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Abstract. The last decades have witnessed tremendous growth in the
performance of solvers dealing with NP-hard problem instances. Com-
monly, powerful solvers outperform the other candidates for the majority
of cases but obtain poor results for particular sub-domains. For this
reason, Algorithm Portfolio approaches have been developed, allowing to
exploit a set of solvers with complementary strengths, instead of running
a single best one for all instances. Recent successful implementations com-
bine these approaches with automatic Algorithm Configuration methods,
which consider a single parameterized solver and identify the best putative
values of its hyper-parameters for the analyzed instances distribution.
This paper aims to illustrate the development of the principal approaches
that leverage machine learning to accelerate the solution search of modern
solvers. Furthermore, it presents the basic notions necessary to understand
the process that enabled these techniques to achieve their amazing results
with some of the many performing implementations for SAT, Answer Set
Programming, and Constraint Programming.
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1 Introduction

Many “difficult” problems that we encounter nowadays, especially in the logistic
area of industrial domains, can be modeled and solved using powerful ad-hoc
tools. For example, we can reduce the considered problems in SAT formulae [39],
programs expressed in Answer Set Programming [12] or Constraint Programming
[43], and then leaving the search of solution to the implemented solvers.

Till the 2000s, the principal approach to solve a problem instance contained
in a collection of heterogeneous elements consisted of running a single “best”
solver that outperforms the other candidates in the majority of cases. In [26],
this is called winner-takes-all approach, to emphasize that the algorithm that
obtains the higher average performance on the whole representative instances
set, will always be preferred to solve a new problem drawn from the considered
distribution. Since usually the performance of algorithms highly vary from instance
to instance [48], even on the same domain, systems based on Algorithm Portfolio
methods have been subsequently developed to leverage a group of solvers instead



of a unique resource. They obtained outstanding results in industrial and solving
competitions, exploiting solvers with high running time for the majority of the
instances but with excellent performance on particular problem sub-domains.

Modern solvers rely on different techniques, ranging from incomplete search
methods, e.g., local search, to complete ones, as for instance CDCL [35], which
has been particularly useful to accelerate SAT and ASP searching engine [10,34].
Besides the solving core, the hyper-parameter values further guide the behavior
of algorithms, whose tuning can be manually performed by domain experts
involving considerable time and human efforts. The period on which algorithm
portfolio appeared on solving competitions coincides with the concept of Algorithm
Configuration, i.e., the techniques that efficiently explore solvers’ hyper-parameter
configurations, detecting automatically the best setting for the considered domain.

This work presents a picture of the evolution of some of the principal Algorithm
Portfolio and Configuration techniques implemented in nowadays solvers, provid-
ing the essential machine learning and statistical concepts necessary to address
this topic. Since many different implementations are available in the literature,
we solely report a limited portion of meaningful examples, useful to understand
the main concepts and practical issues addressed by these systems. For a more
comprehensive review we refer to [4, 24,25,46].

The structure of this paper is the following: Section 2 provides the basic
machine learning concepts and related considerations for this topic, then Section
3 contains the definition and characteristics of Algorithm Portfolio methods,
together with some practical examples derived from different fields, like SAT, ASP
and CP. These are just some of the main programming paradigms implemented
since in the literature we can find examples applied in further contexts, e.g.,
Planning, Mixed Integer Programming, etc. In Section 4, we will see the principles
and main examples of Algorithm Configuration and lastly, Section 5 contains
several modern systems that combine the previous ideas to speed up the search.

2 Machine Learning Background

Although Machine Learning presents myriad of application domains, this section
defines solely the techniques and notions that concerns our topic.

