
Mobile and Dynamic Web Services

Elena Sánchez-Nielsen, Sandra Martín-Ruiz, Jorge Rodríguez-Pedrianes

Dpto. E.I.O. y Computación – Escuela Técnica Superior de Ingeniería Informática

Universidad de La Laguna, 38271 La Laguna, Spain
enielsen@ull.es

Abstract. Making mobile phones capable of consuming Web services over
wireless networks is a challenging task because of the different issues to be
addressed and the limited resources of mobile devices. In this paper, we focus
on the issue of how to perform dynamic discovery and invocation of Web
services from mobile phones when a J2ME wireless middleware is used. In
order to solve the limitations of the middleware platform when mobile phones
act as Web services requestor we propose a Web service based dynamic proxy
between service providers and mobile consumers. With this approach, we
provide the following features to mobile devices: (1) support of dynamic
binding, (2) support of UDDI specification, (3) support of SOAP messages with
encoded representation and (4) handling of complex data types. The paper
includes the description of the dynamic proxy, implementation and
experimental results with the performance of the approach proposed.

1 Introduction

The use of Web services (WSs) in mobile phones allows users to discover and access
to digital content and services at anywhere and anytime. The access to these resources
in a wired-wireless system involves: service provisioning, service discovery and
service execution.

The need of service providers to add new capabilities at anytime and in turn give
mobile consumers a huge choice of available services at runtime requires a dynamic
discovery and invocation process. The use of this process brings a number of benefits
to mobile users such as require no prior knowledge of available services nor require
updating clients applications when new services are incorporated at runtime.

Dynamic adaptive middleware for mobile computing has been proposed with the
purpose of adapting applications to the current context [18, 19], frameworks for Web
services provisioning in a static environment of fixed and mobile computing have
been described in [22] and approaches for provisioning mobile services in critical
environments have been outlined in [23]. However, no significant frameworks with
experimental results have been carried out to allow access to Web services from
mobile phones at runtime without prior knowledge of available services due to the
current limitations of extending the Web service technology into the wireless world
by the key commercial players.

This paper describes our approach to addressing dynamic discovery and invocation
when mobile phones act as WS requestor at runtime, its implementation and
performance when J2ME middleware platform [10] is used.

The remainder of this paper is organized as follows. Section 2 introduces the
different issues related to invoke Web services from mobile phones and the related
work about mobile devices acting as WS requestor. Section 3 describes the current
restrictions to design mobile client applications to access to Web services when J2ME
development platform is used. Focused on these limitations, we propose to introduce
a Web service based dynamic proxy. The use of this component allows service
providers to create, update and change services at anytime and mobile users to locate
new services at runtime without adapting the application of their devices. Section 4
describes our approach and conceptual model to dynamically discover and invoke
Web services from mobile phones. Section 5 illustrates the implementation and
performance of the approach proposed. Comparisons with common scenarios based
on the use of static stubs are performed. Discussion of the advantages and
disadvantages of the use of J2ME as wireless middleware is included. Section 6 gives
concluding remarks and future work.

2 Related Work

This section provides a brief summary of Web services standards related to our work,
scenarios of using Web services in mobile phones, and ongoing specifications related
to it. Discussion about if is appropriate to adopt common scenarios to support services
on wired networks in mobile phones is included.

2.1 Web Services Standards

The WS paradigm [6] involves three types of participants: WS provider, WS
requestor (also referred to as service consumer or client) and WS registry or broker.
The infrastructure necessary to implement a WS based approach requires: a way to
communicate (SOAP) [7], a way to describe services (WSDL) [8], and a name and
directory server to publish and advertise available services (UDDI) [9]. In middleware
terms, a service is a procedure, method or object with a published interface by a
service provider that can be invoked by service clients. Using SOAP-based
interaction, the client makes a procedure call that looks like a local call. As a result,
clients can invoke Web services by means of standardized conventions to convert
procedure calls into an XML message, to exchange this message trough HTTP or
other protocols, and to turn the XML message back into an actual service invocation.
The structure of a SOAP message is influenced by: two different interaction styles
and encoding rules. Then, four different types of SOAP messages are possible:
RPC/encoded, RPC/literal, document/literal and document/encoded.

WSDL is an XML-based interface definition language. This interface is specified
in terms of methods supported by the Web service. This interface can be compiled
into the appropriate programming language to generate the stubs and intermediate
layers that make calls to the Web services transparent. Invoking Web services with

clients can be carried out by static stubs, dynamic proxies and dynamic invocation
interface (DII) according to client applications have knowledge of the WSDL URL at
development-time or runtime.

