
Computing Modular Paracoherent Answer Sets:
Preliminary Result

Bernardo Cuteri1, Carmine Dodaro2, and Francesco Ricca1

1 University of Calabria, Italy - lastname@mat.unical.it
2 University of Genoa, Italy - dodaro@dibris.unige.it

Abstract. Answer Set Programming (ASP) is a well-established logic
programming formalism. Problem solving in ASP requires to write an
ASP program whose answers sets correspond to solutions. Despite the
non-existence of answer sets for some ASP programs can be a modeling
feature, it turns out to be a weakness in many other cases, and espe-
cially for query answering. Paracoherent answer set semantics extend
the classical semantics of ASP to draw meaningful conclusions also from
incoherent logic programs, with the result of increasing the range of ap-
plications of ASP. State of the art implementations of paracoherent ASP
adopt the semi-stable and the semi-equilibrium models semantics, but
cannot compute split semi-equilibrium semantics, also known as modu-
lar paracoherent semantics, that discards undesirable semi-equilibrium
models. In this paper, we introduce and discuss a first approach for the
computation of modular paracoherent answer sets.

Keywords: Answer Set Programming · Paracoherent Reasoning · Semi-
equilibrium models

1 Introduction

Answer Set Programming (ASP) [22,23,34] is a well-established logic program-
ming language, based on the stable model (or answer set) semantics [40], with a
robust solving technology [43,3,24,35,36,37,39,12,16,17,18,47,46,38,42,41]. As a
matter of fact, ASP has been applied to solve complex problems in several areas
of knowledge such as AI [21,31,32,11,1,7]; Bioinformatics [25]; Databases [19,45];
Game Theory [15,6]; and industrial applications [27,28].

The non-existence of answer sets for some ASP programs can be a modeling
feature, but, as argued in [13], it turns out to be a weakness in many other
applications, such as: debugging, model building, inconsistency-tolerant query
answering, diagnosis, planning and reasoning about actions. To remedy to the
non-existence of answer sets, paracoherent semantics extend the classical answer
set semantics to draw meaningful conclusions also from incoherent programs.
This ASP variant has been termed paracoherent reasoning [13]. In particular, [13]
improved the paracoherent semantics of semi-stable models [51] avoiding some
anomalies with respect to basic modal logic properties by resorting to equilibrium

logic [48]. Thus, this paracoherent semantics is called semi-equilibrium model
(SEQ) semantics [13].

More recently, [13] noticed that, although the SEQ semantics has nice proper-
ties, it may select models that do not respect modular structure of the program.
SEQ semantics use 3-valued interpretations where a third truth value besides
true and false expresses that an atom is believed true. For instance, the incoher-
ent logic program P = {b← not a; c← not a,not c} admits two SEQ models,
say M1 and M2. In M1, b is true, c is believed true, and a is false; whereas in M2

a is believed true and both b and c are false. Now, M1 appears preferable to M2,
as, according with a layering (stratification) principle, which is widely agreed
in logic programming, one should prefer b rather than a, as there is no way to
derive a (note that a does not appear in the head of any rule of the program).
Therefore, [14] refine SEQ-models using splitting sequences [44], the major tool
for modularity in modeling and evaluating answer set programs. In particular,
the refined semantics, called Split SEQ model semantics, also known as modular
paracoherent semantics, is able to discard model M2.

The first efficient implementations of paracoherent semantics were proposed
recently [8,10], but they only support semi-stable and semi-equilibrium seman-
tics. Although the Split SEQ semantics discards some undesirable SEQ models,
the existing methods for computing SEQ models are not able to compute the
refined semantics. In this paper, we fill this lack presenting and discussing a first
strategy for computing a modular paracoherent answer set.

2 Preliminaries

We start with recalling answer set semantics, and then present the paracoherent
semantics of semi-equilibrium models, and its refined version based on splitting
sequences.