Several criteria can be considered to classify the learning techniques [45], such
as the prior knowledge available, determining deductive and inductive learning.
The former deduces a logical conclusion from a set of “certain” general rules:
CDCL implements this approach since, given an input formula as prior knowledge,
it leads to an equisatisfiable formula by adding clauses that possibly accelerate
the search. The learned clauses are certain, however, the scope of the deduced
components is limited to solving the single problem instance considered. On the
other hand, the prior knowledge of the second approach provides a support to
draw conclusions, therefore, the truth of the inferred components follows a certain
probability. These methods are leveraged by algorithm portfolio and automatic
configuration systems, using as prior knowledge a set of previously solved problem



instances, possibly independent and identically distributed according to some
fixed probability distribution. An additional stage called features extraction,
pre-processes the original instances by mapping them into a space defined by a
set of features, i.e., measurable properties or characteristics. The features of the
considered works include static features derived from syntactic analysis, e.g., the
number of clauses in a SAT instance and statistics like clauses and variables ratio,
or they can also involve probing features. The last features are more informative
but also more expensive to be calculated since they are obtained by probing
parts of the search space for a brief time interval. Finally, dynamic features are
directly computed while solving is taking place: we do not contemplate this kind
of features, although several portfolio methods rely on them, as for instance [7].

A further classification criterion regards the component learned; for instance,
we could aim to find a direct mapping f from an input domain I into an output
space O. In case of regression, f should describe the relationships between an
independent continuous variable o ∈ O and a set of dependent variables i ∈ I,
e.g., a function that predicts the performance of an algorithm for a specific
problem instance, given its features. Instead, if the output domain O is discrete,
the task is called classification, e.g., the predicted value could directly return the
most suitable solver to run for the considered instance.

As concerns when processing the prior knowledge, the eager learning ap-
proach builds a general model from the data offline, i.e., before observing a new
instance. Alternatively, the lazy learning method processes the representative
input instances online, namely when the system encounters a new element to
solve [36]. Moreover, considering the type of feedback provided to learn a model
that entails f , we can distinguish between supervised learning and unsupervised
learning methods. The former learn a model from a set of instances whose label
(i.e., the correct output) is specified, trying to minimize the value produced by
the selected loss function. In contrast, the latter finds a series of patterns in the
input collection, since their output values are missing. Lastly, a third approach
called reinforcement learning, iteratively learns a series of actions to take in
a specific environment, in order to maximize a cumulative reward, trading off
between exploration and exploitation phases. Although the literature includes
different approaches, this paper analyzes just supervised-learning systems.

Learning is performed by means of a parametric model, namely an explicit
model with a fixed set of parameters that range over a defined domain. Or we can
use nonparametric model approaches, whose structure cannot be characterized by
a bounded set of parameters as its complexity grows in relation to the number of
input data. The instance-based learning is a nonparametric lazy learning method
since its knowledge consists just of indexed input instances and the reasoning
phase over them is delayed until a new example must be classified.

Some examples of supervised learning techniques applied for regression are
linear regression, regression forests and support vector regression, while for classi-
fication, we can rely for instance on logistic regression, support vector machine
and decision forests. Case-based reasoning and k-nearest neighbors are examples
of instance-based learning that can be employed for both tasks.



2.1 Model Evaluation and Selection

In Machine Learning, the No Free Lunch Theorems defined in [47] led to a
famous implication on the choice of the learning algorithm, as they proved that
for any two algorithms, determining the most accurate learner for every domain
is unfeasible. Consequently, in the real application scenario, the usual approach
consists of considering manifold learning algorithms, evaluate them and then
select the one that leads to the best result on a separate instances collection [41].

In order to evaluate the performance of a learning system, the data set used
for training, called training set Ntrain, should contain instances drawn from the
same distribution of the evaluation collection, i.e., the test set Ntest. However, to
obtain unbiased results, the two sets should have different instances. The learned
component should trade-off between correctly predicting the output value for
instances in both Ntrain and Ntest, reducing as much as possible both over and
under-fitting phenomena.

Once an evaluation measure is chosen, model evaluation is performed: the
most common is the holdout method which partitions the original collection in
two sets, according to a certain splits ratio. Alternatively, k-folds cross-validation
is a more costly method that leverages the whole collection for training, as it
partitions the original data into k equal sized subset and performs training and
testing k times, using each time the i-th test set and then averaging the results.