 Static stubs: a procedure call of a client application is an invocation of a proxy

procedure located in a stub appended to the client at compile time. Then
clients invoke methods of a WS directly via the stub.

 Dynamic proxies: the client application calls a remote procedure through a
dynamic proxy that is created at runtime. The dynamic proxy needs to be re-
instated whenever the service endpoint interfaces are changed.

 Dynamic invocation interface (DII): this approach enables dynamic invocation
of Web services without having to know interface details at compile time.

2.2 Scenarios of using Web services in mobile phones

The possible scenarios of using Web services in mobile phones are [17]: (i) mobile
device acting as WS requestor, (ii) mobile device acting as WS provider and (iii) a
mixed combination of the previous approaches. The approach proposed in this paper
is related to the first scenario.

 In the following sections we describe existing and ongoing work related to the two
possible architectural configurations for the first scenario.

2.2.1 WS-aware mobile device
In this architectural configuration, the entity that plays the role of the WS requestor is
the mobile device itself. This device needs to dispose a WS client application in order
to enable the provision of services to mobile users. It interacts with the service
provider and the service broker using WS-aware protocols over the wireless network
(eg., WLAN, GSM/GPRS). TinyXML [20] can be used to present data and
VoiceXML [21] allows user to listen to data instead of viewing it. Figure 1 illustrates
how to access to Web services functionalities from mobile phones using a WS based
service oriented architecture with static stubs.

2.2.2 WS-agnostic mobile device
This configuration introduces a proxy entity that plays the role of the mobile device
representative in the fixed network infrastructure. This scenario is applicable in the
case where the mobile user moves into an unfamiliar environment and obtain services
for which it has no previous knowledge. For example, we could consider a mobile
user entering an airport and obtaining access to services such as flight information,
special offers and promotions in the duty free shops, etc. The proxy interacts via WS-
aware protocols with the service broker and the service provider and returns the
results to the mobile device using WS-agnostic protocols such as WAP/WML, i-
Mode/cHTML over a wireless network [17]. The proxy may also perform various
tasks such as conversion and content adaptation in order to adjust the WS result to
different terminal and network environments.

Fig. 1. Mobile phone as a service requestor. The device hosts WS client code

2.3 Specifications

Two specifications related to implement services in mobile phones are being
developed: (i) OSGi Alliance [2] and Liberty Alliance Project [3]. The OSGi Service
Platform defines a standardized, component oriented, computing environment for
networked services, where software components can be installed, updated or
removed. These components are libraries or applications that can dynamically
discover and use other components. The design of this platform is not targeted to Web
services solutions. Therefore, there is ongoing work in order to provide the OSGi
Service Platform as a platform for Web services such is illustrated by Hall and
Cervantes work [4]. On the other hand, the Liberty Alliance Project proposes a
federated network with an authentication mechanism that makes use of a Web
services framework. However, the usage, advantages and disadvantages of dynamic
binding are not mentioned in this specification.

2.4 Discussion

In order to provide an admissible solution to dynamic services from mobile devices,
the following considerations must be taken into account:

 Standard WS infrastructures to support services on wired networks (e-services) [5]

are not appropriate because they are based on the use of static stubs. As a result,
the slightest change of Web service definition leads to the stub being useless and a
generation of a new stub. Also, each WS to be invoked by a client application
requires a stub appended to the client at compile time. Therefore, in order to
support a dynamic infrastructure where new services can be provided to mobile
clients at runtime requires that the client downloads a new application to its device
each time a new service is provided to the marketplace when a static stub based
approach is used.

 The main usage mode of UDDI today is focused on design-time discovery and not
on dynamic binding [5]. That is, users browse or search the content of a registry

for services of interest, read the service descriptions, and subsequently write
clients that can interact with the discovered services.

 The WS-aware mobile device based configuration presents several issues which
come from the fact that mobile devices are characterized by limited resources such
as processing power and memory. Also, CPUs in mobile phones are restricted to
handle complex XML parsing and in general to handle the processing need of
Web services.

 The WS-agnostic mobile device based configuration is characterized by an
increase of the amount of interactions between the mobile device and the network.
Also, at the present time commercial middleware based solutions make not
possible a DII based approach.

 Also, the specifications supporting these scenarios are still or just emerging.