2.1 Answer Set Programming

We concentrate on logic programs over a propositional signature Σ. A disjunctive
rule r is of the form

a1 ∨ · · · ∨ al ← b1, ..., bm, not c1, ..., not cn, (1)

where all ai, bj , and ck are atoms (from Σ); l > 0, m,n ≥ 0; not represents
negation-as-failure. The set H(r) = {a1, ..., al} is the head of r, while B+(r) =
{b1, ..., bm} and B−(r) = {c1, . . . , cn} are the positive body and the negative
body of r, respectively; the body of r is B(r) = B+(r) ∪ B−(r). We denote
by At(r) = H(r) ∪ B(r) the set of all atoms occurring in r. A rule r is a
fact, if B(r) = ∅ (we then omit ←); normal, if |H(r)| ≤ 1; and positive, if
B−(r) = ∅. A (disjunctive logic) program P is a finite set of disjunctive rules. P
is called normal [resp. positive] if each r ∈ P is normal [resp. positive]. We let
At(P) =

⋃
r∈P At(r), that is the set of all atoms occurring in the program P .

The dependency graph of a program P is the directed graph DG(P) =
〈VP , EP 〉 whose nodes VP are the atoms in P and EP contains an edge (a, b)
if a occurs in H(r) and either b occurs in B(r) or in H(r) \ {a}. The strongly
connected components (SCCs) of P , denoted SCC(P), are the SCCs of DG(P),
which are the maximal sets of nodes C such that every pair of nodes is connected
by some path in DG(P) with nodes only from C.

Any set I ⊆ Σ is an interpretation; it is a model of a program P (denoted
I |= P) if and only if for each rule r ∈ P , I ∩ H(r) 6= ∅ if B+(r) ⊆ I and
B−(r) ∩ I = ∅ (denoted I |= r). A model M of P is minimal, if and only if
no model M ′ ⊂ M of P exists. We denote by MM (P) the set of all minimal
models of P and by AS(P) the set of all answer sets (or stable models) of
P , i.e., the set of all interpretations I such that I ∈ MM (P I), where P I is
the well-known Gelfond-Lifschitz reduct [40] of P w.r.t. I, i.e., the set of rules
a1 ∨ ... ∨ al ← b1, ..., bm, obtained from rules r ∈ P of form (1), such that
B−(r) ∩ I = ∅. We say that a program P is coherent, if it admits some answer
set (i.e., AS(P) 6= ∅), otherwise, it is incoherent.

2.2 Semi-Equilibrium Models

Here, we introduce the paracoherent semantics of the semi-equilibrium (SEQ)
models introduced in [13]. Consider an extended signature Σκ = Σ ∪ {Ka | a ∈
Σ}. Intuitively, Ka can be read as a is believed to hold. The SEQ models of a
program P are obtained from its epistemic HT -transformation PHT , defined as
follows.

Definition 1. Let P be a program over Σ. Then its epistemic HT -transformation
PHT is obtained from P by replacing each rule r of the form (1) in P , such that
B−(r) 6= ∅, with:

λr,1 ∨ . . . ∨ λr,l ∨Kc1 ∨ . . . ∨Kcn ← b1, . . . , bm, (2)

ai ← λr,i, (3)

← λr,i, cj , (4)

λr,i ← ai, λr,k, (5)

for 1 ≤ i, k ≤ l and 1 ≤ j ≤ n, where the λr,i, λr,k are fresh atoms; and by
adding the following set of rules:

Ka← a, (6)

Ka1 ∨ ... ∨Kal ∨Kc1 ∨ ... ∨Kcn ← Kb1, ...,Kbm, (7)

for a ∈ Σ, respectively for every rule r ∈ P of the form (1).

Note that for any program P , its epistemic HT -transformation PHT is positive.
For every interpretation Iκ over Σ′ ⊇ Σκ, let G(Iκ) = {Ka ∈ Iκ | a 6∈ Iκ}
denote the atoms believed true but not assigned true, also referred to as the
gap of Iκ. Given a set F of interpretations over Σ′, an interpretation Iκ ∈ F

is maximal canonical in F , if no Jκ ∈ F exists such that G(Iκ) ⊃ G(Jκ). By
mc(F) we denote the set of maximal canonical interpretations in F . SEQ models
are then defined as maximal canonical interpretations among the answer sets of
PHT .

Definition 2. Let P be a program over Σ, and let Iκ be an interpretation over
Σκ. Then, Iκ ∈ SEQ(P) if, and only if, Iκ ∈ {M ∩Σκ |M ∈ mc(AS(PHT))},
where SEQ(P) is the set of semi-equilibrium models of P .