Besides the parameters learned during training, the learning algorithm can
have further hyper parameters whose values are pre-defined. Each configuration
leads to a different learning model, therefore a ranking method called model
selection orders the resulting models with respect to their relative estimated
performances, selecting the one that returns the highest. For instance, the holdout
method can be generalized to split the collection into three sets: training several
learning algorithms on Ntrain, selecting among the learned models the best-
performing according the validation set Nval and finally evaluating it on Ntest.
An extension of the k-folds cross-validation method is a valid alternative to
conduct model selection as it leads to good predictions for both model and hyper
parameters, despite using a relatively small data collection.

A final remark concerns the features extraction phase: the choice of significant
but cheap features that adequately characterize the considered instances heavily
influences the model performances. Examining a large set of features is usually
counterproductive since they could contain the same information or even be
misleading for the prediction. Two techniques that can reduce the number
and impact of weak features are subset selection like stepwise regression, or
regularization methods like ridge regression [14]. The former applies statistical
techniques, like forward-stepwise regression that, starting from an empty set of
features, iteratively includes the one that brings the best statistical improvement
on the prediction model, returning at the end a subset of features that should
capture the best characteristics to model the input instances. The latter approach
instead, performs regression introducing a regularization term to the loss function
of the model, allowing to keep all features but assigning to them different weights.



3 Algorithm Portfolio

Algorithm Portfolios methods allow to consider simultaneously a set of algorithms
exploiting their complementary strengths across an instances domain. Their first
designs are provided in [17] and [13].

Two classification criterion contained in [25] distinguish these methods con-
sidering the moment and the object chosen from the portfolio. With regard to
“when to perform the choice”, a static portfolio approach operates the selection
offline, which lessens further overhead during solving, despite precluding adjust-
ment of the learned model in case of poor performance. On the other hand, a
dynamic portfolio approach allows switching the initially chosen algorithm online,
increasing its flexibility as well as the computational cost during solving.

Considering the “object selected” to solve a new instance, algorithm scheduling
approach defines time slices and running order for each portfolio algorithm and,
if a multicore architecture is available, parallel portfolio method extends this
idea by running the schedule in parallel. Lastly, algorithm selection chooses the
algorithm with the highest performance to solve the considered problem instance,
as we can see in Figure 1. In [26] this is called per-instance algorithm selection, to
differentiate it from the winner-takes-all approaches, also called per-distribution
algorithm selection.

Algorithm scheduling is a more robust approach than algorithm selection, as
the latter chooses a unique solver and thus poor results cannot be mitigated. On
the other hand, a schedule is useful if numerous problem instances are solved
within short time intervals by different solvers.

x ∈ P
problem space

f(x) ∈ F = Rm
feature space

A ∈ A
algorithm
portfolio

p ∈ Rn
performance

measuring space

S(f(x))

selection
mapping

p(A, x)

performance
mapping

norm
mapping

‖p(A, x)‖ = algorithm performance

feature
extraction

Fig. 1. Diagram of algorithm selection problem derived from [42], with additional
features extraction step (dashed elements) that maps the problem instance x into its
features vector F (x) ∈ F which ranges in a simpler and more restricted domain than P.

3.1 Algorithm Selection Implementations

SATzilla One of the most famous algorithm selection implementations is the
pioneer system SATzilla. From its first appearance in 2004 SAT competition [37],
numerous successive versions have been developed [51, 52]1, improving its perfor-

1 Just to cite the most popular.



mance so much that it won many gold medals on several solving competitions. Its
success proved that algorithm portfolio implementations managed to outperform
the single best solver, i.e., the standalone solver with the best performance across
all instances, despite features extraction, selection overhead and by finding a
sub-optimal solver whose performance is close to the optimal.

In [37], statistical regression techniques allowed per-instance selection by
learning offline an empirical hardness model for each solver A in a defined
portfolio A. Namely, a function that predicts the amount of time that A will
take to solve a problem instance i, according to its features xi. In order to learn
the empirical hardness model MA for algorithm A using a training set I, the
following steps are performed:

1. For each instance i ∈ I, compute its features together with its approximate2

runtime for A, which is the output value that the final model should predict.
2. Next, execute in order forward-stepwise selection to eliminate highly corre-

lated features, a quadratic basis function expansion on the new features set
and then, repeat forward-stepwise selection on the expanded features.

