
A Flexible Approach to Service Management-Related

Service Description in SOAs

Christian Schröpfer1, Marten Schönherr1, Philipp Offermann1,
and Maximilian Ahrens2

1 Faculty of Electrical Engineering and Computer Sciences,
Technische Universität Berlin, Germany

{Christian.Schroepfer, MSchoenherr, Philipp.Offermann}@sysedv.tu-berlin.de

2 Deutsche Telekom Laboratories, Berlin, Germany
Maximilian.Ahrens@telekom.de

Abstract. In order for service-oriented architectures (SOAs) to deliver their true
value for the business, e.g. flexibility and transparency, a holistic service man-
agement needs to be set up in the enterprise. To perform all the service man-
agement tasks efficiently heavy support by automated processes and tools is
necessary. This article describes a service description approach that is based on
OWL-S (Web Ontology Language for Services) and focuses on non-functional
criteria. It starts with the necessary service management tasks and explains non-
functional data elements and statements for its automated support. After cover-
ing related work it explains the proposed flexible extension to OWL-S. This ex-
tension is twofold. Firstly, simple service lifecycle elements are added using the
normal extension mechanism. Secondly for adding QoS (Quality of Service)
capabilities, the approach combines this extension mechanism with UML (Uni-
fied Modeling Language) Profile for QoS. A prototype delivers the proof-of-
concept.

1 Introduction

In the last years, a lot of work regarding practical usability of technologies in the SOA
(service-oriented architecture) area and especially Web services area has been done.
Research work is more and more shifting from the technical areas like reliability and
security to the business layer. One of the problems is the operational management – or
IT service management – of an actual implemented service-oriented IT landscape in
the enterprise. ITIL (IT Infrastructure Library, see http://www.itil.co.uk/)
is a general and widespread IT service management framework. Being a de-facto
standard, many other service management frameworks are based on it [1]. Among
others, it covers best practices along two areas, Service Support and Service Delivery
including configuration management, incident management, problem management,
change management, release management, service level management, capacity man-
agement, availability management, IT continuity management, and financial man-
agement [1]. Part of the “IT service management” within the SOA is the “service

2 Ch. Schröpfer, M. Schönherr, Ph. Offermann, and M. Ahrens

component management” which deals specifically with managing the service compo-
nents, e.g. Web services, during their lifecycle.

Due to the special characteristics of an SOA, its operational management is differ-
ent from managing mature architectures. Additional requirements need to be covered.
In an SOA, the implemented Web services are most likely much more fine granular
than “normal” applications. In one landscape, there exist services that offer similar
functionality and have different lifecycle stages. A high number of services need to be
managed while a high reuse rate is a primary goal. At the same time in order for SOA
to deliver its advantages, changing services and their orchestration should be easily
possible. When managed without automated processes, tool support, and centralized
repositories, these conditions can lead to confusion and chaos. The contrary of the
original goals of SOA, among others more flexibility and more efficient IT, would be
the outcome. Hence, an effective and efficient service management framework for
SOAs is needed that is supported by automated processes and tools. The following
SOA-specific functional blocks should be covered: service definition, service de-
ployment lifecycle, service versioning, service migration, service registries, service
message model, service monitoring, service ownership, service testing, and service
security [2]. They represent SOA-specific functionality in the broader area of the ITIL
processes. Reference [3] highlights the importance of service description and in par-
ticular non-functional service description for managing SOAs and mentions in addi-
tion service discovery, substitution, and composition. Modeling functional and non-
functional information in a machine-readable and semantically enriched way is a basis
for a highly automated management of SOAs and in a broader sense of IT service
management.

This article looks at a flexible service description approach to non-functional in-
formation. In Web services technology, UDDI repositories (Universal Description,
Discovery, and Integration) and WSDL (Web Services Description Language) are
used for service publication, discovery, and description but do not provide the neces-
sary semantic functionality. Compared to the functional area less work has been done
in the area of semantically enriched non-functional service description. Hence, this
paper especially deals with the latter part. The approach builds on OWL-S (Web On-
tology Language for Services). The two aspects that form the basis in the non-
functional area are service lifecycle information and QoS (Quality of Service) guaran-
tees offered by a service. Hence, it is necessary to look at semantic Web service de-
scription standards in general as well as description standards in the QoS domain.

The remainder of this paper is organized as follows: In section 2, the requirements
for describing services are examined. Section 3 gives an overview over the related
work. Section 4 describes the extensions to OWL-S and section 5 the prototype. Sec-
tion 6 describes the importance of this approach for matching, SLA negotiation, and
SLA enforcement.