2.3 Split Semi-equilibrium Models

A set S ⊆ At(P) is a splitting set of P , if for every rule r in P such that
H(r)∩S 6= ∅ we have that At(r) ⊆ S. We denote by bS(P) = {r ∈ P | At(r) ⊆ S}
the bottom part of P , and by tS(P) = P \ bS(P) the top part of P relative to
S. A splitting sequence S = (S1, . . . , Sn) of P is a sequence of splitting sets Si
of P such that Si ⊆ Sj for each i < j. Let SCC(P) be the set of all strongly
connected components of P , and let (C1, . . . , Cn) be a topological ordering of
SCC(P). It is known that Γ = (Γ1, . . . , Γn), where Γj = C1 ∪ . . . ∪ Cj for
j = 1, . . . , n, is a splitting sequence of P . So that, we obtain a stratification for
P in subprograms (P1, . . . , Pn) such that P1 = bΓ1

(P), and Pj = bΓj
(P) \ Pj−1,

for j = 2, . . . , n. Given an interpretation Mi over Ci, we denote by info(Mi) the
set of rules {a | a ∈Mi} ∪ {← not a | Ka ∈Mi} ∪ {← a | a ∈ Ci \Mi}.

Definition 3. Given a topological ordering (C1, . . . , Cn) of SCC(P), an inter-
pretation M over At(P) is a semi-equilibrium model of P relative to Γ if there
is a sequence of interpretations M1, . . . ,Mn over Γ1, . . . Γn, respectively, such
that (1) M = Mn; (2) M1 ∈ SEQ(P1); (3) Mj ∈ SEQ(Pj ∪ info(Mj−1)), for
j = 2, . . . , n; and (4) M is maximal canonical among the interpretations over
At(P) satisfying conditions (1), (2) and (3). The set of all semi-equilibrium
model of P relative to Γ is denoted by SEQΓ (P).

Since SEQΓ (P) is independent by the given topological ordering of SCC(P) (see,
Theorem 5 in [13]), the SCC-models of P have been defined as the set MSCC(P)
= SEQΓ (P) for an arbitrary topological ordering of SCC(P). We will refer to
them as split semi-equlibrium models. Finally, note that MSCC(P) ⊆ SEQ(P).

Example 1. Consider the program

P = {b← not a; d← b,not c; c← d}.

Then, ({a}, {b}, {c, d}) is a topological ordering of SCC(P), so that Γ = ({a},
{a, b}, {a, b, c, d}) is a splitting sequence for P . Hence, SEQΓ (P) = {{b,Kb,Kc}}.
Indeed P1 = bΓ1

(P) = ∅ and thus SEQ(P1) = {∅}. Then, P2 ∪ info(∅) = {b ←
not a, ← a} and thus SEQ(P2 ∪ info(∅)) = {{b}}. Finally, P3 ∪ info({b}) =
{d← b,not c; c← d; b; ← a} and thus SEQ(P3 ∪ info({b})) = {{b,Kb,Kc}}.

In the following, we will refer to semi-equilibrium models as paracoherent an-
swer sets, and to split semi-equilibrium models as modular paracoherent answer
sets.

3 On the Computation of Split Semi-Equilibrium Models

In this section, we describe a strategy to compute a split semi-equilibrium model
by exploiting the computation of a semi-equilibrium model.

First, we consider a possible path that can be generated through the splitting
sequence. Note that, each path leads to obtain a paracoherent answer set of the
last program (i.e., Pn ∪ info(Mn−1)), as stated in the following theorem.

Theorem 1. Let P be a program and let (P1, ..., Pn) be a stratification for P .
Then, for each i = 1, . . . , n−1, M ∈ SEQ(Pi) implies SEQ(Pi+1∪info(M)) 6= ∅.

Proof. It is known that whenever P has a classical model, then SEQ(P) 6= ∅.
Hence, it is enough to show that Pi+1∪ info(M) admits a classical model. Recall
that info(M) = {a. | a ∈ M} ∪ {← not a | Ka ∈ M} ∪ {← a | a ∈ Ci \M}.
Moreover, by construction of Pi+1, no atom appearing in a constraint of info(M),
appears in the head of a rule in Pi+1. Then, by setting as true each atom in the
head of the rule in Pi+1, we obtain a classical model of Pi+1 ∪ info(M).

Therefore, we could choose a paracoherent answer set M1 of the first sub-
program P1 (that always exists as P1 is constraint-free), then we move to find a
model M2 of the subprogram P2 ∪ info(M1) (that always exists by Theorem 1),
and so on. At the end of the procedure, we obtain a paracoherent answer set
Mn of the program Pn ∪ info(Mn−1). However, it could not be a paracoherent
answer set of the original program.

