional electric grid to the smart grid
paradigm, huge amounts of data are collected during system
operations. Data analytics become of fundamental importance in
power networks to enable predictive maintenance, to perform
effective diagnosis, and to reduce related expenditures. The final
goal is to improve the electric service efficiency and reliability to
the benefit of both the citizens and the grid operators themselves.

This paper considers a dataset collected over 6 years in a real-
world medium-voltage distribution network by the Supervisory
Control And Data Acquisition (SCADA) system. A transparent,
exploratory, and exhaustive data-mining approach, based on as-
sociation rule extraction, is applied to automatically identify
correlations among SCADA events occurring before and after
specific service interruptions, i.e., distribution network faults of
interest. Therefore, both the prognostic and the diagnostic poten-
tials of the dataset are investigated with respect to the occurrence
of permanent service interruptions. Our results highlight a lim-
ited predictive capability of the available set of SCADA events,
while they can be effectively exploited for diagnostic purposes.

1 INTRODUCTION
Electric grid operators welcome predictive maintenance to avoid
the costs of scheduled inspections and reactive maintenance in-
terventions. To this aim, datasets describing the electric grid
operations, with historical data about failures and alarm signals,
are under investigation. Although this data has been collected
for different purposes, companies are interested in determining
their predictive maintenance capability: to reduce management
costs, to speed up intervention-time, and to improve efficiency
and reliability.
For our study, we rely on a big data dataset spanning over 6 years,
collected by a leading Italian electric grid operator. The dataset de-
scribes the operations of a medium-voltage distribution network
in northeastern Italy, and it records events and failure through
the Supervisory Control And Data Acquisition (SCADA) system.
Our aim is to assess whether this dataset could be exploited to (i)
predict future electric network failures (predictive maintenance)
and/or (ii) effectively diagnose the failures after it is reported
by the maintenance system. Since the predictive capability of
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such dataset, and the capability to model system degradation,
are unknown, we address the predictive task by means of an
exploratory predictive maintenance analysis. To this aim, two
exploratory approaches are applied: a statistical data character-
isation approach, and a transparent exhaustive method based
on association rule mining. The latter, automatically extracts all
correlations, above specific thresholds, among SCADA events oc-
curring before each fault of interest (prognostic), and separately,
after the faults (diagnostic). Quality metrics are exploited to high-
light the most meaningful correlations. Finally, human-readable
patterns describing such correlations are investigated.

To the best of our knowledge, our work is the first study that
investigates both the prognostic and diagnostic capabilities of a
real-world historical dataset collected by a Supervisory Control
and Data Acquisition (SCADA) system in an electric grid, with
respect to the occurrence of severe service interruptions. Thanks
to the application of an exhaustive analysis methodology, by ex-
tracting association rules among faults and events, we addressed
the issue of providing smart grid operators an assessment of the
exploitation potential of currently available datasets for predic-
tive maintenance and diagnosis. The proposed methodology can
be applied to similar datasets from any grid operator.

2 DATASET
The dataset under analysis contains events recorded by the SCADA
system of a leading Italian grid operator, on its medium-voltage
distribution network. The dataset is recorded over a period of
6 years (2010-2016), covering two northeastern Italian regions
(Veneto and Friuli-Venezia-Giulia). The dataset is characterised by
3,901 faults of interest, 30 different affected components, 153,094
general SCADA events of network operations. The SCADA events
are divided into 67 different event types, with the generic fail-
ure event type accounting 79,833 events. The faults of interest
correspond to those: (i) lasting more than 180 seconds, (ii) with
the location in the network identified, and (iii) with the cause
determined. These events are named Permanent Service Inter-
ruptions (SIPs), tagged with a cause among 45 different reasons
and linked to one among the 30 affected components.

We briefly characterise the dataset by analysing the distribu-
tion of SIPs causes and types of SCADA events.

Figure 1a reports the probability distribution of the most fre-
quent causes of SIPs among the 45 available: the top 4 causes
account 75% of the SIPs, with “electric fault” being the most
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frequent cause (45%). More than 20% of SIPs are due to natu-
ral causes, such as: weather issues, plant falls, snow overload,
wind, and animal contact. All these causes are unpredictable with-
out contextual knowledge outside the electrical grid operational
events. Furthermore, another 20% of SIPs are due to unknown
“other causes” (second most frequent value).