A Flexible Approach to Service Management-Related Service Description in SOAs 3

2 Requirements for Service Description

2.1 Requirements Overview

In order to support the above mentioned activities, like semi-automatic discovery, ser-
vice level management, and service migration, several types of information need to be
modeled within the service description. The following two sections describe require-
ments for service description regarding information relevant for service lifecycle
management and QoS guarantees. Two aspects have to be considered, the content and
the type of statements that can be modeled. The lists contain the most obvious points
in both aspects. However, they can not be regarded as complete. The available
sources, e.g. [3], [4], [5], and [6], describe very different non-functional characteris-
tics. In order to be future-proof, the approach must allow for extension of both onto-
logical terms and structure of statements used for description. Building on this exten-
sibility, domain specific models can be built that capture most requirements relevant
for the domain.

2.2 Information Relevant for Service Lifecycle Management

In the area of service lifecycle management, the following most obvious information
should be covered as a starting point:
1. Service name
2. Service categories
3. Versioning information
4. Lifecycle status (“Planned”, “Design”, “Test”, “Pilot”, “Active – intensive mainte-

nance”, “Active – regular maintenance”, “Sunsetting candidate”, “Sunsetting in
progress”, “Sunsetted”) (based on [2], extended)

5. Service provider information
6. Infrastructure the service runs on: server name, configuration management ID, etc.
7. Link to source code
8. Different responsibilities, roles, persons, e.g. for business aspect or maintenance
9. Link to further business description of the service
10.Pricing information (depending on QoS class)

For lifecycle management, the following obvious statement structures should be
covered as a starting point:
1. Parameters with simple values, e.g. versioning information
2. Parameter names with RDF (Resource Description Framework) pointers to terms

from predefined ontologies or resources (configuration database IDs for related in-
frastructure). Technically, this includes 1.

3. Tabular expressions, e.g. listing responsibilities for several areas
4. Free textual statements for a human reader

These statements are not very complex. As shown later, they can be realized rela-
tively simply with OWL-S extensions. Free textual statements are introduced (also for
the QoS) because we assume that in the first step it is not reasonable to put semantics
behind every statement for automatic processing. Rare statements should be left for a
human being to work with.

4 Ch. Schröpfer, M. Schönherr, Ph. Offermann, and M. Ahrens

2.3 QoS Guarantees

Table 1 exemplarily describes QoS characteristics to be modeled in the service de-
scription.

Table 1. QoS information

QoS area Explanation/example

General area
QoS-level Service level regarding performance and quality (“Gold”, “Silver”, and

“Bronze” are defined in a separate SLA document)
Service category Type of service/service domain (several categories per service possible)
Communication Communication pattern (e.g. real time and batch)

Cost area
Price Specification of tariff models, e.g. per period of time, per service call,

and volume-fixed

Performance area
Time Response time
Capacity Data capacity of a database (normal/max after extension)
Accuracy Accuracy of the result of a calculation
Arrival pattern Jitter; arrival distribution
Ratios Number of service requests per time period (throughput of data sets,

calculations per time) – (normal/max after extension)

Quality area
Functional cor-
rectness

Error rate

Reliability Availability, business hours (weekdays/times), incident resolution time

End user usability Rating with respect to ease of use/understanding

Security Security level (high, medium, low – defined in separate document: en-
cryption standard, access rights, and authenticity)

Other boundary conditions
Organizational Negative/positive list of partners

Cultural Languages needed for end user communication

Normative Compliance with laws/regulations, certification

The following structures of QoS statements should be supported as a basis to facili-

tate rich QoS specification in service description:
1. Boolean statements, e.g. “Component is Basel II certified – yes/no.”
2. Absolute requirements, e.g. “Reliability should be at least 99.9%.”
3. Composed requirements, e.g. “On weekdays, between 7am and 8pm, availability

should be 99.9%; Otherwise, reliability should be 99%.”
4. Level statements, e.g. “The QoS requirements as defined in level “Gold” should be

complied with.”
5. Percentile statements, e.g. “In 95% of the cases, response time should be below

10 ms.”
6. Free textual statements for a human reader

A Flexible Approach to Service Management-Related Service Description in SOAs 5

In addition, it should be possible to specify several sets of QoS guarantees (QoS-
level) with added price tags for one Web service that can be referred to during SLA
(Service Level Agreement) negotiations.

3 Related Work

3.1 Standards for Service Description

A number of standards have evolved in the area of semantic service description. A
quite mature one by now is OWL-S. OWL-S is an upper ontology language devel-
oped by the Semantic Web Services arm of the DAML (Darpa Agent Markup Lan-
guage) program [7] [8]. Using OWL-S, it is possible to describe Web services, their
properties, and capabilities in a semantically enriched form. Given this, we have cho-
sen OWL-S as the basis for our service description approach for two reasons. First of
all, it is based on OWL, a well established ontology language. Secondly, there are ro-
bust tools available for working with OWL ontologies as well as with OWL-S service
descriptions. Both reasons support the intention of this article to show that, based on
today’s technology, standards, and tools, a reasonable basis for service management
can be realized.