Example 2. Consider the program P = {a ← not b; b ← not a; c ← a, not c}.
In the first layer of P , we have the subprogram P1 = {a ← not b; b ← not a}
whose (paracoherent) answer sets are {a,Ka} and {b,Kb}. So that, consider-
ing info({a,Ka}) ∪ {c ← a, not c}, we obtain the paracoherent answer set
{a,Ka,Kc}, while considering info({b,Kb}) ∪ {c ← a, not c}, we obtain the
(paracoherent) answer set {b,Kb}. Since G({a,Ka,Kc}) ⊃ G({b,Kb}), then
{a,Ka,Kc} cannot be a paracoherent answer set of P .

Intuitively, since each subprogram could have more than one answer set, we
need to explore all possible paths by enumerating all possible paracoherent mod-
els obtainable from each path to make feasible a final phase of gap minimization.

More formally, let (P1, . . . , Pn) be a stratification for a program P . We denote
by PAS 1 the set of all semi-equilibrium models of P1, i.e., PAS 1 = SEQ(P1);
and, for each i = 2, . . . , n, we denote by PAS i the set of all semi-equilibrium
models of Pi∪info(Mi−1), where Mi−1 varies among the semi-equilibrium models
of PAS i−1, i.e., PAS i = {M ∈ SEQ(Pi∪info(Mi−1)) |Mi−1 ∈ PAS i−1}. Hence,
the computation of a split semi-equilibrium model is given as follows.

(1) For each i = 1, . . . , n, we compute PAS i.
(2) Then, we look for a model M in PASn that is gap-minimal, with respect to

subset inclusion, among all models in PASn.

Theorem 2. Let P be a logic program. If M ∈ PASn is gap-minimal with re-
spect to subset inclusion, among all models in PASn, then M is a split semi-
equilibrium model of P .

Proof. LetM ∈ PASn. Hence, by definition of PASn,M ∈ SEQ(Pn∪info(Mn−1)),
for some model Mn−1 ∈ PASn−1. Moreover, by definition of PASn−1, Mn−1 ∈
SEQ(Pn−1 ∪ info(Mn−2)), for some model Mn−2 ∈ PASn−2. By repeatedly ap-
plying the definition of PAS i, for i = 1, . . . , n−1, and considering models named
Mi, at the end, we obtain that, by definition of PAS 2, M2 ∈ SEQ(P2∪info(M1)),
for some model M1 ∈ PAS 1 = SEQ(P1). Hence, condition (2) and condition (3)
in Definition 3 are satisfied. Finally, as M is gap-minimal with respect to sub-
set inclusion, among all models in PASn, then M is maximal canonical among
the interpretations over At(P) satisfying the three conditions in Definition 3.
Therefore, M is a split semi-equilibrium model of P .

Intuitively, this approach could provide an improvement in the practical
computation of a (modular) paracoherent aswer set, as the search of a semi-
equilibrium model is relative to small parts of the whole program. If n is suffi-
ciently large, the size of each subprogram Pi, in the stratification of P , decreases
enormously. In particular, the average of the size will be ‖Pi‖ = ‖P‖/n, where
‖ ·‖ can be the number of atoms or the number of rules of a logic program. How-
ever, this observation must be counterbalanced by the fact, repeatedly observed,
that it is now necessary to calculate all possible paths leading to a split semi-
equilibrium model candidate, and these paths are in an exponential number. In
fact, if for example we assume that the original program is stratified into three
subprograms, say P1, P2 and P3, such that each computation produces two semi-
equilibrium models, we will have that: at step (1), SEQ(P1) = {M1

1 ,M
1
2 }; at step

(2), SEQ(P2 ∪ info(M1
1)) = {M2

1 ,M
2
2 } and SEQ(P2 ∪ info(M1

2)) = {M2
3 ,M

2
4 };

and at step (3), SEQ(P3 ∪ info(M2
1)) = {M3

1 ,M
3
2 }, SEQ(P3 ∪ info(M2

2)) =
{M3

3 ,M
3
4 }, SEQ(P3∪info(M2

3)) = {M3
5 ,M

3
6 }, SEQ(P3∪info(M2

4)) = {M3
7 ,M

3
8 }.