In this context, we propose a framework based on a dynamic proxy entity. The

main contribution of our approach is that we propose the proxy component as a Web
service that makes use of dynamic binding and that act as client over the network of
services and as server to the mobile devices. With this approach, we compute at
runtime WS descriptions from service providers, UDDI registry and invoke services
selected by mobile user using WS technology

3 Client Applications with J2ME

The Java Platform, Micro Edition (Java ME) provides an environment for
applications running on consumer devices, such as mobile phones. This platform is
divided into configurations, profiles and optional packages. Configurations are
specifications that detail a virtual machine and a set of class libraries which provide
the necessary APIs that can be used with a certain class of device. A profile is a set of
higher-level APIs that further define the application life-cycle model, the user
interface, persistent storage and access to device-specific properties. Optional
packages extend the Java ME platform by adding functionality to Web services.

MIDP profile with CLDC configuration, KVM virtual machine and JSR-172
specification is required as development environment to design mobile client
applications to access to Web services using Java ME. JSR-172 specification provides
the necessary APIs to access from J2ME applications to remote SOAP/XML services
and parsing XML data. This specification provides two optional packages based on
XML: Java API for XML Processing (JAXP) and Java API for XML-based RPC
(JAX-RPC). JAXP provides the XML parsing functionality to process XML data
received in a mobile phone. JAX-RPC is an implementation of RPC technology
(Remote Procedure Call), where the client makes a procedure call that looks like a
local call. This call is an invocation of a proxy procedure located in a stub appended
to the client at compile time. Currently, designing client applications using JSR-172
specification presents the following restrictions:

 There is no support for dynamic proxies or dynamic invocation interface. That is,

the Java ME subset supports only static stubs. The developer is responsible of

generating the stubs using a WSDL-to-Java mapping tool. Figure 2 illustrates the
process. The Sun Java Wireless Toolkit includes a stub generator. In this context,
so many stubs are generated and appended to the client application as different
services are provided to the service client.

 There is only support to the document style of operation with literal use.
 Neither capabilities for standard service registration and discovery nor support to

UDDI 2.0 specification are provided.
 There is no support to the use of a mobile phone as server of Web services. That

is, the JAXP-RPC for Java ME subset doesn’t support the service endpoint model,
only the client service consumer model is supported.

JAX-RPC for Java ME doesn’t support all of the JAX-RPC 1.1 basic types. For
example, there is partial support for complex value types, and mapping of floating-
point types depends on the Java ME configuration you use.

Stub
Generator

WSDL

Stubs

Java ME
Application

(Client)

Stubs

JAX-RPC
Runtime

Service Client

Fig. 2.. Generating the JAX-RPC Stub

4. Mobile Web Services Framework

Commercial middleware such as J2ME and basic infrastructures to support WSs are
addressed by employing a static stub approach that guarantee the execution of WSs in
a static environment. However, this middleware platform does not take into account
basic features that characterize today’s mobile phones environments. In this context,
we aim to modify traditional WS SOA based approach to enable dynamic discovery
and invocation for mobile phones. To be precise, we propose:

 To introduce an intermediate entity between service providers and service clients.

This entity consists of a service manager that operates as a dynamic discovery and
invocation (DDI) client of the distributed network of Web services offered by the
different providers and as server to the mobile phones. With this approach, we
delegate the business logic to service managers, solving the problems faced by

direct access from mobile devices to Web services and at the same time reducing
the number of interactions between mobile phones and the network.

 An XML based infrastructure as format data exchange with two purposes: (i) to
define a service registry structure to locate services that allows service providers
to create, update and change services at anytime and (ii) to establish the
communication between the service manager and mobile phones. This
infrastructure is described in [1].

Figure 3 illustrates the framework proposed. In the following sections, we describe

the components of our approach illustrated in Figure 3, the interactions among the
different components and the UML class diagram for the conceptual model of the
service manager.

Service
Provider

Service
Client

Service
Manager

UDDI
REGISTRY

5. Request

Message Exchange
(SOAP)

Web
Services

Mobile Phones

Application
supporting

Web Services

Distribute

Service Registry

8. Response

Message Exchange
(XML)

6. DII Invoke

7. Response

2. Dynamic
Binding

3. Services
Availability

 Dynamic
Binding

1. Publish
Service URIXML

File

1. Publish
Service URI

4. Services
Description

Services
Availability

XML
File

Fig. 3. Mobile Web services framework

4.1. Service Providers and Service Clients

Service providers are the owners of different enterprises or a single enterprise who
made up the marketplace that offer services. They define descriptions of their services
using WSDL specifications [8].