Other relevant semantic Web service description standards are WSMO (Web Ser-
vices Modeling Ontology) and WSDL-S (WSDL with semantic extension). WSMO is
a part of the WSMF (Web Services Modeling Framework) [9]. Its distinctiveness lies
in its capability to import ontologies specified in other ontology languages, among
others OWL, its usage of mediators bridging the gap between different Web services,
as well as its goal concept describing functionality and interfaces from a user perspec-
tive.

WSDL-S heavily leverages the existing standard WSDL and is focused on com-
patibility [10]. It also is very flexible with respect to ontology languages (e.g. OWL)
and mapping languages. However, being so flexible it is also more generic than
WSMO and OWL-S.

3.2 QoS Specific Standards – UML Profile for QoS

Specification of QoS characteristics is an important topic in the area of IT systems.
The existing standards can be grouped according to their main focus: software de-
sign/process description (e.g. UML Profile for QoS and QML – QoS Modeling Lan-
guage [6]), service/component description (e.g. WS-Policy), and SLA-centric ap-
proaches (e.g. WSLA – Web Service Level Agreements [11] [12], WSOL – Web
Service Offerings Language [13], SLAng – Service Level Agreement definition lan-
guage [14], and WS-Agreement [15]). A good overview over most of them can be
found in [4].

Several languages have been developed to support SLA negotiation and specifica-
tion in a service provider/service requestor scenario. The SLA-centric approaches are
very much linked to the problem of QoS characteristics specification. The difference

6 Ch. Schröpfer, M. Schönherr, Ph. Offermann, and M. Ahrens

to other QoS specification languages is that they are more targeted towards SLA ne-
gotiation, specification, and SLA management.

UML Profile for QoS is a comprehensive framework for modeling QoS require-
ments and offerings in UML models. It extends the reference UML 2.0 meta-model
mainly by using stereotypes. The current specification was published by OMG (Ob-
ject Management Group) in May 2006 [16]. Originally it has been developed for
software engineering of object-oriented systems. This article shows that it is also ap-
plicable to service description. UML Profile for QoS uses the following approach for
QoS description. It describes a QoS model specific to the respective domain sepa-
rately from the actual elements to be annotated. Then in the actual UML model the
elements can be annotated using terms defined in the QoS model.

There are several reasons for choosing UML Profile for QoS for the extension of
OWL-S. Firstly, it comes with its own general catalog of QoS characteristics which is
not domain- or project-specific. Secondly, it can be well integrated with business
process modeling which is part of the Web services matching problem. Thirdly, com-
pared to other specifications, UML Profile for QoS is quite mature and has been ac-
cepted by OMG as a standard. Its definition goes back to a thesis by J. Aagedal pub-
lished in 2001 where a lot of other QoS-related work has been considered [17].

3.3 Approaches to Semantic Service Description, Discovery, and Selection

Roy Grønmo and Michael C. Jaeger propose a methodology for Web service compo-
sition using QoS optimization [18]. The main focus of their article is on a matchmak-
ing algorithm that uses QoS requirements and offerings for achieving better results.
For both, they use UML Profile for QoS. Other than in this article, they use a link
from the WSDL operations to a document describing the QoS offerings.

Reference [4] proposes to have functional as well as non-functional specifications
in separate repositories. By contrast, we recommend to use a single repository, since
we do not see the necessity that a separate organization specifies the QoS characteris-
tics. In fact, the functional and non-functional properties should be guaranteed to-
gether either by the organization itself or a third party. The third party could then be a
trusted entity that is responsible for monitoring service levels or even for delivering
the service levels itself.

Reference [5] describes a framework and ontology for dynamic Web services se-
lection. It uses an agent-based system to support dynamic service selection and QoS
ontologies for describing the non-functional characteristics. Although the approach
covers QoS very extensively and comes with a realistic example, it has shortcomings.
It uses its own service ontology which makes it proprietary. Also, semantic descrip-
tion of service lifecycle information and functional service description is not explic-
itly covered by the approach.

WS-QoS is a framework that allows the definition of QoS requirements as well as
offerings for Web services and provides an infrastructure for managing those QoS-
aware Web services. WS-QoS is based on a WS-QoS XML schema and can be ex-
tended. Although it is compatible with UDDI and WSDL by using their extension
mechanisms, it is a proprietary approach when it comes to the QoS specification [19].

A Flexible Approach to Service Management-Related Service Description in SOAs 7

In [20], Klein and König-Ries present a process and a tool for describing services
based on DAML-S. A layered set of ontologies is used and instantiated in a specific
service description with the tool. The service description does not specifically deal
with service management requirements. In [21], Klein, König-Ries, and Müssig de-
velop an alternative service description language, called DIANE Service Description
(DSD) that implements additional requirements that are not covered by OWL-S and
WSMO. However, in this article we want to rely on current standards and existing
tools as much as possible.