Now, assume for instance that the computation time of a semi-equilibrium model
of a program P is directly proportional to the size of P . We denote by time(P) the
time to compute a semi-equilibrium model of P . Hence, since we could compute
an exponential number of semi-equilibrium models, say 2n (like in the example),
intuitively, the computation time will be about time(P1)×21+. . .+time(Pn)×2n

that will be proportional to time(P) × 21/n + . . . + time(P) × 2n/n, that is

time(P) × 2n+1−1
n . Therefore, it is desirable for the future to identify more so-

phisticated techniques, to try to overcome such a computational explosion.

4 Related Work

Semantics for non-monotonic logic programs [50,53,54,51,30,52,20,49,2,33,13,26]
that relax the definition of answer set to overcome the absence of answer sets
can be considered in broader terms paracoherent semantics. Nonetheless, the
term paracoherent answer set was used for the first time by Inoue and Sakama
in [51], where they introduced the semi-stable semantics as a remedy to the
absence of answer sets due to cyclic negation. Later, in [14,5] some anomalies
of semi-stable semantics with respect to some epistemic properties were evi-
denced, and the semi-equilibrium semantics was proposed as a remedy. In [13] it

was demonstrated that semi-equilibrium semantics features a number of highly
desirable theoretical properties for a knowledge representation language (for in-
stance, minimal undefinedness [4]), and at the same time, it was observed that
semi-equilibrium models do not enjoy the same nice modular composition prop-
erties of stable models (e.g., the splitting set [44] modularity tool cannot be used
straightforwardly). Notably, modular composition is used in ASP for simplifying
the modeling of problems (actually, the guess and check programming method-
ology [29] is based on this property) and is a principle underlying the architec-
tures of ASP systems [43]. The split semi-equilibrium semantics [13] solves this
problem by using splitting sequences to decompose the program into hierarchi-
cally organized subprograms. Split semi-equilibrium models are semi equilibrium
models that enjoy a modularity property.

Concerning the implementation of semi-stable and semi-equilibrium seman-
tics, we observe that they have been implemented efficiently only recently. In
particular, in [8] a number of algorithms has been proposed, that compute para-
coherent answer sets in two steps: (i) an epistemic transformation of programs is
applied, and (ii) a strategy for computing answer sets of minimum gap is imple-
mented by calling (possibly multiple times) an ASP solver. The same strategy
has been improved in [10] by replacing the classic epistemic transformations
by more parsimonious ones (that we also adopt). The new transformations are
based on the characterization of paracoherent answer sets in terms of externally
supported models. Neither [8] nor [10] support split semi-equilibrium semantics
that is the focus of this paper.

5 Conclusion

Paracoherent answer set semantics can draw meaningful conclusions also from
incoherent programs, and in this way increase the applicability of ASP for solving
AI problems [13]. Practical applications are possible once efficient implementa-
tions are available, and the complex task of computing efficiently a paracoherent
answer set has been approached only recently [8,10,9]. State of the art solutions
supported the semi-equilibrium semantics but cannot compute the split semi-
equilibrium semantics. In this paper we presented a first approach to compute a
split semi-equilibrium model.

As future work, we plan to identify more efficient evaluation strategies by
exploiting the computational complexity properties of the modular paracoherent
semantics, that could allow for computing a split semi-equilibrium model using a
plain ASP solver. Finally, we will implement our approaches and compare them
against existing implementations for semi-equilibrium models.

References

1. Adrian, W.T., Manna, M., Leone, N., Amendola, G., Adrian, M.: Entity set ex-
pansion from the web via ASP. In: ICLP-TC. OASICS, vol. 58, pp. 1:1–1:5 (2017)

2. Alcântara, J., Damásio, C.V., Pereira, L.M.: An encompassing framework for para-
consistent logic programs. J. Applied Logic 3(1), 67–95 (2005)

3. Alviano, M., Amendola, G., Dodaro, C., Leone, N., Maratea, M., Ricca, F.: Evalua-
tion of disjunctive programs in WASP. In: LPNMR. LNCS, vol. 11481, pp. 241–255.
Springer (2019)

4. Alviano, M., Amendola, G., Peñaloza, R.: Minimal undefinedness for fuzzy answer
sets. In: AAAI 2017. pp. 3694–3700 (2017)

5. Amendola, G.: Dealing with incoherence in ASP: split semi-equilibrium semantics.
In: DWAI@AI*IA. CEUR Workshop Proceedings, vol. 1334, pp. 23–32. CEUR-
WS.org (2014)