3. Lastly, use ridge regression technique to learn the model MA that predicts
logarithm runtime of A for solving a new problem instance j, given xj .

SATzilla-07 [51] extends its previous implementation, by adding further
statistical techniques to the empirical hardness model [50] and introducing two
simple but very efficient components that have been exploited in successive
algorithm portfolio systems: pre-solvers and backup solver. The former is a single
or a schedule of algorithms with a reasonable general performance that runs for a
small amount of time before features computation. It should prevent the system
performance penalization from features extraction on very easy instances, while
algorithm selection focuses exclusively on harder cases. The latter consists of the
solver that achieves the best average runtime on a validation data set, containing
instances that are not solved by the pre-solvers. It will run if the online features
computation fails for some reason (e.g., error or timeout). Lastly, SATzilla-07
applies subset solvers selection, choosing the best subset of solvers to use in the
final portfolio by keeping the algorithms whose empirical model predicts the
lowest total runtime on a validation set.

SATzilla-11 [52] follows the main structure outlined in its previous versions,
but applies decision forests to learn classification models for algorithm selection,
instead of regression. This approach uses explicit cost-sensitive loss function to
weigh misclassifications in direct proportion to its impact on portfolio performance;
namely, the confidence that one solver could perform well on a particular problem
instance guides the choice of the algorithms (returning a discrete value since we
perform classification with respect to the portfolio algorithms) while the cost-
sensitive weights allow to consider how far its predicted runtime deviates from
the performance of the other solvers. Thanks to its new classification approach,
SATzilla-11 considerably outperforms its previous versions.

2 As the considered SAT solvers are randomized, the running time necessaries to solve
the same instance is not deterministic, but ranges in a certain interval.



Claspfolio For Answer Set Programming, claspfolio [9] follows an approach
similar to SATzilla-07, performing algorithm selection among a set of twelve
configurations of clasp solver [10], with complementary strengths. It learns
offline a performance model for each configuration using support vector regression
techniques. The training set is obtained by a series of steps: initially, a collection
of problem instance is grounded by gringo [11] and then claspre, a light-weight
version of clasp, is run to extract their features. Lastly, after computing the
running time needed to solve each grounded instance by every clasp configuration,
their scores are calculated and considered as labels of the training set of each
configurations’ model. When a new instance j is met online, claspre is run to
extract its features xj but it also works as a pre-solver: if its execution leads
directly to a solution, the selection is not needed. Then, the learned models use
xj to predict the scoring of each configuration and choose the best one.

ME-ASP [31] is a modular multi-engine approach for Answer Set Programming
that implements algorithm selection, following a similar approach of a previous
successful systems for Quantified Boolean Formulas (QBFs) solvers [40]. Its
training set uses just static features and defines the solving time required by every
portfolio solver as output values. Instead of applying an eager and parametric
approach, like we have seen in the previous works, it uses 1-nearest neighbors
classification technique to retrieve the most promising solver from the portfolio
to solve a new problem instance. A successive work [32] extends this approach
by considering more classification techniques.

3.2 Algorithm Scheduling Implementations

The idea of using algorithm scheduling has been conceived since the heavy tailed
nature of solving: often a solver either solves a problem in a short time, or it does
not solve it at all within a given amount of CPU time. This behavior emerged
especially on the results of several solving competitions.

The first two following solutions concern Constraint Programming solvers, and
manage to define a schedule online, as the size of their portfolio S is rather small.
Moreover, they rely on instance-based learning approach, using as knowledge
base features of problem instances and the running times of S solvers, taken from
past CSP competitions.

CPhydra [38] defines an algorithms schedule3 assigning a different time slice to
each solver in S, according to the considered problem instance i.

After efficiently indexing its knowledge base, CPhydra uses the case-based
reasoning approach to define the schedule time slices4. The retrieval phase
computes the features xi and then uses 10-nearest neighbors techniques to

3 Actually, the order of solvers is static since the authors aim to maximize the probability
of solving new instances within the time limit.