Matching, i.e. service searching, ranking, and selection, is an interesting applica-
tion of semantically enriched service description. A lot of work is going on in this
area. Apart from functional information also the non-functional information is impor-
tant to be considered as the already mentioned sources [18] and [5] show. However,
functional matching is usually the first step to find appropriate services. The recently
published OWLS-MX matcher uses a hybrid approach, combining logic-based rea-
soning and approximate semantic matching, in particular content-based information
retrieval techniques for the input and output parameters specified in the service profile
of OWL-S [22].

4 Extension of OWL-S

The following section describes the proposed extension to OWL-S with respect to
service lifecycle management and QoS.

4.1 Extension for Service Lifecycle Management

Extension of OWL-S happens in the ServiceProfile, one of the four classes OWL-S
uses. It is targeted at describing functional and non-functional aspects for service dis-
covery. For the functional description Parameter, Input, Output, Condition, Result,
and Process are used. The first five refer to the process description in ServiceModel.
For the non-functional description the following properties/classes are interesting:
serviceClassification, serviceProduct, serviceName, textDescription, ServiceCate-

gory, and ServiceParameter. The first five can be used for the requirements men-
tioned as they are. The Web service can be classified using serviceClassification
(mapping to an OWL ontology of services, e.g. NAICS – North American Industrial
Classification System), serviceProduct (mapping to an OWL ontology of products,
e.g. UNSPSC – United Nations Standard Product and Services Classification), as well
as ServiceCategory (mapping to taxonomies potentially outside of OWL or OWL-S).
A semantic name can be given to a service using serviceName. Free text descriptions
can be represented with textDescription.

Especially important for the extension is ServiceParameter. With this element the
remaining additional service lifecycle characteristics are defined (Table 2). Future ex-
tensions also can be realized using ServiceParameter.

8 Ch. Schröpfer, M. Schönherr, Ph. Offermann, and M. Ahrens

Table 2. Defined elements for service lifecycle management

Service lifecycle pa-

rameter
Explanation

Properties/

subclasses
Data type Explanation

ServiceVersion Versioning information
VersionName String Version name described as literal
VersionNumber Float Version number x.x

ServiceLifecycle-

Status

Lifecycle status of the service component

LifecycleStatus (sub-
class of owl:Thing)

(Enumerated
instances)

Enumerated instances: “Planned”, “Design”, “Test”, “Pi-
lot”, “Active_intensive_ maintenance”, “Active_ regu-
lar_maintenance”, “Sunsetting_candidate”, “Sunset-
ting_in_progress”, “Sunsetted”

ServiceProvider Service provider information
ProviderLink anyURI Link to external information (name, address, contacts,

credentials, etc.) in provider database

Service Infrastructure Infrastructure the service runs on
ServerID anyURI List of server IDs the service runs on
ResourceID anyURI List of resource IDs the service uses

SourceCodeLink Link to source code in code repository
SourceCode anyURI Link to source code

Service Responsibility Responsibility for service from business and technical perspective
BizResponsibility anyURI Link to organization/person with business responsibility
TechResponsibility anyURI Link to organization/person with technical responsibility

BusinessDescription Information about business background
BizDescription String Textual description of business background
BizInfLink anyURI Link to further information resources

ServicePricing Pricing information
PricingModelQ1 anyURI Link to pricing model for QoS level 1, e.g. “Gold”
… … …
PricingModelQ5 anyURI Link to pricing model for QoS level 5

ServiceParameter consists of the serviceParameterName, the actual name of the
parameter, defined as literal or URI, and sParameter a link to the value within an
OWL ontology. Figure 1 shows the definition of ServiceVersion in OWL-S as an ex-
ample. VersionName and VersionNumber are defined as dataype properties (type
xsd:string and xsd:float) of the class ServiceVersionInfo (subclass of owl:Thing). Fig-
ure 2 shows the ServiceVersion information in OWL-S in a service description for a
logistics Web service CalculateRoute. ServiceVersion_10 and ServiceVersionInfo_11
are instances that contain the actual version information “Snake” and “5.1”.

A Flexible Approach to Service Management-Related Service Description in SOAs 9

Fig. 1. Definition of ServiceVersion in OWL-S

Fig. 2. Instance of a service description for CalculateRoute with details for ServiceVersion

4.2 Extension for QoS with UML Profile for QoS Description

Section 2.3 gives a flavor of what the level of complexity needed is when describing
QoS offerings. It shows that a comprehensive and extensible QoS framework that
builds on extensive experience needs to be leveraged. UML Profile for QoS is such a
framework that suffices the requirements. Hence we propose to use UML Profile for
QoS together with OWL-S to bring QoS functionality to Web services description.