Figure 1b reports the probability distribution of the most com-
mon SCADA events types. The distribution is skewed, with about
75% of SCADA events belonging to just 6 different types, and
with the most frequent one with a frequency above 30%.
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Figure 1: Frequency distribution of the values of (a) causes
of faults and (b) types of SCADA events.

3 PROGNOSTIC-DIAGNOSTIC APPROACH
Since this work aims at investigating both the prognostic and
diagnostic potential of SCADA events with respect to SIPs, we
focus on the analysis of those events occurring both before and
after a SIP, in the same portion of the network, under the as-
sumption that the time and space correlations might capture
causalities of the system.

3.1 Pre-Fault and After-Fault Windows
In the time dimension, we define a time window preceding the
occurrence of a SIP, denoted as Pre-Fault Window (PFW), and a
time window immediately following the SIP, denoted as After-
Fault Window (AFW). In the space dimension, we consider only
SCADA events observed in the same portion of the network
where the SIP occurs, i.e., reported by the same feeder as origin
of the collected data, since according to the domain experts they
are more likely to be correlated to the considered SIP.

Considering that the grid operator is interested in predicting
future SIPs occurring within the next month at most, the time
windows are defined with the following variable lengths: 1-7-30
days for PFW, and 1 hour, 1 day or 7 days for AFW. These values
result fromwider preliminary analyses, with the aim of capturing
behaviours of the distribution network at different time scales of
interest for domain experts of the electric grid company.
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Figure 2: Complementary Cumulative Distribution Func-
tion (CCDF) of the number of SCADA events registered
during various lengths of PFWs and AFWs.

Figure 2 reports the Complementary Cumulative Distribution
Function (CCDF) of the number of SCADA events registered dur-
ing the PFWs (continuous curves) and the AFWs (dotted curves).
Comparing the CCDFs of PFWs and AFWs, in almost 90% of the
AFWs at least one SCADA event is observed, even within 1 hour;
instead, in 50% of the 7-day PFWs and in 60% of the 1-day PFWs,
no SCADA events are registered at all. Furthermore, PFW curves
show a more gradual descent with respect to the AFW: SCADA
events are more likely to follow a SIP rather than preceding the
fault of interest. This data-driven intuition is also confirmed by
domain knowledge: many types of SCADA events are known to
be triggered by a SIP.

Finally, the 1-hour AFW curve shows a steeper descend than
the longer-lasting AFWs, but with the same starting (leftmost)
values: most SCADA events are typically observed within the
first hour after a SIP, and then few events are collected after 1 or
7 days. On the contrary, the curves of the 7-day AFW and the
30-day AFW show larger differences, since few events are col-
lected in the immediately preceding days of a SIP. Most SCADA
events occurring before a SIP are registered in the previous 1-7
days. Although few additional events are observed considering
a 30-day-PFW, we also note that a higher number of SCADA
events in the PFW correlates with a higher probability of regis-
tering another non-permanent service interruption during the
same PFW (results missing due to space limitations, partially
discussed in Section 3.2), so a significant portion of the 30-day-
PFW events could be ideally associated to AFWs of those minor
service interruptions.

All considerations tend to suggest a limited prognostic poten-
tial of the SCADA events with respect to SIPs due to fewer events,
more time-unrelated, also considering the high variety of SCADA
event types. Conversely, the diagnostic exploitation seems better
supported by more data, nearer to the event of interest.

3.2 Inter-Fault Window
We define Inter-Fault Window the time interval between two
consecutive faults on the same portion of the network, denoted
as IFW. The aim of such analysis is to determine howmany events
following a SIP, i.e., in its AFW and inherently diagnostic, are
also included in a PFW before another SIP, thus being modelled
also as prognostic features. Both SIPs and other minor Service
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Figure 3: IFW lengths of various types of faults.