4 We just consider the first two core-reasoning phases of case-based reasoning cycle [1].



retrieve from the knowledge base, the set C of the ten most similar cases to i. For
each c ∈ C, it considers its solvers’ time and similarity distance d(c) with i. The
reuse step computes the solvers scheduling, i.e., a function f : S −→ R that maps
for each solver s ∈ S a time interval t that must not exceed a certain threshold
T . f should be able to define a time scheduling such that, within T the number
of solved instances in C is maximized, considering also the similarity of each case
with i. We can formulate this goal as an optimization problem:

max
∑
c∈C

1

d(c) + 1

∣∣∣∣∣⋃
s∈S

N(s, f(s))

∣∣∣∣∣
subject to

∑
s∈S

f(s) ≤ T

where N(s, f(s)) contains the instances in C that solver s is able to solve, given
at least f(s) time. If every solver reaches the maximal number of solved instances
within a time t̂ such that

∑
s∈S t̂ < T , then a schedule that allocates to each

solver a time interval equal to t̂ can trivially optimize the objective function. In
this situation, in order to exploit the whole available time, CPhydra discards
the solvers that are dominated by others in the portfolio and then computes the
optimal time assignment for each of them, using the entire available time.

SUNNY [2] is an algorithm scheduling for Constraint Programming whose name
derives from its characteristics: it detects a SU bset of portfolio solvers by using
k-N earest N eighbor technique to define a lazY learning model.

When a new instance i must be solved, SUNNY computes its features xi and
use them to retrieve NN(k, i), i.e., the set of k most similar instances from its
knowledge base. Then, it finds the minimal subset of algorithms M ⊂ S that
solves the highest number of instances in NN(k, i) within time T (choosing the
subset with the lowest average solving time in case of ties). In order to define the
schedule, SUNNY divides the time window [0, T ] in T/σ equal-sized slots, where
σ is the sum of the number of instances that each algorithm in M solves within
T , plus those that are not solved by anyone. Then, each solver s ∈M is assigned
with a number of time slots corresponding to the number of instances in NN(k, i)
that s is able to solve within T . The additional time slots (that corresponds
to the unsolved instances) are assigned to a previously defined backup solver.
Finally the solvers are sorted in decreasing order, according to the allocated time.

A successive parallel portfolio approach [3] extends SUNNY by defining a
multicore solver scheduling. It deals also with constraint optimization while,
concerning CSP, it allows to obtain a dynamic scheduling that is run in parallel.

Aspeed [15] can be used for SAT, CSP or ASP solvers, and relies on clasp [10]
to determine a “per-distribution” schedule5 that optimizes their performance on
a set of problem instances. It was inspired by ppfolio [44]: a parallel portfolio

5 As it relies on per-distribution approach, online features extraction is not required.



that won the 2011 SAT competition by simply using a handmade solver schedule
based only on the number of available cores. Aspeed extends its idea by applying
a more sophisticated reasoning to define a sequential or parallel scheduling.

The sequential one consists of two components: a function σ that maps a
time slice to each solver in S, and a function π that takes in input a position
p ∈ {1, ..., |S|} and returns the pth solver of the defined schedule. Considering
a set of instances I and a |S| × |I| matrix R that contains the runtimes of
solvers for every instances in I, we can define both σ and π as multiobjective
optimization problems. The first step consists in finding σ that optimizes the
following equation:

max

∣∣∣∣∣⋃
s∈S
{ i | i ∈ I, R[s, i] ≤ σ(s)}

∣∣∣∣∣
subject to

∑
s∈S

σ(s) ≤ T.

Namely, σ should allow to solve as much instances as possible in I, considering
that the time slices assigned to each solver must sum up to a time threshold T or
less. As this single optimization problem leads to numerous solutions, a second
objective function is considered which favors a function σ that assigns similar
time slices to each solver, i.e. that optimizes

min
∑
s∈S

σ(s)2.

Once the time assignment σ is defined, the solvers must be sorted in order to
reduce the expected time for solving an element in I. Thus we define a function
π : {1, ..., |S|} −→ S that optimizes

min
∑
i∈I

τσ,π(i)

where τσ,π(i) contains the time that the schedule defined by σ and π requires to
solve i. The schedule follows the order defined by π: each solver s tries to solve i
within its timeout σ(s) and until i is not solved the solving times are summed
up, reaching T if i remains unsolved.