The QoS model does not have to be defined in OWL-S. Its definition remains in
UML and can be reused for other services and systems. This is very much in line with

<owl:Class rdf:ID="ServiceVersion">

 <rdfs:subClassOf rdf:resource=

 "http://www.daml.org/services/owl-s/1.2/

 Profile.owl#ServiceParameter"/>

</owl:Class>

<owl:Class rdf:ID="ServiceVersionInfo"/>

</owl:Class>

<owl:DatatypeProperty rdf:ID="VersionName">

 <rdfs:domain rdf:resource="#ServiceVersionInfo"/>

 <rdfs:range rdf:resource="http://www.w3.org/

 2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="VersionNumber">

 <rdfs:domain rdf:resource="#ServiceVersionInfo"/>

 <rdfs:range rdf:resource="http://www.w3.org/

 2001/XMLSchema#float"/>
</owl:DatatypeProperty>

<ServiceVersion rdf:ID="ServiceVersion_10">

 <profile:sParameter>

 <ServiceVersionInfo rdf:ID= "ServiceVersionInfo_11">

 <VersionName rdf:datatype=

"http://www.w3.org/2001/XMLSchema#string"

 >Snake</VersionName>

 <VersionNumber rdf:datatype=

 "http://www.w3.org/2001/XMLSchema#float"

 >5.1</VersionNumber>

 </ServiceVersionInfo>

 </profile:sParameter>

 <profile:serviceParameterName rdf:datatype=

 "http://www.w3.org/2001/XMLSchema#string"

 >ServiceVersion</profile:serviceParameterName>

</ServiceVersion>

<profile:Profile rdf:ID= "CalculateRoute_Profile">

 <profile:serviceParameter rdf:resource= "#ServiceVersion_10"/>

[…]

</profile:Profile>

10 Ch. Schröpfer, M. Schönherr, Ph. Offermann, and M. Ahrens

the idea of using the same QoS notation on the business process side as well as on the
service description side to facilitate service level negotiation. The stereotypes QoS

Characteristic and QoS Dimension are used in the QoS model to specify respectively
quantify aspects of QoS. It is possible to use statistical values (maximum value,
minimum value, range, mean, variance, standard deviation, percentile, frequency,
moment, and distribution) as well as to express preferences about the direction when
comparing or optimizing parameters (increasing or decreasing).

For annotating the elements with QoS requirements and offerings UML Profile for
QoS uses three types of constraints: QoS Required, QoS Offered, and QoS Contract.
QoS Required and QoS Offered describe required and offered limitations of QoS Di-

mensions for annotated elements, either by listing the allowed elements or by stating
the limits. QoS Contract can be used for agreed limitations. Different QoS levels sup-
ported by a system, which can be used in SLAs, can be defined with QoS Level.

OCL (Object Constraint Language) expressions are used in the QoS statements.
This enables rich expressions as those mentioned in 2.3. The respective QoS Charac-

teristic is indicated in the annotation statement via context. An example QoS Offered
statement in OCL is shown below: “From Monday to Friday 8:00am to 8:00pm, the
response time can be guaranteed to be below 10 ms.”

<<QoSOffered>>
{context Time_Performance inv:
(Set{’Monday’, ‘Tuesday’, ‘Wednesday’, ‘Thursday’,
‘Friday’} ->includes(getToday()) and getCurrentTime() >
‘8:00’ and getCurrentTime() < ‘20:00’) implies respon-
seTime < 10}

<<QoSRequired>>
{context
Time_Performance inv:
responseTime < 10}

GetCredit
Application

CheckCredit-
worthiness

<<QoSRequired>>
{context
Security_Quality inv:
securityLevel = high}

Fig. 3. Example QoS requirements in a UML Activity diagram

Introducing such QoS annotations into the OWL-S service descriptions can simply
be done by adding QoSCharacteristics as a new ServiceParameter in ServiceProfile
and QoSStatement as a subclass of owl:Thing. QoSStatement has the datatype prop-
erty statement of the type string. This field contains the QoS constraints in OCL of the
element to be annotated. Figure 3 shows example QoS requirements on the service
requestor side in a UML Activity diagram. responseTime of GetCreditService is re-
quired to be lower than 10 ms. Figure 4 shows the corresponding QoS offering in the

A Flexible Approach to Service Management-Related Service Description in SOAs 11

service description of GetCreditService that would be a match during service match-
ing.

Fig. 4. QoS offering for GetCreditService in the service description

5 Service Management Prototype

5.1 Overview – Architecture and Functionality

The first version of the prototype is a combination of self-developed systems and
available open source tools. It is realized as a web application and contains a web
browser-driven user interface and two service repositories, one for the standard UDDI
publishing and discovery, and one for the semantic search. Two repositories are nec-
essary because the OWL-S-based repository is not UDDI standard compliant, while
UDDI as the current standard for service repositories does not offer semantic support.
The UDDI registry can be filled automatically with the information from the OWL-S
repository. In order to make that possible, a mapping for many of the repositories’
elements has been defined.