Interruptions generate diagnostic SCADA events in their AFWs,
hence different IFWs can be defined, depending on the type of
faults considered (SIPs only or all Service Interruptions). Figure 3
shows the probability distribution of the duration of two types
of IFWs:

• Case A (dotted green curve): IFW between each pair of
consecutive SIPs.

• Case B (continuous red curve): IFW between each regis-
tered SIP and the immediately preceding Service Interrup-
tion of any type (either SIP or not).

In 80% of cases, the IFW between two consecutive SIPs lasts
more than 40 days, and there is only a 7% probability that two
SIPs are separated by an interval of less than 7 days (Case A).
Hence, with a 7-day PFW, we limit the interference of AFWs
of other SIPs into the PFW of the current SIP under analysis,
by guaranteeing that prognostic and diagnostic events are kept
separate for different SIPs.

However, in Case B, the duration of the IFW between a SIP
and the immediately preceding Service Interruption lasts up to
30 days in almost 60% of the cases, with the probability of having
an IFW shorter than 7 days risen to 26%, three-fold with respect
to Case A. Hence, there exist SCADA events registered during a
PFW preceding a SIP that are generated as a consequence, i.e., in
the AFW, of a previously occurring Service Interruption.

3.3 Challenges
From the time-window-based data characterization, the following
takeaways can be identified:

• 60% of the SIPs have no SCADA events in their 7-day PFW.
• 10% of the SIPs have no SCADA events in their 1-day AFW.
• Most diagnostic events occur in the 1-hour AFW.
• Many apparently-prognostic events occur more then 1
week before the SIP (PFW), however, they include events
generated as a consequence of other minor faults, i.e., they
are in the AFW of non-permanent Service Interruptions,
in 60% of the cases for a 30-day PFW, and in 26% of cases
for a 7-day PFW.

4 RULE MINING
To address challenges identified in Section 3.3, we exploited a
transparent, exhaustive and exploratory data mining approach:
association rule mining. The technique and its evaluation metrics,
as required by the scope of the current work, are defined as
follows.

4.1 Association Rule Extraction
Let D be a dataset whose generic record r consists of a set of co-
occurring events, i.e., events that occur in the same time window.
Each event, also called item, is a couple (attribute, value). In the

current work, the attribute is either a SCADA event type, or an
alleged cause, or a failed component, and the value is 1 if that
attribute is true in the time window under exam (e.g., the SCADA
event is present, the component failed, or the specific cause was
determined), or 0 otherwise. Note that a SCADA event might
represent another SIP or a minor fault occurring before or after
the analyzed SIP. An itemset I is a set of co-occurring events,
failed components, and alleged causes among the records r in the
datasetD. Such set of items I in a PFW or, separately, in an AFW
constitutes the input feature vector of the rule mining extraction.

The support count of an itemset I is the number of records r
containing I . The support s(I ) of an itemset I is the percentage of
records r containing I with respect to the total number of records
r in the full dataset D. An itemset is frequent when its support is
greater than or equal to a minimum support thresholdMinSup.

Association rule mining aims at identifying collections of item-
sets (i.e., sets of co-occurring events) that are frequently present
in the dataset under analysis, according to statistically relevant
metrics. The extracted rules are all and only those adhering to
the thresholds of statistical relevance defined as parameters of
the mining process, hence being an exhaustive, thus powerful,
exploratory approach within the boundaries of the problem for-
mulation (i.e., itemset definition and threshold settings).

Association rules are usually represented in the form X → Y ,
where X (rule antecedent) and Y (rule consequent) are disjoint
itemsets (i.e., they include different attributes). To identify the
most meaningful rules among those extracted by the mining
process, quality measures can be exploited as ranking criteria.
The following popular quality measures are used in the current
work: rule support, confidence, and lift. Rule support s(X ,Y ) is the
percentage of records containing both X and Y . It represents the
prior probability of X ∪ Y , i.e., the support of the corresponding
itemset I = X ∪Y in the dataset. Rule confidence is the conditional
probability of finding Y given X . It describes the strength of the
implication and is given by c(X → Y ) = s(X∪Y )

s(X )
[5].

