
Experimental Analysis of Dependency Factors of
Software Product Reliability using SonarQube

Sanjay L. Joshi, Bharat Deshpande, and Sasikumar Punnekkat

1 Persistent Systems Limited, Goa, India Tel.: +91-20-66965051
sanjay joshi@persistent.com

2 BITS Pilani K K Birla Goa Campus, India Tel.: +91-832-2580438
bmd@goa.bits-pilani.ac.in

3 School of Innovation, Design & Engineering, Mälardalen University, Sweden
Tel.: +46-21-107324 sasikumar.punnekkat@mdh.se

Abstract. Reliability is one of the key attributes of software product
quality. Capability for accurate prediction of reliability will allow soft-
ware product industry to have better market acceptability and enable
wider usage in high integrity or critical applications domains for their
product. Software Reliability analysis is performed at various stages dur-
ing software product development life cycle. Popular software reliability
prediction models proposed in literature are targeted to specific phases
of life cycle with certain identified parameters. However, these models
seem to have certain limitations in predicting software reliability in an
accurate and acceptable manner to the industry.
A recent industrial survey performed by the authors identified several
factors which practitioners perceived to have influence in predicting reli-
ability. Subsequently we conducted a set of experiments involving diverse
domains and technologies to validate the perceived influence of the iden-
tified parameters on software product reliability which was evaluated
using SonarQube.
In this paper, we present our evaluation approach, experimental set up
and results from the study. Through these controlled experiments and
analysis of data, we have identified a set of influential factors affecting
software reliability. This paper sets direction to our future research on
modeling software product reliability as a function of the identified in-
fluential factors.

Keywords: Software Reliability · SonarQube · Empirical study · Ex-
perimental evaluation · Correlation · Software Product Attributes · Re-
liability prediction

1 Introduction

Quality is defined as “capability of a software product to conform to require-
ments.” as per ISO/IEC 9001[14]. According to ISO standard 25010 [15], the
quality of product is defined as: “The totality of features and characteristics of
a software product that bear on its ability to satisfy stated or implied needs”.

130Copyright © 2019 for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

The focus in this paper is on one of the important attributes of quality, viz., the
reliability of the software product [13].

In the past many models for predicting software reliability have been de-
veloped and studied extensively. However, these models are applicable under
certain assumptions and for specific phases of development life cycle[9] [11]. Due
to these limitations the proposed models have fallen short of gaining confidence
with industry practitioners. An industrial survey was conducted by the authors
to identify parameters that contributes to software reliability as perceived by
industry professionals[8]. The survey highlighted that factors such as skill of
developers and testers, design complexity, Commercial Off The Shelf (COTS)
complexity, review efficiency contribute to reliability [8].

This paper evaluates the significance of such identified influential environ-
mental [16]factors on software reliability for different software products in di-
verse domains and developed using diverse technologies. One of the popular
open source tools, SonarQube was used in this study for evaluating software
reliability for comparison purpose.

These experiments were performed in a large software development organiza-
tion in India, which has laboratory setup necessary for performing such experi-
ments. These laboratories basically serve as training centers for employees, both
for new recruits as well as part of continuous learning. We have identified a set
of independent input parameters [8] Refer Table 1 and dependent input param-
eters Table 2 for performing these experiments. Experiments were performed in
a systematic and in controlled manner[1][2][4].

Paper organization: Section 2 discusses the background and some details
regarding experimental context. Section 3 gives methodology followed for per-
forming experiments. In section 4 the experimental results are presented along
with discussion. Section 5 gives conclusion based on analysis done in previous
section.

2 Background and Experimental Framework

In this study, we hypothesize reliability to be a function of defect leakage, post-
delivery defects, schedule variance, effort variance, productivity, technology, com-
mercial off the shelf(COTS) complexity, design complexity, unit test defects,
integration test defects, system test defects, execution time and skill level of
developer/ tester. These factors were identified as the most influential ones as
perceived by stakeholders such as product users, coder, tester, designer, prod-
uct managers, affecting software product reliability during the industrial survey
conducted by the authors[8].

Experiments involved studying impact of these factors on reliability. Reli-
ability is computed by varying one factor while maintaining all other factors
constant. For example, skill level can be varied (from high to low) while keeping
all other factors constant.