Figure 5 gives an overview of the prototype’s architecture which is structured in 3
layers. The first layer is the web client and client application. It contains the user in-
terface as a web browser application. Via this web-based front-end the user has access
to the functionality described in the next section. User authentication functionality as
well as storing the account information in a database is implemented here. The client
accesses the UDDI and OWL-S repository on a web application server via SOAP, the
standardized XML-based message exchange format for Web services. The UDDI re-
pository is based on jUDDI as persistence layer. The OWL-S repository builds on
Jena, a semantic web service framework, for the semantic support. Jena facilitates the
usage of internal and external reasoners and access to the database via RDQL (Re-

<profile:Profile

 rdf:ID="GetCreditService_Profile">

 <profile:serviceParameter>

 <QoSCharacteristics rdf:ID="QoSCharacteristics_14">

 <profile:sParameter>

 <QoSStatement rdf:ID= "QoSStatement_15">

 <Statement rdf:datatype="http://

 www.w3.org/2001/XMLSchema#string">

 <<QoSOffered>> {context Time_Performance

 inv: responseTime < 8}</Statement>

 </QoSStatement>

 </profile:sParameter>

 <profile:serviceParameterName rdf:datatype=

 http://www.w3.org/2001/XMLSchema#string>

 QoSCharacteristics</profile:serviceParameterName>

 </QoSCharacteristics>

 </profile:serviceParameter>

 […]
</profile:Profile>

12 Ch. Schröpfer, M. Schönherr, Ph. Offermann, and M. Ahrens

source Description Framework Query Language) [23]. The prototype uses it for inter-
facing with the database where the semantic description is stored and for performing
several operations on the ontology database, in this case MySQL. The prototype itself
is written in Java. It uses RMI (Remote Method Invocation) for communication be-
tween the Java components.

Fig. 5. Overview of service management prototype

Apart from the self-written parts, the prototype uses the readily available packages
Protégé, Protégé-OWL, and OWL-S Editor. Protégé is a free, open source ontology
editor from Stanford University [24]. Protégé with Protégé-OWL, a plug-in for defin-
ing ontologies in OWL, also from Stanford University (available at [25]), is used for
the taxonomy definition. OWL-S Editor is a Protégé plug-in developed at SRI Inter-
national (available at [26]). It helps to define services in OWL-S by making available
the OWL-S ontology with its predefined elements and a special view on the service,
profile, grounding, and process instances.

5.2 Functions and Methodology of the Prototype

The first version of the prototype supports the following tasks as a basis for the men-
tioned service management responsibilities: taxonomy/ontology definition, service
description, semantic annotation, service registration, service discovery, service re-
view, and user access control.

5.2.1 Taxonomy/Ontology Definition

The mentioned additions to the OWL-S ontology can be made with the OWL Editor
adding new ServiceParameter and owl:Thing subclasses. Later, service descriptions
and ontology extensions can be done using the OWL file. Also, a taxonomy for the

A Flexible Approach to Service Management-Related Service Description in SOAs 13

service category field and input/output parameters can be developed with Protégé
OWL. The generic way of defining/redefining the service taxonomy is an important
feature. It is a matter of fact that there is no stable service description in complex en-
vironments.

5.2.2. Service Description and Semantic Annotation

Service description and semantic annotations are done with the OWL-S editor by
loading the OWL file that contains the ontology extended by the above mentioned
elements. It is possible to import existing WSDL descriptions. Once the extended
OWL-S ontology is loaded, the services can be described. For specifying a parameter
for a service, the predefined ServiceParameter has to be used. There are two ways of
doing this. If the parameter contains listed elements, e.g. ServiceLifecycleStatus, a
link to an existing instance can be used. If the parameter contains an element with free
content like a number or a text field (e.g. ServiceVersion), a new parameter value in-
stance has to be created. Apart from the non-functional elements, it is possible to se-
mantically describe the input/output parameters using normal OWL-S functionality
and the service parameter ontology defined.

5.2.3. Service Registration

Service registration is done by importing the OWL-S service description into the pro-
totype and its database. This is necessary after each change to it. The prototype can
then perform the search activities laid out in the next section.

5.2.4. Service Discovery and Review

The main functionality of the prototype is search functionality across the services reg-
istered and described. There are several possibilities for performing searches using the
additional semantic information:
1. Simple queries – searching for services, input/output parameters, taxonomy ex-

pressions, etc. using the full names of these elements
2. Semantic queries for services using their input and output parameters
3. Semantic queries for services that match other services’ input or output parameters
4. Semantic queries for services using taxonomy elements
5. Semantic queries using the other additional parameters such as ServiceVersion,

ServiceResponsibility, and ServiceLifecycleStatus
6. Taxonomy tree search – services that belong to one taxonomy can be found by

navigating through a simple taxonomy tree (uses Tigra Tree Menu [27]) or a hy-
perbolic graph (uses HyperGraph [28])
Number 3 refers to a simple matching functionality that can be used for service or-

chestration and will be extended in the future. To increase the flexibility of the search,
it is possible to use the outcome of one search run as the basis for another search.