All and only association rules with support and confidence
above (or equal to) a support thresholdMinSup and a confidence
threshold MinConf are to be extracted. Among those surviv-
ing the thresholds, a rank based on descending support, con-
fidence and lift values can drive the attention to focus on the
most statistically-relevant patterns. The lift [5] of a rule X → Y
measures the (symmetric) correlation between antecedent and
consequent, and it is defined as follows.

lift(X,Y) =
c(X → Y )

s(Y)
=

s(X → Y )

s(X) · s(Y)
(1)

In Equation (1), c(X → Y ) and s(X → Y ) are the rule confidence
and support; s(X ) and s(Y ) are the supports of the rule antecedent
and consequent, respectively. If lift(X ,Y )=1, itemsets X and Y are
not correlated, i.e., they are statistically independent. Lift values
below 1 show a negative correlation between itemsets X and Y ,
while values above 1 indicate a positive correlation, with higher
lift indicating stronger rules, hence typically more meaningful
and interesting correlations.

4.2 Rule quality analysis
The analysis of the extracted rules has been performed for various
parameter values. Due to space constraints, we report only the
most meaningful results based on the rules obtained by (i) setting
MinSup 0.02, then focusing on rules (ii) whose lift is higher than
1.5, and (iii) having a cause or component as conclusion.
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The number of rules resulting from such selection have been re-
ported in Figures 4a-4b for a 7-day PFW. They are scatter-plotted
according to support, confidence and lift values. For comparison,
the same results have been reported in Figures 4c-4d for an AFW
of 1 day. The diagnostic potential (AFW) is confirmed by a larger
number of correlations with better quality metrics with respect
to the prognostic capability (PFW):

• 45 rules extracted in the AFW vs 3 in the PFW.
• 50% max rule confidence in AFW vs 25% in PFW.
• 2.73 max lift value in AFW vs 1.9 in PFW.
• 8% max support in AFW vs 4.5% in PFW.

Eventually, top rules according to lift, confidence and support
have been inspected by domain experts from the grid company,
allowing to transparently evaluate the correlation model and the
prognostic-diagnostic approach.
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Figure 4: Association rules extracted from the 7-day PFW
(a-b) and from the 1-day AFW (c-d), with causes or compo-
nents as conclusion (x-axis in log scale).

5 RELATEDWORK
With the shift from the traditional electric grid to the Smart Grid
paradigm, data analytics and related applications are becoming
of fundamental importance in power networks, as shown by the
several studies available in the literature focusing on this topic
[6, 9]. However, few research efforts have been specifically de-
voted to predictive maintenance. Some studies aim at performing
fault detection in power networks, based on historical weather
data mining [7], on extreme learning machine models [10], or
on electrical feature extraction techniques [2]. Authors in [4]
deploy an effective method to detect faults in smart grids, trading
off the need for reducing the huge volume of available collected
data, related to the Phasor measurement unit, and the need for
keeping critical information. Other studies aim not only to detect
faults, but also to further characterise them by identifying and
exploiting significant features. Classifiers based on clustering
and dissimilarity learning techniques [3] or on feature extraction
algorithms [1] are used to analyse massive data to perform fault
recognition or distribution fault diagnosis. The deployment of
fault detection methods with prognostic purposes is not well
investigated in the literature. Authors in [8] aim at reducing the
outages in Medium Voltage distribution networks by exploiting
rule-based, data mining and clustering techniques to design a
method providing diagnostic and prognostic functions for Distri-
bution Automation systems.

6 CONCLUSIONS
The work analysed 6 years of data recorded from a medium-
voltage distribution network, with the purpose of estimating
both the prognostic and diagnostic potential for severe faults, i.e.,
permanent service interruptions. Time-window data characteri-
sation and exhaustive rule-mining results confirm the capability
of the collected data to support diagnostic tasks, whereas their
prognostic potential is limited since only few and poor predictive
correlations are present in the data. Future works include wider
analyses of the rules for different thresholds and changes into
the transactional dataset derived from the raw data to enable the
extraction of additional correlations. Finally, further investiga-
tions of the predictive capability will be performed by testing the
effectiveness of the obtained rules in detecting actual failures.
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