6. Amendola, G.: Preliminary results on modeling interdependent scheduling games
via answer set programming. In: RiCeRcA@AI*IA. CEUR Workshop Proceedings,
vol. 2272 (2018)

7. Amendola, G.: Solving the stable roommates problem using incoherent answer set
programs. In: RiCeRcA@AI*IA. CEUR Workshop Proceedings, vol. 2272 (2018)

8. Amendola, G., Dodaro, C., Faber, W., Leone, N., Ricca, F.: On the computation
of paracoherent answer sets. In: AAAI’17. pp. 1034–1040 (2017)

9. Amendola, G., Dodaro, C., Faber, W., Pulina, L., Ricca, F.: Algorithm selection for
paracoherent answer set computation. In: JELIA. LNCS, vol. 11468, pp. 479–489.
Springer (2019)

10. Amendola, G., Dodaro, C., Faber, W., Ricca, F.: Externally supported models for
efficient computation of paracoherent answer sets. In: AAAI. pp. 1720–1727. AAAI
Press (2018)

11. Amendola, G., Dodaro, C., Leone, N., Ricca, F.: On the application of answer set
programming to the conference paper assignment problem. In: AI*IA. LNCS, vol.
10037, pp. 164–178. Springer (2016)

12. Amendola, G., Dodaro, C., Ricca, F.: ASPQ: an asp-based 2qbf solver. In:
QBF@SAT. CEUR Workshop Proceedings, vol. 1719, pp. 49–54. CEUR-WS.org
(2016)

13. Amendola, G., Eiter, T., Fink, M., Leone, N., Moura, J.: Semi-equilibrium models
for paracoherent answer set programs. Artif. Intell. 234, 219–271 (2016)

14. Amendola, G., Eiter, T., Leone, N.: Modular paracoherent answer sets. In:
JELIA’14. pp. 457–471 (2014)

15. Amendola, G., Greco, G., Leone, N., Veltri, P.: Modeling and reasoning about NTU
games via answer set programming. In: IJCAI’16. pp. 38–45 (2016)

16. Amendola, G., Ricca, F., Truszczynski, M.: Generating hard random boolean for-
mulas and disjunctive logic programs. In: IJCAI. pp. 532–538. ijcai.org (2017)

17. Amendola, G., Ricca, F., Truszczynski, M.: A generator of hard 2qbf formulas and
asp programs. In: KR. AAAI Press (2018)

18. Amendola, G., Ricca, F., Truszczynski, M.: Random models of very hard 2qbf
and disjunctive programs: An overview. In: ICTCS. CEUR Workshop Proceedings
(2018)

19. Arenas, M., Bertossi, L.E., Chomicki, J.: Answer sets for consistent query answer-
ing in inconsistent databases. TPLP 3(4-5), 393–424 (2003)

20. Balduccini, M., Gelfond, M.: Logic programs with consistency-restoring rules. In:
ISLFCR, AAAI’03. pp. 9–18 (2003)

21. Balduccini, M., Gelfond, M., Watson, R., Nogueira, M.: The usa-advisor: A case
study in answer set planning. In: LPNMR. LNCS, vol. 2173, pp. 439–442. Springer
(2001)

22. Baral, C.: Knowledge Representation, Reasoning, and Declarative Problem Solv-
ing. Cambridge University Press, New York, NY, USA (2003)

23. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Com. ACM 54(12), 92–103 (2011)

24. Calimeri, F., Gebser, M., Maratea, M., Ricca, F.: Design and results of the fifth
answer set programming competition. Artif. Intell. 231, 151–181 (2016)

25. Campeotto, F., Dovier, A., Pontelli, E.: A declarative concurrent system for protein
structure prediction on GPU. J. Exp. Theor. Artif. Intell. 27(5), 503–541 (2015)

26. Costantini, S., Formisano, A.: Query answering in resource-based answer set se-
mantics. TPLP 16(5-6), 619–635 (2016)

27. Dodaro, C., Gasteiger, P., Leone, N., Musitsch, B., Ricca, F., Shchekotykhin, K.:
Combining Answer Set Programming and domain heuristics for solving hard in-
dustrial problems (Application Paper). TPLP 16(5-6), 653–669 (2016)

28. Dodaro, C., Leone, N., Nardi, B., Ricca, F.: Allotment problem in travel industry:
A solution based on ASP. In: RR 2015. LNCS, vol. 9209, pp. 77–92. Springer (2015)