Service clients are mobile phones-oriented users interested in diverse services such
as search engine tools, language translation facilities, newspaper reports, weather
forecast, airport services, mobile shopping, mobile banking and m-government
services.

4.2. Service Managers

Service managers act as a mediator layer between service providers and mobile
clients. They are responsible for information flow between both components. A
service manager is a Web service entity that uses dynamic binding to compute service

descriptions and dynamic invocation interface (DII) to query for services to service
providers.

With the use of DII, we allow service managers to invoke WS without knowing
their communication interface at compile time. As a result, we obtain several
advantages: (i) invocations of Web services not known prior can be computed by the
service manager (ii) service providers can create, update and change their services at
runtime, (iii) no static stub generated manually for the service manager at compile
time is required and (iv) a single stub appended to the Java ME client application is
required. This appended stub corresponds to the service manager.

According to the structure of marketplace, one or multiple service managers can be
supported. The use of a single service manager involves a centralized marketplace. If
multiple service managers are used, different operators or third parties can be
incorporated at anytime, where each one can support different service providers. The
integration of service managers into a service oriented architecture leads to mobile
client applications to only interact with these components and no with the different
service providers. This way, a single stub corresponding to the service manager is
needed to be appended to the client application and no several stubs corresponding to
the different services available on the marketplace. At the same time, the interactions
between mobile phones and the network are considerably reduced. The conceptual
model of a service manager is described in section 4.5.

4.3. UDDI Registry

UDDI service directory can be used by mobile users to locate new services.
Discovery is computed at runtime by the service manager, once the user has sent their
request of new services at UDDI registry.

4.4 Interactions

Interactions between service providers and mobile clients using a service manager
consist of the following processes:

 Start up: When the service manager starts up, it processes a service registry. This

registry is a structure that enables service providers to store their list of URL
addresses (URI) of accessible services made available. New URI can be
incorporated at anytime. The service manager maintains an XML based structure
as registry. Dynamic binding is used by the service manager in order to obtain the
service descriptions at runtime.

 Service delivery descriptions: the description (operations provided, parameter…)
of available Web services set is sent from service manager to mobile client
according to an XML format.

 Request Service: once mobile clients have received the description of available
services, they send requests for services of their interest.

 Service invocation: service manager receives a request encoded as an XML
message with the necessary information (Web service name, selected operation,

parameter values introduced…) from a mobile device when a user is interested in
some service. Dynamic invocation is used by service manager in order to invoke
Web services functionalities to service providers.

 Results transmission: the service manager sends the information encoded as an
XML message to the mobile user, when it receives the response of the
corresponding service provider. This information is shown on the screen display
of the mobile device.

 UDDI services: mobile clients can also demand services supported by UDDI
registry. In this context, a client makes a request to the service manager using
keyword in order to discover a particular service at UDDI registry. Then, the
service manager uses dynamic binding to discover services at UDDI registry that
match with the user search criterion. The description of these services is sent from
the service manager to the mobile application. The user selects the service of its
interest and finally the service manager processes this request at the same way as
the request and invocation of services previously described.

4.5 Conceptual Model of Service Manager

Figure 4 depicts the UML class diagram for the conceptual model of the service
manager. The different classes and relationships are illustrated. Following, the
different classes are described.

The WebService class corresponds to the service manager that processes the
requests of mobile clients. In order to avoid a new creation of instance every time the
user performs an invocation of some operation of this class and reduce computational
costs, two different classes were developed (StandardServices and UDDIServices).
These classes were implemented using a singleton pattern. As a result, a single
instance is present every time. The client application invokes the corresponding
operation according to the selection achieved by the mobile user:

 updateStandardServices: this operation allows mobile users to check the current

version of downloaded services. If the version of the mobile application doesn’t
correspond to the service manager version, a new version with the new services
incorporated at runtime is sent to the mobile client in an XML format.

 invokeStandardService: this operation allows mobile users to invoke any WS
registered at the service registry of the service manager. Input parameters are:
URL address of WSDL file, QName of portType, operation name to invoke and
parameter values of the operation. Once the results of the invocation of the Web
service have been processed by the service manager, this one transforms these
results to an appropriate XML format, which is sent to the mobile application.

 processUDDISearch: this operation allows mobile users to request a search at
UDDI registry. Once the search is computed by the service manager using
dynamic binding, the results of available services are encoded as an XML
message to the client application.

 computeUDDISearch: once client application receives services located at UDDI
registry as a result of the processUDDISearch operation, the user selects the
appropriate Web service for its interest. The input parameter of this operation is

the service selected. An XML document is generated with the service description
which is sent to the client application.

 invokeUDDIService: with this operation, services searched at UDDI registry are
invoked using dynamic invocation.