5.2.5 User Access Control

For service management in complex environments it is absolutely necessary to sup-
port role-specific views combined with access rights management. The numerous ser-
vices are the core of an IT system of an enterprise. Therefore they need to be pro-

14 Ch. Schröpfer, M. Schönherr, Ph. Offermann, and M. Ahrens

tected against malicious attacks as well as erroneous and uncoordinated activities of
careless or unaware users. Hiding unnecessary information improves usability, re-
duces the number of errors, and is sometimes a must when it comes to confidentiality.
The prototype’s user authentication module controls the activities of individual users
according to the rights associated with their roles. An “Administrator” can add new
accounts and associate them to a role. “Users” are only allowed to search and browse
through the service repository. “Developers” can in addition perform detailed search
operations. The “Architect” is also allowed to register and delete services in the re-
pository.

6 Importance for Matching, SLA Negotiation and Enforcement

Currently, the search needs to be done manually. Having visibility about all services
implemented and the possibility of managing meta-information of the services cen-
trally and thus in a consistent way is a big advantage and a precondition for the suc-
cess of an SOA. However, if the IT systems based on the services get bigger and big-
ger and the number of services is expanding, a process that includes more automated
support is necessary. The semantic description of input and output parameters and
non-functional characteristics is a prerequisite for that. Only if service requestor and
service provider refer to the same ontological concepts, the service matching module
can “understand” them. That is why the additional effort of managing the semantic
metadata is justified. A common way of performing the matching or SLA negotiation
is a two-step approach as proposed by METEOR-S, Grønmo/Jaeger [18], or in “Se-
mantic WS-Agreement Partner Selection” [29]. The first step performs functional
matching. We suggest a hybrid semantic matching based on input and output parame-
ters, e.g. by using OWLS-MX. In addition we propose to use the service category.
Due to the semantic information not only exact matches of parameters and taxono-
mies are found but also parameters that stand in a class-sub-class relationship, e.g. car
– convertible. The second matching step performs the non-functional matching using
particularly the QoS-related information. Constraints about the QoS-characteristics on
the service consumer side (QoS Required) are compared with the QoS-offerings
specified in the service description (QoS Offered). The outcome is a ranking of the ex-
isting services that perform the desired functionality according to how well they meet
the QoS requirements. Once a service is chosen, an SLA, a formal specification of the
agreement between service consumer and service requestor (inter- or intra-
organizational) can be specified.

It is planned to extend the prototype’s service matching functionality and also to
introduce an SLA specification, and SLA management module. According to a ser-
vice request with a set of semantically enriched functional and non-functional infor-
mation this module will discover existing services in the repository, provide their
WSDLs and specify the SLA in a nearly fully automated way. The format for the
SLA will be WSLA or WS-Agreement. The machine-readable SLA is a good basis
for automated SLA-enforcement and monitoring during run-time. In case of prob-
lems, the person responsible can find the respective service in the registry and has ac-
cess to information, e.g. contact details, infrastructure the service runs on. Matching

A Flexible Approach to Service Management-Related Service Description in SOAs 15

and SLA specification functionality will ease the life of system developers as well as
SLA authors/enforcers. It will also foster reuse, one of the goals of SOAs.

7 Conclusion and Outlook

As SOAs will be very complex from an IT service management point of view, in or-
der to deliver their full value automated tool support is necessary. Semantic descrip-
tion of non-functional service characteristics is one important prerequisite for that.

The contribution of the presented work is a practical approach to service descrip-
tion and discovery that is extensible regarding additional future requirements. The ar-
ticle shows that it is possible to build a semantically enriched service repository with
OWL-S that supports several tasks that are the basis for higher level service manage-
ment activities. With the approach, it is possible to describe – along with the func-
tional characteristics – the non-functional characteristics with respect to service man-
agement (service lifecycle management and QoS) in a single OWL-S-based
repository. The approach is extendable with respect to changes of the used taxonomy
as well as the elements used for service description. At the same time it is a compati-
ble upgrade of the existing Web services description standards. Besides the presented
approach, the article also gave an overview over relevant standards and related work
in the area of non-functional service description.

The prototype will be extended to support better integrated service description
functionality. Extensions for automated service discovery, SLA specification, and
SLA management are planned.