For each application, we performed minimum 30 combinations. For example:
If skill level was identified as variable factor then all other factors such as tech-

131

Table 1. Independent Parameters (All discrete type)

Parameter # of Levels Comment
Levels

Skill 11 0-10
Technology specific skill based on
internal evaluations

Design
Complex-
ity

4
Low, medium,
high, very
high

Based on expert judgments and
complexity measures

Technology 3
C#, .NET,
Sharepoint, ASP

C#, .NET used in one application
and considered as one level

COTS
Complex-
ity

16

0-5 Simple
6-10 Medium
11-15 Com-
plex

Complexity of COTS is based upon
a. # of internal interfaces b. Impact
factor c. # of calls through main
program

Table 2. Dependent Parameters (all continuous type)

Parameter Evaluated based on Comment

UT Defects No. of Defects during unit test-
ing

Defects captured by coder

IT Defects No. of Defects during Integra-
tion testing

Defects captured by tester /
QA person

ST Defects No. of Defects during system
level testing

Defects captured by tester /
QA person

Review efficiency No. of defects captured in sub-
sequent phases due to previous
phases

Here, code review efficiency
and test case review efficiency
are taken into consideration

Post-delivery de-
fects

No of defects- from site Reported by site engineer.

On time (appli-
cation execution
time)

Execution time in hours This is also known as opera-
tional time

Load Number of parallel users

Process metrics

Schedule
Variation-SV

Schedule Schedule captured based on
calendar days

Effort Variation-
EV

Efforts Effort captured in person
hours

Productivity- P Size & effort Actual size is captured

nology, hardware, firmware, tools were kept constant. For four applications, we
performed overall 120 experiments in the laboratory in which 560 people of dif-
ferent roles and skill levels participated. Reports on reliability [3] were obtained

132

Table 3. Overview of Applications

Application Design Domain Technology Platform
Complexity

Risk Management High
Project
Manage-
ment

C#, Share-
point

Web based

eFinance Medium Finance
ASP.NET,
Javascript

Web based

Photo zoom Low Entertainment
Jquery,
Javascript

Mobile Ap-
plication

ECG Manage-
ment

Very High
Medical
Device

C#, Share-
point

Cloud and
Mobile
based

using SonarQube tool. SonarQube is popular open source platform for continu-
ous inspection of code quality. The reliability figures from SonarQube are used
as baseline for comparison purpose only. Hypothesis testing was used to check
the statistical significance of the results.

In this section we also present reference of activities performed before enter-
ing experimentation area. Activities were targeted at software product reliability
literature review and also conducting survey with practitioners and experts iden-
tified in the industry across globe. In the literature survey [9], we found that dif-
ferent reliability models are published in the past keeping Software Development
Life Cycle (SDLC) as reference.

The realized software projects have been developed and managed as per
ISO 9001:2015 standard and CMMI measurement and analysis, project moni-
toring and control issues. In these experiments, we captured data related to four
products, which have been used for commercial purpose across the globe. All
considered products can be classified as application in different domains and are
listed in Table 3. Industrial standards proposed by Halstead were considered for
categorizing design complexity of the applications[12].

For collecting data, we took help of different tools such as Jira, Rational Team
Concert (RTC) and Team Foundation Server (TFS). These tools were used for
collecting defects in requirement and design phase. Efforts and Schedule related
data was captured using Microsoft Project Plan (MPP). We used GIT for con-
figuration management and Rational Functional Tester (RFT) and Quick Test
Professional (QTP) for testing automation. Other code quality related parame-
ters were captured using PurifyPlus.

3 Methodology

Experimentation is powerful tool in software engineering. The main objective of
performing experiments is to find cause and effect relationship [6]. Experiments

133

Planning phase:
Set criteria for input
parameters and
identify runs

Choose Application Domain
Ai, e.g., E-finance. Choose
independent factor Fj , e.g.
skill

Assign task to develop
instances of code (Cijk)
for different levels of Fj to
multiple teams

Perform the task
and monitor
experiments

Run SonarQube and
capture reliability R(Cijk)

Are Runs
Over for
(Ai,Fj)?

No

Prepare graph of R versus
independent factor Fj (e.g. skill)

Yes

Calculate Correlation
between Reliability &
Fj

Correlation
>= 0.8?

High
Correlation

Medium
Correlation

Low
Correlation

Correlation
< 0.5?

Yes

Yes

No

No

For every application and
every independent factor

repeat experiment

Ranking of factors and
Validation through MTBF

Fig. 1. Methodology Outline

were conducted in a multinational software product organization having centers
across the globe. Series of experiments were conducted in controlled environment,
where one parameter is considered as variable and other parameters are taken
as constant [7].