The schedule can be extended to a multicore architecture by defining a function
ν that, given a number of cores c, finds a partition P of S of dimension c. Then,
for each solver subset Sk ∈ P , it uses the previous sequential scheduling approach.
The new objective function finds ν, σ and πu for each u ∈ {1, ..., c} such that the
expected time for solving an element in I is globally minimized.

4 Automatic Algorithm Configuration

Algorithm Portfolio efficacy highly depends on the elements chosen to compose
the portfolio. Besides the various techniques that underlie the solvers, there are



free parameters or hyper parameters designed to customize their behavior by
guiding further the search. Let us consider the problem of finding the optimal
hyper parameters’ configuration of a certain parametrized solver A with respect
to a set of representative problem instances I. Since the hyper parameters range
from continuous to categorical domains6, their combination leads to a high
dimensional and structured configuration space. The exponential number of
possibilities usually renders manual parameters tuning inefficient and without
guarantee on the results quality, even if carried out by domain experts. We
represent with Θ the configuration space of the hyper parameters of solver A.

Algorithm Configuration approach applies statistical techniques to automati-
cally find the putative configuration which optimally solves problem instances
that follow a certain distribution. It returns the configuration with the minimal
expected cost required to solve the elements in I with respect to a performance
metric m : Θ × I −→ R.

Set of instances I Algorithm A and its
configuration space Θ

Configuration Task

Select θ ∈ Θ Assess A(θ) on
some Iθ ⊆ I

Return best found
configuration θ∗

return performance

Fig. 2. Diagram of Algorithm Configuration problem as contained in [27].

As we can see in Figure 2, Algorithm Configuration iterates two actions until
detecting with sufficient confidence a configuration that overcomes the others.
The former action consists in deciding which configuration chose at each step: the
high dimension of Θ, even discretizing the continuous domains, renders unfeasible
exploring the whole space. Therefore, efficient search strategies have been defined
to entail a trade-off between diversification and intensification. ParamILS [21],
for instance, uses Iterated Local Search to perform a biased random walk over a
chain of local optima, while Gender-Based Genetic Algorithm (GGA) [5] relies
on Genetic Algorithms to compare populations of configurations. On the other
hand, Sequential Model-based Algorithm Configuration (SMAC) [19] and Iterated
F-race [6] apply Sequential Model-Based Optimization techniques which consist in
leaning a model to guide the selection of promising configurations and it exploits
the gathered data to iteratively bias the model.

The latter action regards how to estimate the configurations performance and
comparing them: for each configuration θ we consider an approximation of its
estimated cost over a finite set of instances Iθ ⊂ I represented by cIθ (θ). We can
see its definition in the objective function of Algorithm Configuration:

6 Furthermore, a parameter could be conditional on another one, such that the former
is activated just for a specific value of the latter.



θ∗ ∈ arg min
θ∈Θ

cIθ (θ)︷ ︸︸ ︷
1

|Iθ|
∑
i∈Iθ

(m(θ, i)) .

BasicILS7 applies the easiest solution to define each Iθ, i.e., using the same
set of N instances, IN , for each configuration. Unfortunately, two problems arise
in the general case, depending on the chosen size: when N is too small, the cost
estimated for the best putative configuration cIN (θ∗) may underestimate its real
cost, therefore the real optimal solution could be discarded in favor of θ∗. In
contrast, if N is too high, the huge number of runs slows down the evaluation
for every single configuration. Similarly, in GGA the number of instances run to
evaluate each element increases linearly at each iteration.

On the other hand, FocusedILS, SMAC and Iterated F-race asses the perfor-
mance over a dynamic number of evaluations, in order to quickly discard bad
configurations and saving the evaluation budget for the most promising solu-
tions by leveraging Racing Algorithm concept [33]. Moreover, adaptive capping
techniques have been introduced to ParamILS [20] and SMAC [18] to terminate
earlier runs for poor configurations.