The StandardServices class is responsible of the management of all the operations

related to the processing of Web services, such as: computation of the Web services to
offer to mobile clients, making of the XML document to be sent to the mobile
application with the new services incorporated at runtime and invocation of the
operation of a specific WS selected by a mobile user.

The UDDIServices class corresponds to the operations related to Web services
searched at UDDI registry: Web services list that matches with the search criterion of
the user and invocation of the corresponding operation. The search of Web services at
UDDI registry is computed by locateUDDI method. This method makes use of the
locateUDDIService class that computes the search at UDDI registry according to the
search criterion detailed by the mobile user. After the search has been performed,
services found at UDDI registry are checked in order to detect inconsistencies.

The ManagerOperations class manages the operations related to Web services
such as operations of incorporation, searching and invocation. The attributes of this
class are the operations set and the dynamicInvoker object. Attribute operations
contains the description of operation of Web services: URL address of WSDL
document, parameters required and description of the operation. The dynamicInvoker
object is an instance of the class DynamicInvoker.

The DynamicInvoker class is designed with the purpose of achieving the
description of Web services from WSDL files and invocating them at runtime.
Apache Axis [11] is used to implement this class. In order to make dynamic
invocation, we use the call interface provided by Axis. Invocation of an operation
implies to generate an instance of this class. With the purpose of reducing
computational costs and avoiding the generation of a new instance with every
invocation, we use a structure with a call instance for every operation created. This
way, a single instance is generated for every operation, using this instance every time
that it is necessary to invoke the same operation.

Following, the parameters of the operation selected must be checked. The
parameters to be processed can basically be simple or complex. However, the call
interface does not provide support to handling complex data type. That is, if the call
object receives as input parameter a complex type, this object has not the sufficient
information to the serialization and deserialization process of this parameter.

At the present, Axis interface provide the invoke method to compute the
invocation of the service. Once the operation and service to be computed has been
indicated, the method invoke can basically be used by two different ways:

- invoke (Object[] arg0): service invocation is computed by means of the use of

arg0, which represents a set of parameters of the operation to be computed. Every
element of this array is an instance of a Java class that represents every parameter
of the operation.

- invoke (Message arg0): service invocation is computed by a message, which
represents a SOAP message, that is, an XML format with the operation to be
invoked and their parameters.

To handling the complex data types, we use the first option of the invoke method.

However, there is not a representation for a complex data type in a structure that can
be used by the invoke method. Therefore, in this situation, the service cannot be
invoked. To solve this problem, we generate at runtime a JavaBeans software
component that represents each one of the different complex types that appears on the
WSDL files analyzed. As a result, the bean associated to each complex parameter
type allows that the call instance will be able to catch and modify the fields of the
parameter at the invocation time by means of the instance of Axis
BeanSerializerFactory and BeanDeserializerFactory classes.

The BeanJavassistUtils class produces at runtime the beans necessary to make
invocations of operations that contain parameters with complex data types. In order to
produce a class at runtime, we use the class library Javassist (Java Programming
Assistant) [16]. It enables Java programs to generate a new bytecode at runtime.
Makebean method of BeanJavassistUtils class (Figure 4) is responsible of generating
the corresponding beans. It is implemented in a similar way as the beans are generated
by the mapping tools of stubs of Axis.

+updateStandardServices()
+invokeStandardService()
+invokeUDDIService()
+processUDDISearch()
+computeUDDIService()

WebService

-StandardServices()
+getInstance() : StandardServices
+getVersion() : float
+getXmlServices() : String
+invokestandardservice() : String
-readXMLWSDL()

-instance : StandardServices
-listDirWSDL : List
-version : float
-xmlServices : String
-standardOperations : ManagerOperations

StandardServices

+ManagerOperations()
+getDynamicInvoker() : DynamicInvoker
+getOperations() : Set
+invokeOperations() : HashMap
+locateOperations() : Operation
+createOperations()
+addOperations()