The methodology used for performing the experiments is shown in Figure 1.
For example, in experiments to study impact of skill on reliability, one function-
ality was identified of an application and task of developing it was assigned to
software developers having varying skill levels. Minimum of 10K lines of code
was the criteria set for developing the application. The design document was
provided to all developers. Design complexity (input variable) along with other
identified input parameters were kept constant. SonarQube was run on error free
code to give the reliability factor for each skill level. To statistically conclude,
more than 30 data points were recorded. By using this methodology, experiments
were preformed for other identified factors.

4 Experimental Findings and Discussion

In this section we present our experiment findings and rank attributes influencing
reliability. Chi-Square Test was used to statistically test whether parameters
are having any impact on reliability [5]. We performed hypothesis test for each
parameter separately using the R statistical tool.

Table 4 summarizes output of ”R” for different skill levels for various tech-
nologies. In all above cases, probability value (p-value) for acceptance of null
hypothesis is calculated and if the p-value is less than 0.05 then the null hypoth-
esis is rejected. It can be seen from Table 4 that irrespective of the technology
used, there is good correlation between skill level and reliability.

134

Table 4. Correlation between Reliability and Technology

Technology
Pearson’s Chi-squared Test Correlation

χ2 df p-value Is p < 0.05 ?

C# 393.75 336 0.0163 Yes

Sharepoint 441.15 344 0.000304 Yes

ASP.NET 196.00 144 0.002588 Yes

Java 226.65 180 0.0105 Yes

Fig. 2. Scatter Plot for Skill versus Reliability

As a sample, in Figure 2 we show the scatter plot of skill versus reliability. The
pattern of the resulting points reveals that there exists correlation [10] between
these two variables. To validate the data for other attributes, we performed χ2

test and ANOVA for other skills, technologies and design / COTS complexity
and confirmed their statistical significance.

Validation of results is also done using mean time between failure observed
during testing and operational phases. This method is adopted for each applica-
tion. Mean time between failure is judged based on operational discontinuity of
an application. It is assumed that in case of critical, very high, high and medium
type defects, application can behave differently and reliability of an application
can be hampered. Sometimes during use, an application does not execute certain
part of the code which can be a threat to the overall experimenting exercise. We
covered maximum code during execution and checked all branches and nodes in
the code to confirm the reliability figure. This is done through writing test cases
for each branch and node identified for all features mentioned in the applications.

By careful design of the study and involving a broad spectrum and sufficiently
large number of respondents across the organization, we have been able to elim-
inate most usual issues of external validity and reliability in empirical studies.
However, one cannot rule out the possibility that we might have omitted yet
another important factor from our list.

Table 5 summarizes the impact of other factors on reliability showing only ab-
solute values of correlation factor. It can be concluded that reliability is strongly
correlated with Skill factor, Post Delivery Defects and Review Efficiency, whilst
reliability has good correlation with COTS complexity, System Test Defects,

135

Table 5. Correlation between reliability and different factors

Factor C# Share ASP. Java/ Inference Average Rank
point NET Jquery

Skill 0.890 0.9191 0.981 0.950 Strong 0.935025 2

UT Defects 0.231 0.040 0.224 0.233 No 0.182 9

IT Defects 0.295 0.230 0.262 0.260 No 0.26175 8

ST Defects 0.684 0.820 0.910 0.985 Good 0.84975 7

On time 0.040 0.201 0.040 0.105 No 0.0965 13

Load 0.833 0.789 0.980 0.820 Good 0.8555 6

Design Complexity 0.990 0.771 0.913 0.911 Good 0.89625 4

COTS Factor 0.846 0.843 0.921 0.900 Good 0.8775 5

Review Efficiency 0.997 0.910 0.870 0.960 Strong 0.93425 3

Post Deliv. Defects 0.936 0.990 0.960 0.966 Strong 0.963 1

SV 0.170 0.170 0.010 0.215 No 0.14125 11

EV 0.190 0.230 0.065 0.224 No 0.17745 10

Productivity 0.160 0.190 0.051 0.096 No 0.124275 12

Design Complexity and Load Condition. The last two columns show the average
and rank of the factor based on its influence on reliability.

Current models are considering defects from field and internal in testing
phase. However they are not considering factors like skill of developer and tester
or review efficiency in development process.

