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Abstract. This poster paper presents an efficient method R-Linker for link
prediction in large knowledge graphs, based on rule learning. The scalability
and efficiency is achieved by a combination of several optimisation techniques.
Experimental results show that R-Linker is able to handle KGs with over 10
million of entities and more efficient than existing state-of-the-art methods
including RLvLR and AMIE+ in rule learning stage for link prediction.

1 Introduction

Knowledge graphs (KGs), a new generation of knowledge bases, have received signif-
icant attention in semantic technologies. As a KG is usually very large (of size over
10 million entities), it is infeasible for manual construction. Also, KGs are usually
incomplete. Thus, it is useful and challenging to automatically construct and enrich
KGs. Link prediction is one of important tasks for automated construction of KGs.
Given an entity e and a (binary) relation R, the problem of link prediction is to find
an entity €’ such that the triple (e, R,e’) (or equivalently, the fact R(e,e’)) is in the
KG. A large number of methods for link prediction have bee proposed in the litera-
ture, including Neural LP, Node+LinkFeat and DISMULT [I]. However, most of these
methods work only for relatively small KGs like WN18 and FB15K.

AMIE+ [4] and RLvLR [6] are among more recent methods that are able to
predict links for larger KGs of size over 10 millions, and thus these methods are
much more scalable than other rule learners such as [3/5]. As these two methods are
essentially rule learners, they can address the link prediction in a more general form.
For convenience, we refer this link prediction as Reasoning-based Link Prediction or
just R-link prediction. Specifically, given a relation R, we want to find a pair (or
pairs) e and ¢’ of entities such that triple (e, R, ¢’) is in the KG. In particular, RLvLR
demonstrates that the technique of embedding in representation learning is promising
for handling R-link prediction problem in large KGs. In order to extract information
on the nationality of persons, one can learn a rule like BornIn(z,y) A Country(y, z) —
Nationality(x, ). Rules are explicit knowledge (compared to a neural network) and can
provide human understandable explanations to learning results (e.g., link prediction)
based on them. Thus, it is useful and important to extract rules for KGs automatically.
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In this poster paper, we further push the envelope by developing a more efficient
method R-Linker for R-link prediction in large KGs. The scalability and efficiency of
R-Linker is achieved by a combination of several optimisation techniques. First, we
use an adapted embedding for rule learning; Second, we introduce a new strategy of
sampling called Hierarchical Sampling; Moreover, we develop new techniques of rule
search and rule evaluation. As a result, we have implemented a new system R-Linker
for link prediction with large KGs. Our experiments show that R-Linker is able to
handle KGs of size over 10M and more efficient than other methods including RLvLR
and AMIE+ in rule learning stage for link prediction. R-Linker is available at https:
//www.dropbox.com/sh/c8ent25u3qp4vpl/AABc6J13zTRtO0kdTwHaoDBDUa?d1=0

2 A Rule-based Model

Unlike other statistical relational models, we adopt rule-based models for link predic-
tion, with the obvious advantage that the learned models (as sets of logical rules) are
explainable and reusable. In what follows, we describe how we construct such models.

2.1 Embedding-based Rule Selection

Inspired by [6], we learn such rule-based models via predicate embeddings; yet un-
like [6] using matrix embeddings, we adopt TransE vector embeddings which can sig-
nificantly improve learning efficiency. As we demonstrate in the experiments, adopt a
simpler form of embeddings does not compromise the learning accuracy. In [2], vector
embeddings r and e are constructed for each relation R and each entity e in the KG.
When a fact R(e, e’) exists in the KG, the embeddings satisfy e+ ~ e’. We extend it
to an embedding characterisation for closed-path rules, that is, first-order Horn rules
of the form Ry (x,21) A Ra(21,22) A... A Rp(2n—1,y) = R(z,y) with z,y,21,..., 2n_1
being variables. There are two aspects we hope to capture: (1) the composition of
relations Ry,... R, associates entities (in place of x and y) similarly as relation R
does; and (2) the co-occurrence of arguments in the positions of z,y, z1,...,2n—1.
For (1), it requires for each pair of entities (e, ¢’), e+r1+- - -+r,—€’ ~ e+r—e’. We
define a measure sim(ry +- - +7,,7), where sim is the L2 norm of vector distances.
For (2), we use the notion of argumentation embeddings from [6]. More specifically,
for each relation R, two vector embeddings ! and r? are computed by averaging
the entity embeddings (as vectors) of all the entities occurring in the position of
respectively, the subject and object arguments of R. Then, for x occurring as the
subject arguments of both R; and R, y occurring as the object argument of both
R, and R, and z (1 < i < n — 1) occurring as the object argument of R; and
subject argument of R; 1, we have the following measure sim(ri,r!) + sim(r2,r?) +

sim(r3,r) + -+ sim(r2_,,rl).