-operations : Set
-dynamicInvoker : DynamicInvoker

ManagerOperations
+DynamicInvoker()
+addParser()
+addCall()
+getParser() : Parser
-getDocumentation() : String
-getParameters() : List
-checkParametersComplexType()
-getService() : HashMap
-createCall() : Call
+getOperations() : Set
+findCall() : Call
-checkParametersInvocation() : List
+invokeOperacion() : HashMap
-getParameterValues() : HashMap
-addResult()
-getParamData() : object

-package : String
-beanJavassisUtils : BeanJavassisUtils
-wsdlParserMap : HashMap
-callMap : HashMap
-complexTypeMap : HashMap

DynamicInvoker

-ServicesUDDI()
+getInstance() : UDDIServices
+locateUDDI() : String
+getServicesUDDI() : String
+invokeOperationUDDI() : String
-checkSearch() : List
-checkUDDI()

-instance : UDDIServices
-operationssearchedUDDI : ManagerOperations
-operationsselectedUDDI : ManagerOperations

UDDIServices

LocateUDDIService

1 1

1

1..2

1

1

1 1

+BeanJavassisUtils()
+addPackage()
-getSuperClass() : CtClass
+makeBean() : Class
-createParameter()
-addGetSerializerMethod()
-addGetDeserializerMethod()
-addMetadata()
+getPackage() : String

-cp : ClassPool
BeanJavassisUtils

Fig. 4. Class diagram of service manager

5. Development and Results

The framework described in section 4, allows mobile users to access to Web services
published at World Wide Web by means of requesting a service manager entity. No
update of client application is required when new services are provided at runtime.

The framework has been implemented using the following open source software:
Apache Tomcat 5.0.28 for application server [15], J2ME Wireless Toolkit (WTK)
[13] for developing wireless applications and designed to run on cell phones, and
Eclipse 3.1 development platform with WTP (Web Tools Platform) plug-in [14] for
building software and developing Web applications. Axis [11] and UDDI4J [12] Java
libraries have been used as SOAP motor and Java implementation of UDDI protocol.
Javassist (Java Programming Assistant) [16] has been used as a class library for
editing bytecodes in Java. It enables to define a new class at runtime and to modify a
class file when the JVM loads it. The client application has been implemented as a
MIDlet using J2ME Wireless Toolkit. That is, a Java application developed with
MIDP profile and CLDC configuration.

In order to test the Web services framework for mobile devices, we have
implemented on mobile phones different scenarios services using a service manager
entity. The following services have been implemented and tested: (1) searching with
Google engine, (2) text translation from one language to another, (3) newspaper
reports from different sources, (4) temperature converter, (5) weather forecast, (6)
calculator operations and (7) dynamic binding with UDDI registry.

We have developed the Java client application and tested it on the Sun emulator.
Also, with the purpose of testing correct performance, we have tested the client
application with mobile emulators of commercial trademarks.

5.1 Performance

The core of our framework is the Web service based proxy (service manager). An
important part of this component is the ability of processing requests from mobile
phones. In order to measure and compare the running of our proxy, we compute the
performance of the service manager invocating services over the wired network under
two approaches: (i) static sub and (ii) DII.

Different qualities or properties defined by Quality of service (QoS) [24] are used
in order to evaluate the performance of the Web service based proxy from the
perspective of the users of services (in this case, the users with mobile phones).

WSTest [25], a benchmark developed at Sun Microsystems is employed with the
purpose of computing two aspects of QoS. WSTest benchmark simulates a multi-
thread server program that makes multiple Web services calls in parallel. WSTest
reports the Throughput (average number of Web service operations per second) and
the Response Time (average time taken to process a request).

5.1.1 Test Description
With the purpose of computing the performance of the service manager, we consider
the invocation of three operations of a Web service with the following types of
parameters:

 echoVoid: sends and receives an empty message.
 echoStruct: sends and receives an array of size 20, where each element is a

structure composed of one element each of an integer and string data type.
 echoSynthetic: sends and receives a string and a complex parameter (struct).

For the results reported, WSTest was run with the following parameters set,

specified in an initialization file:

 Agents: this is the number of client threads and is set to maximize CPU utilization
and system throughput. The number of concurrent threads is set to 8.

 Execution time: 300 seconds.
 The same number of calls for each of the 3 types of operations tested.

WSTest was run on the following system configuration:

 Service manager and Web service invoked: Intel Pentium 2GHz. 1GB DDR2, 1
processor.