29. Eiter, T., Ianni, G., Krennwallner, T.: Answer set programming: A primer. In:
Reasoning Web. LNCS, vol. 5689, pp. 40–110. Springer (2009)

30. Eiter, T., Leone, N., Saccà, D.: On the partial semantics for disjunctive deductive
databases. Ann. Math. Artif. Intell. 19(1-2), 59–96 (1997)

31. Erdem, E., Gelfond, M., Leone, N.: Applications of answer set programming. AI
Magazine 37(3), 53–68 (2016)

32. Gaggl, S.A., Manthey, N., Ronca, A., Wallner, J.P., Woltran, S.: Improved answer-
set programming encodings for abstract argumentation. TPLP 15(4-5), 434–448
(2015)

33. Galindo, M.J.O., Ramı́rez, J.R.A., Carballido, J.L.: Logical weak completions of
paraconsistent logics. J. Log. Comput. 18(6), 913–940 (2008)

34. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice. Morgan & Claypool Publishers (2012)

35. Gebser, M., Leone, N., Maratea, M., Perri, S., Ricca, F., Schaub, T.: Evaluation
techniques and systems for answer set programming: a survey. In: IJCAI’18. pp.
5450–5456 (2018)

36. Gebser, M., Maratea, M., Ricca, F.: The Design of the Sixth Answer Set Program-
ming Competition. In: LPNMR’15. pp. 531–544 (2015)

37. Gebser, M., Maratea, M., Ricca, F.: What’s hot in the answer set programming
competition. In: AAAI. pp. 4327–4329. AAAI Press (2016)

38. Gebser, M., Maratea, M., Ricca, F.: The design of the seventh answer set program-
ming competition. In: Balduccini, M., Janhunen, T. (eds.) LPNMR. LNCS, vol.
10377, pp. 3–9. Springer (2017)

39. Gebser, M., Maratea, M., Ricca, F.: The sixth answer set programming competi-
tion. Journal of Artif. Intell. Res. 60, 41–95 (2017)

40. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Comput. 9(3/4), 365–386 (1991)

41. Giunchiglia, E., Leone, N., Maratea, M.: On the relation among answer set solvers.
Ann. Math. Artif. Intell. 53(1-4), 169–204 (2008)

42. Giunchiglia, E., Maratea, M.: On the Relation Between Answer Set and SAT Pro-
cedures (or, Between cmodels and smodels). In: ICLP. LNCS, vol. 3668, pp. 37–51
(2005)

43. Lierler, Y., Maratea, M., Ricca, F.: Systems, engineering environments, and com-
petitions. AI Magazine 37(3), 45–52 (2016)

44. Lifschitz, V., Turner, H.: Splitting a logic program. In: ICLP. pp. 23–37. MIT Press
(1994)

45. Manna, M., Ricca, F., Terracina, G.: Taming primary key violations to query large
inconsistent data via ASP. TPLP 15(4-5), 696–710 (2015)

46. Maratea, M., Pulina, L., Ricca, F.: A multi-engine approach to answer-set pro-
gramming. TPLP 14(6), 841–868 (2014)

47. Maratea, M., Ricca, F., Faber, W., Leone, N.: Look-back techniques and heuristics
in DLV: implementation, evaluation, and comparison to QBF solvers. J. Algorithms
63(1-3), 70–89 (2008)

48. Pearce, D.: Equilibrium logic. Ann. Math. Artif. Intell. 47(1-2), 3–41 (2006)
49. Pereira, L.M., Pinto, A.M.: Approved models for normal logic programs. In: LPAR.

pp. 454–468 (2007)
50. Przymusinski, T.C.: Stable semantics for disjunctive programs. New Generation

Comput. 9(3/4), 401–424 (1991)
51. Sakama, C., Inoue, K.: Paraconsistent stable semantics for extended disjunctive

programs. J. Log. Comput. 5(3), 265–285 (1995)
52. Seipel, D.: Partial evidential stable models for disjunctive deductive databases. In:

LPKR. LNCS, vol. 1471, pp. 66–84. Springer (1997)
53. van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general

logic programs. J. ACM 38(3), 620–650 (1991)
54. You, J., Yuan, L.: A three-valued semantics for deductive databases and logic

programs. J. Comput. Syst. Sci. 49(2), 334–361 (1994)

	Computing Modular Paracoherent Answer Sets: Preliminary Result