References

1. Sallé, M.: IT service management and IT governance: review, comparative analysis and
their impact on utility computing (2004), http://www.hpl.hp.com/techreports/2004/HPL-
2004-98.pdf

2. Woolf, B.: Introduction to SOA governance - Governance: The official IBM definition, and
why you need it. IBM (2006), http://www-128.ibm.com/developerworks/webservices/
library/ar-servgov/index.html

3. O'Sullivan, J., Edmond, D., ter Hofstede, A.: What’s in a service? Towards accurate de-
scription of non-functional service properties. Kluwer Academic Publishers (2002),
http://www.infosys.tuwien.ac.at/Teaching/Courses/IntAppl/Papers/WhatsInAService.pdf

4. Dobson, G.: Quality of Service in Service-Oriented Architectures (2004),
http://digs.sourceforge.net/papers/qos.html

5. Maximilien, E.M., Singh, M.P.: A framework and ontology for dynamic Web services se-
lection. IEEE Internet Computing 08 (2004) 84-93

6. Frolund, S., Koistinen, J.: Quality of Service specification in distributed object systems de-
sign (1998), https://www.usenix.org/publications/library/proceedings/coots98/full_papers/
frolund/frolund.pdf

7. DAML: DAML Services (2006), http://www.daml.org/services/owl-s/
8. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., Narayanan,

S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara, K.: OWL-S: Se-

16 Ch. Schröpfer, M. Schönherr, Ph. Offermann, and M. Ahrens

mantic markup for Web services (2006), http://www.ai.sri.com/daml/services/owl-
s/1.2/overview/

9. Web Service Modeling Ontology - ESSI WSMO working group (2006), http://wsmo.org
10. Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt, M.-T., Sheth, A., Verma, K.:

Web service semantics - WSDL-S - W3C member submission 7 November 2005 - Version
1.0 (2005), http://www.w3.org/Submission/2005/SUBM-WSDL-S-20051107/

11. Emerging Technologies Toolkit. IBM (2006), http://www.alphaworks.ibm.com/tech/ettk
12. Ludwig, H., Keller, A., Dan, A., King, R.P., Franck, R.: Web Services Level Agreement

(WSLA) Language Specification (2003), http://www.research.ibm.com/wsla/
WSLASpecV1-20030128.pdf

13. Tosic, V., Patel, K., Pagurek, B.: WSOL - Web Service Offerings Language. In: Bussler,
C., et al. (ed.): CAiSE'02 (2002) 57-67

14. Lamanna, D.D., Skene, J., Emmerich, W.: SLAng: A Language for Defining Service Level
Agreements (2003), http://www.cs.ucl.ac.uk/staff/w.emmerich/publications/FTDCS03/
slang.pdf

15. Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Pruyne, J., Rofrano, J.,
Tuecke, S., Xu, M.: Web Services Agreement Specification (WS-Agreement) (2005),

16. OMG: UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics
and Mechanisms - OMG available specification - Version 1.0 - formal/06-05-02. OMG
(2006), http://www.omg.org/cgi-bin/apps/doc?formal/06-05-02.pdf

17. Aagedal, J.Ø.: Quality of Service support in development of distributed systems. Depart-
ment of Informatics, Faculty of Mathematics and Natural Sciences, Vol. Doctor Scien-
tiarium. University of Oslo (2001)

18. Grønmo, R., Jaeger, M.C.: Model-driven methodology for building QoS-optimised Web
service compositions. The 5th IFIP International Conference on Distributed Applications
and Interoperable Systems (DAIS)

19. Tian, M.: QoS integration in Web services with the WS-QoS framework. Department of
Mathematics and Computer Science. Freie Universität Berlin, Berlin (2005)

20. Klein, M., König-Ries, B.: A process and a tool for creating service sescriptions based on
DAML-S (2003), http://hnsp.inf-bb.uni-jena.de/DIANE/docs/TES2003.pdf

21. Klein, M., König-Ries, B., Müssig, M.: What is needed for semantic service descriptions - a
proposal for suitable language constructs. International Jounal on Web and Grid Services
(2005)

22. Klusch, M., Fries, B., Sycara, K.: Automated Semantic Web Service Discovery with
OWLS-MX. AAMAS 2006. ACM, Hakodate, Hokkaido, Japan (2006)

23. Jena – A Semantic Web Framework for Java. sourceforge.net, http://jena.sourceforge.net/
24. Welcome to Protégé. Stanford Medical Informatics (2006), http://protege.stanford.edu/
25. What is Protégé-OWL? Stanford Medical Informatics (2006),

http://protege.stanford.edu/overview/protege-owl.html
26. The OWL-S Editor (2004), http://owlseditor.semwebcentral.org/
27. SoftComplex: Tigra Tree Menu. SoftComplex, http://www.softcomplex.com/products/

tigra_tree_menu/
28. HyperGraph, http://hypergraph.sourceforge.net/
29. Oldham, N., Verma, K., Sheth, A., Hakimpour, F.: Semantic WS-Agreement Partner Selec-

tion. International World Wide Web Conerence Committee (IW3C2). ACM, Edinburgh,
Scotland (2006)

30. Schmietendorf, A., Dimitrov, E.: Management serviceorientierter Architekturen auf der
Grundlage von ITIL, http://www.cecmg.de/doc/tagung_2006/fileadmin/trilog/download/
cecmg_2006/Referenten/2/2C1_Langf_Schmietendorf.pdf