5 Combination of Previous Methods

The following section contains some systems that combine the previous techniques:
claspfolio 2 leverages both algorithm portfolio approaches, while AutoFolio
and Hydra extend algorithm portfolio idea exploiting algorithm configuration
techniques. In the literature, we can find further performing systems that combine
portfolio and configuration methods, managing to win several solving competitions.
For instance, 3S [22] combines algorithm selection with a static SAT solver
schedule; a successive work augments its idea defining a dynamic parallel portfolio
[29]. Two other famous successful systems are ISAC [23] and CSHC [30].

Claspfolio 2 [16] extends its previous version increasing the robustness of
selection by defining a static pre-solving scheduling that may intervene if the
learned selection model performs poorly. Given in input a set of ASP problem
instances I and a portfolio of solvers P , first of all, a training collection is built like
in claspfolio with a pre-processing phase on both features and performances.
The training phase consists of two parts: one computes a model M that maps
each instance features and solver in P into a scoring value used to predict the
best performing algorithm, while the other defines a pre-schedule of solvers, Pre,
like aspeed. According to user choice,M can be evaluated using cross-validation
techniques: if the model performs particularly well, then the time slice allocated
to Pre will be short or even null, otherwise, the scheduling will be defined
considering the whole available time andM prediction gets limited consideration.

7 ParamILS [21] contains two evaluation solutions: BasicILS and FocusedILS.



When a new problem instance i must be solved, its features xi are extracted
and used to select the best-predicted algorithm A usingM. If this process fails, a
backup-solver is run, otherwise, the pre-solving schedule Pre is executed. If A is
contained in Pre, it is removed from the scheduling and its time slice is distributed
among the remaining solvers. If i has not been solved by the pre-schedule, then
A runs for the remaining time.

AutoFolio A key aspect of claspfolio 2 is that implements several machine
learning techniques and components that can be chosen to learn the portfolio
model. AutoFolio [27] performs Algorithm Configuration over claspfolio 2
framework, choosing the optimal learning techniques with its optimal parameters
configuration. More precisely, four top-level parameters are considered: pre-
solving, performance pre-processing, algorithm selector approach and features
pre-processing, where each decision leads to further parameters setting. One
crucial point is to evaluate the performance of models correctly; therefore, the
system applies model selection cross-validation techniques.

Hydra [49] does not require a pre-defined portfolio: it takes in input a parametrized
algorithm A, a training set of problem instances I, and a performance metric
m. Then it iteratively combines an automatic algorithm configurator AC and an
algorithm selection system AS to build a dynamic portfolio of A’s configurations.

Let Pk be the portfolio algorithm obtained at step k: at k = 0 it can be an
empty set, or without loss of generality, we can already instantiate it with a set of
algorithms. At each step, if Pk 6= ∅, Hydra uses AS to learn a model that selects
the most promising algorithm from Pk for each instance i ∈ I, with respect to m.
We indicate with m(Pk, i) the performance obtained by the selected algorithm
in Pk over instance i. Then Hydra uses AC to find the best configuration of A
that is able to improve the performance of the current portfolio Pk. Given a
candidate parameter configuration θ, a dynamic measure mk is used to consider
the performance of the portfolio built so far for each instance i ∈ I:

mk(θ, i) = max{m(θ, i),m(Pk, i)}.

Leveraging mk, AC is able to find the parameter configuration θk that maxi-
mizes the portfolio performance and then it adds it to the set Pk+1 = Pk ∪ {θk}.
It iterates until a fixed number of steps or a time limit is reached.

Algorithm
Configurator

Algorithm
Selector

Algorithm
Selection Model

Algorithm
Portfolio

Fig. 3. Diagram of Hydra framework.



6 Conclusions

In recent years, Algorithm Portfolio systems are attracting widespread interest
due to their outstanding performance. However, their exceptional results depend
on the chosen portfolio solvers, as their strengths must be complementary with
respect to the considered instances distribution. Algorithm Configuration can be
leveraged to extend portfolio systems in several different ways. Since many modern
systems are inspired by the previous, we analyzed some of the most influential
works showing how their ideas and approaches evolve. In order to reproduce and
thus compare the results of the systems, [8] introduces a standardized format
and a repository called Algorithm Selection Library (ASlib). Moreover, the AS
competitions 2015-2017 [28] contains comparison between different approaches.
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