2.2 Hierarchical Data Sampling

A major challenge in the computation of embeddings is that existing methods cannot
scale over large KGs, even for vector embeddings. Hence, we propose a new data
sampling strategy, called hierarchical sampling, to reduce the sizes of input KGs by
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focusing on entities that are relevant to the link prediction task. Intuitively, for each
link prediction task, the link (i.e., a relation) R is often given, and we sample entities
(and facts) in the KG that are directly or indirectly related to R for embedding
construction.

Consider a KG K = (E, F') with E being the set of all entities and F' being the set
of all facts (i.e., triples) in K. Our sampling method selects a (small) subset E' C F
that are relevant to R and focus on the facts F’ only about E’ (not mentioning
other entities). Since each rule in our model forms a path, our sampling method also
deploys a breath-first tree search. As shown in Figure (a), the first sampled entities
Ey are those occurring in facts about R. Then, F; are those entities that occur in
any facts (not necessarily about R) mentioning entities from Ey. Similarly, F;;, are
those entities that occur in any facts mentioning entities from E;, for each i > 1 till
a prescribed depth.
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Fig. 1: (a) Breath-first search for sampling; (b) Sampling preserves closed-paths.

Figure 1] (b) shows how our sampling method preserves closed-path rules. For a
rule of length 3, Ry(z,2) A Ra(z,y) — R(x,y) and each supporting instance of the
rule Ry(e,e”) A Ra(e”,e’) — R(e, '), entities e and ¢’ will be sampled in Ey and e”
in El.

One optimisation is loop elimination during the breath-first search, as shown in
Figure [1] (a), if a repeated entity is found on a path (represented in light color),
the path is no longer explored. This is to avoid redundant atoms in the rules, for
example Ry (z,y) ARy (y, ) ARy (z,y) — R(z,y). Furthermore, by recording the path
information during the search, it eliminates a large number of invalid compositions
of relations and can effectively suggest candidate rules. Other optimisations include
selecting a bounded number of neighbours for each entity, and pruning relations with
low frequency.

The evaluation of candidate rules, through the computation of standard confidence
and head coverage, is often expensive, and much research effort has be dedicated to
optimise such computation. A key step is to compute the support degree, i.e., the
number of entity pairs in KG that make both body and head of the rule true. From
the above discussions, we can quickly narrow down our search to entities directly
connected to those in Fy, and since the relation in the head is known, we can first
check whether a pair of entities satisfy the head. These optimisations prove to be
quite effective.
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3 Experiments

We compared our system with RLvLR, AMIE+ and Neural LP on rule learning and
link prediction, on common benchmarks FB15K(-237), Wikidata, DBPedia 3.8, and
YAGO2s.

For large KGs Wikidata, DBPedia 3.8, and YAGO2s, Table [I| shows our system
outperforms both RLvLR and AMIE+ in learning efficiency, as shown by the average
numbers of rules (#R) and quality rules (#QR, standard confidence over 0.7) learned
per hour.

Table 1: Rule learning on large KGs.
R-Linker RLvVLR AMIE+
#R | #QR| #R|#QR| #R | #QR
DBpedia [13.38| 3.67 11{2.37] 1.97 | 0.11
Wikidata|37.38|18.52(23.56|10.62|<0.09|<0.03
YAGO2s | 9.71 | 2.28 | 6.56| 1.88 |<0.56|<0.05

KG

Table [2| shows that compared to RLvLR and Neural LP, the model constructed
by our system demonstrates better accuracy on link prediction. Table [2| shows the
comparison of our rule-based model against statistical models on FB15K-237. While
our model has competitive performance on link prediction, its major advantage is
that rule-based models are explainable and reusable. We plan to compare our method
with some other approaches such as [7].

Table 2: Link prediction on large KGs. Table 3: Link prediction on FB15K-237.

Learner FB75K Wikidata Learner MRR|Hits@10
MRR |Hits@10|MRR |Hits@10 DISTMULT 0.25 40.8
R-Linker |0.37| 59.0 [0.33| 39.3 Node+LinkFeat| 0.23 34.7
RLvLR 0.34| 434 ]0.29| 38.9 Neural LP 0.24 36.1
Neural LP| 0.13 | 25.7 - - RLvLR 0.24 39.3
R-Linker 0.24 38.1
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