 Client of service manager: Intel Pentium 2GHz. 512MB DDR2, 1 processor.

5.1.2 Results
The measured throughput and response times were computed for four different
scenarios:

 Static stub: invocation of the Web service from the service manager using a static

stub approach.
 DII1: invocation of the Web service with a standard DDI service manager.
 DII2: invocation of the Web service with a DDI service manager. The first time

the service manager employs standard DII. In the successive times the service
manager computes and caching the call class. This consideration will allow the
invocation for each of the different operations that support the service. As a result,
it will be not necessary to generate the call objects every time a client of the
service manager processes a request of the same Web service.

 DII3: it is assumed that the service manager has a cache memory with the call
objects.

The graph in Figure 5 shows the performance for each of the four scenarios. The x-

axis indicates the types of parameters such as void, struct and synthetic. The y-axis in
Figure 5.a indicates the throughput, the number of Web service operations executed
per second (higher is better) and the y-axis in Figure 5.b indicates the response times
measured in seconds (lower is better).

In order to compare the results between a static stub approach and a DII improved
approach with cache memory, Figure 6 shows the results performed with both
approaches.

Although a better performance could be supposed with a static stub approach, a DII
approach with cache memory offers better results. Initially, the DDI service manager
client needs an additional cost for discovering the service to be invoked, for
processing the WSDL document for obtaining the description of the service and the
generation of the necessary structures for the invocation such is illustrated in Figure 5
with the DII1 scenario. However, this computational cost is only assumed the first
time by the service manager for every service invoked. After, all the knowledge
acquired by means of the use of a cache memory of call objects is used in successive

invocations. With this approach, we compute a better performance in contrast to a
static stub approach such is illustrated in Figure 6.

Throughput - 8 agents

0
5

10
15
20
25
30
35
40
45

void struct synthetic

Stub
DII 1
DII 2
DII 3

Avg. Response Time (seconds) - 8 agents

0,00
0,05
0,10
0,15
0,20
0,25
0,30
0,35
0,40
0,45
0,50

void struct synthetic

Stub
DII 1
DII 2
DII 3

(a) (b)

Fig. 5. Throughput and average response time for service manager using three different
parameter types (echo, struct and synthetic) and four different approaches: (1) static stub, (2)
standard DII (DII1), (3) standard DII for the first time and a memory cache for the successive
times (DII2) and (4) DII with a cache memory (DII3)

Throughput

0
5

10
15
20
25
30
35
40
45

void struct synthetic

Stub
DDI

Avg. Response Time (seconds)

0,00
0,01
0,02
0,03
0,04
0,05
0,06
0,07
0,08
0,09

void struct synthetic

Stub
DDI

(a) (b)

Fig. 6. Throughput and average response time for service manager using three different
parameter types (echo, struct and synthetic) and two approaches: (1) static stub, and (2) DII
with a cache memory (DII)

5.2 Discussion

At present, we found that open source development tools for building, deploying and
testing production quality work well together. Using a dynamic binding based
approach and MIDlet’s as client applications allows users to download a single time
the application directly to their device over-the-air or via their PC. As a result, no
update of the client application is required when new services are provided. In order
to develop client applications using J2ME middleware platform, we have found the
following drawbacks:

1. The Java Specification Request 172 (JSR-172) required for invocating Web

services from a mobile J2ME application does not support UDDI specification and
SOAP encoded messages.

2. There is only support to static stubs. Therefore, new stubs must be manually
generated when new services are incorporated at runtime and clients need to
download a new application in order to incorporate the new services.

3. Specific implementations must be developed in order to handling complex data
types when dynamic invocation interface is used.

Also, we have found that the use of UDDI registry provides high rate of time

responses and many of the services published at UDDI registry are not correctly
published. Thus, all the services located through UDDI registry must be verified by
the service manager, before the results are sent to the mobile user. However, these
checking operations increase the response time to mobile users.

In order to provide flexibility in an environment with high rate of change we
design a dynamic discovery and invocation (DDI) service manager. We have found
that the use of DII is more complex for the software developer because a more
complex interface is required in relation to the use of static stubs or dynamic proxies.
We have compared the performance of the service manager under a static stub and a
DII approach. The results show that DII approach offers better performance than
static stub approach when a cache memory is used.