5 Conclusions

One of the noteworthy findings from these experiments are factors like post-
delivery defects, skill and review efficiency contributes significantly towards soft-
ware product reliability and hence should be included in its prediction. With
the help of this exercise, we could also eliminate (or at least keep on backstage)
some parameters such as process metrics (Schedule Variance, Effort Variance
and Productivity), Unit Test Defects, Integration Test Defect, System Test De-
fects. These experiments also indicate that load condition, Design complexity
and COTS (in the order of increasing importance) could be significant in defin-
ing software product reliability. Though further detailing is needed, we consider
this as a good starting point for defining an appropriate prediction model of
software reliability.

6 Acknowledgement

We would like to thank Dr. Yogesh Badhe, data scientists from Persistent Sys-
tems Ltd. for his valuable support in data analysis. Also, we would like to thank
Dr. Ramprasad Joshi for his valuable inputs for documentation while performing
experiments. Punnekkat acknowledges support from FiC(SSF) Project.

136

References

1. Aleksandar Dimov, Senthil Kumar Chandran, Sasikumar Punnekkat, “How Do We
Collect Data for Software Reliability Estimation?” , International Conference on
Computer Systems and Technologies (CompSysTech), Sofia, pp: 155-160, 2010.

2. Walker, R. J, Briand, L. C, Notkin, D, Seaman, C. B, Tichy, W. F, Panel: empir-
ical validation: what, why, when, and how. International Conference on Software
Engineering(ICSE), Washington, DC, USA: IEEE Computer Society, 2003

3. Javier Garca-Munoz, Marisol Garca-Valls and Julio Escribano-Barreno, “Improved
Metrics Handling in SonarQube for Software Quality Monitoring” , Distributed
Computing and Artificial Intelligence, 13th International Conference pp 463-470,
2016.

4. Jedlitschka, A.; Pfahl, D.; Reporting Guidelines for Controlled Experiments in
Software Engineering; ACM/IEEE Intern. Symposium on Software Engineering,
Australia, 2005

5. Tore Dyb, Vigdis By Kampenes, Dag I.K. Sjberg, “A systematic review of sta-
tistical power in software engineering experiments” , Information and Software
Technology, Volume 48, Issue 8, pp: 745-755, 2006

6. Kitchenham, B.A.; Pfleeger, S.L.; Pickard, L.M.; Jones, P.W.; Hoaglin, D.C.; El
Emam, K.; Rosenberg, J.Preliminary guidelines for empirical research in software
engineering; IEEE Transactions on Software Engineering, Vol. 28, No. 8 , Aug
2002, pp. 721 -734.

7. Kitchenham, B.A.; Hughes, R.T.; Linkman, S.G.; Modeling Software Measurement;
IEEE Transactions on Software Engineering, Vol.27, No.9, September 2001

8. Sanjay L. Joshi, Bharat Deshpande, Sasikumar Punnekkat,“An Industrial Survey
on Influence of Process and Product Attributes on Software Product Reliability”
, NETACT, ISBN No:978-1-5090-6590-5, 2017.

9. Sanjay L. Joshi, Bharat Deshpande, Sasikumar Punnekkat, “Do Software Relia-
bility Prediction Models Meet Industrial Perceptions?” , Proceedings of the 10th
Innovations in Software Engineering Conference, Pages 66-73, 2017.

10. Maiwada Samuel and Lawrence Ethelbert Okey, “The Relevance and Significance
of Correlation in Social Science Research” , International Journal of Sociology and
Anthropology Research, Vol.1, No.3, pp.22-28, 2015.

11. Port, D.; Klappholz, D.: Empirical Research in the Software Engineering Class-
room. Conference on Software Engineering Education and Training (CSEET), 2004

12. Kitchenham, B. A.; Pfleeger, S. L.; Pickard, L. M.; Jones, P. W.; Hoaglin, D.
C.; Emam, K. E.; Rosenberg, J.: Preliminary guidelines for empirical research in
software engineering. In: IEEE Trans. Softw. Eng. 28 (2002)

13. Claes Wohlin, Martin Höst, Per Runeson and Anders Wesslén, Software Reliability,
Encyclopedia of Physical Sciences and Technology, Vol. 15, Academic Press, 2001

14. International Organisation for Standardization(ISO), ISO 9001: Quality Manage-
ment Systems, 2015

15. ISO/IEC 25010:2011 : Systems and software engineering – Systems and software
Quality Requirements and Evaluation (SQuaRE) – System and software quality
models

16. Zhu, M., Zhang, X., Pham, H. (2015). A comparison analysis of environmental
factors affecting software reliability. Journal of Systems and Software, 109, 150-
160

137