6. Conclusions and Future Work

Standard Web services infrastructures are focused on static stub based invocation of
Web services. However, this scenario is not appropriate for mobile environments,
where services and clients have a high rate of change. In order for Web services to
expand across the mobile phones, users need to be able to efficiently discover and
access to Web services at runtime. In this paper, we address the issues, challenges,
implementation and performance in the use of dynamic discovery and invocation of
Web services in mobile phones using J2ME middleware platform. We propose a Web
service based proxy that acts as a DDI client over the network of services and as
server to the mobile devices. With this approach, mobile consumers may locate new
services at runtime without updating their client application. Also, interactions
between the mobile phones and the network are reduced. Making DII is
programmatically more complex than using a static stub. However, the advantage of
using DII is that make the code easy to modify if the Web service details change
and/or new services are offered at anytime. We have measure the performance using
Sun benchmark with the purpose of comparing Web service proxy performance under
a static stub and a DII approach. The results show that DII approach offers better
throughput and average response time than the static stub approach when a cache
memory is used.

Once we have tested the viability of dynamic mobile services, our future work will
be focused on extending our approach in order to explore other approaches to
handling complex data types based on XML messages when dynamic invocation is
used, to perform more complex services and incorporate semantics, context-
awareness and security aspects.

References

1. Elena Sánchez-Nielsen, Sandra Martín-Ruiz, Jorge Rodríguez-Pedrianes. “An open and
dynamical service oriented architecture for supporting mobile services”. Proceedings of
ACM ICWE 2006, pp. 121-128, Palo Alto, California, July 2006.

2. OSGi Alliance. http://www.osgi.org/
3. Liberty Alliance Project. https://www.projectliberty.org/
4. R.S. Hall and H. Cervantes. “Challenges in Building Service-Oriented Applications for

OSGi”, IEEE Communications, Volume 42, Number 5, May 2004.
5. Gustavo A.., Casati, F., Kuno H., Machiraju, V. “Web Services: concepts, architectures and

applications”. Springer-Verlag Publications, Berlin 2004.
6. Vinoski, S,. “Web Services Interactions Models, Part 1: Current Practice”. IEEE Internet

Computing, 6(3), 2002.
7. W3C: World Wide Web Consortium. Simple Object Access Protocol (SOAP).

http://www.w3.org/TR/soap/
8. W3C: World Wide Web Consortium. Web Services Description Language (WSDL).

http://www.w3.org/TR/wsdl
9. UDDI. Universal Description, Discovery and Integration. http://www.uddi.org/
10. Java Platform, Micro Edition (Java ME). http://java.sun.com/javame/index.jsp
11. Apache Axis. http://ws.apache.org/axis
12. UDDI4j. http://uddi4j.sourceforge.net
13. Sun Java Wireless Toolkit. http://java.sun.com/products/sjwtoolkit
14. Eclipse. http://www.eclipse.org
15. Apache tomcat. http://tomcat.apache.org/index.html
16. Javassist – Java Programming Assistant. http://www.jboss.org/products/javassist
17. T. Pilioura, A. Tsalgatidou, S. Hadjiefthymiades. “Scenarios of using Web Services in M-

Commerce”. ACM SIGecom Exchanges, Vol. 3, Nº 4, January 2003, pp. 28-36.
18. V. Sacramento, M. Endler, H. K. Rubinsztejn, L.S. Lima, K. Gonalves, and F.N. do

Nascimento. MoCA: A Middleware for Developing Collaborative Applications for Mobile
Users. IEEE Distributed System Online, 2004.

19. J. keeney, V. Cahill. Chisel: A Policy-Driven, Context-Aware, Dynamic Adaption
Framework. IEEE 4th International Workshop on Policies for Distributed Systems and
Networks, June 2003.

20. TinyXML. http://www.grinninglizard.com/tinyxml/
21. VoiceXML. http://www.w3.org/TR/voicexml20/
22. Z. Maamar, Q.Z. Sheng and B. Benatallah. “On composite Web Services Provisioning in an

Environment of Fixed and Mobile Computing Resources”. Information Technology and
Management 5, 251-279, 2004. Kluwer Academic Publishers.

23. F. Papadopoulos, A. Zarras, E. Pitoura, P. Vassiliadis. “Timely Provisioning of Mobile
Services in Critical Pervasive Environments”. Lectren Notes in Computer Sciences LNCS
3760, pp. 864-881, 2005.

24. Daniel A. Menascé. “QoS Issues in Web Services”. IEEE Internet Computing, pp. 72-75,
December 2002.

25. WSTest. Sun Microsystems. https://wstest.dev.java.net/

