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Abstract. We propose here to look at how abstract a model of a usable system can be,
but still say something useful and interesting.
We take the view that when we claim to be designing a usable system we have, at the very
least, to give assurances about its usability properties. This is a very abstract notion, but
provides the basis for future work, and shows, even at this level that there are things to say
about the (very concrete) business of designing and building usable, interactive systems.
In this note, we introduce the idea of usable-by-construction, which adopts and applies
the ideas of correct-by-construction to (very abstractly) thinking about usable systems.
We outline a set of construction rules or tactics to develop designs of usable systems by
picking a few, and we also formalize them into a state suitable for, for example, a proof
assistant to check claims made for the system as designed.
In the future, these tactics would allow us to create systems that have the required usability
properties and thus provide a basis to a usable-by-construction system. Also, we should
then go on to show that the tactics preserve properties by using an example system with
industrial strength requirements. And we might also consider future research directions.
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1 Introduction

The position taken in this note is that more abstraction in the methods for modelling and
designing interactive systems would be a good thing.

In previous work over the last decade or so [1] we have taken a fairly abstract view of
interactive systems (which itself has been criticised in some quarters for being too abstract) and
shown how systems can be modelled using that view, and also how we can move towards more
concrete models from that abstract view. Here we try to go to the abstract extreme (i.e. even
more abstract that what has already been criticised!) just to see what is possible.

The aim of this note is to introduce the idea of usable-by-construction. This, in essence, takes
the ideas of correct-by-construction that formed much of the work of Dijkstra [3], Gries [4] and
many others, and applies them to the problem of usable systems. In particular we want to see
how we can develop a set of construction rules or tactics which allow us to build designs of usable
systems without having to perform, say, post hoc verification on the constructed system. That
is, we want tactics that can build only usable systems: any system built with the tactics will
necessarily have the required usabilty properties simply due to the nature of the construction
tactics themselves.

Since we are trying to hit the spot between maximum abstraction and maximum simplicity, we
leave the question “what exactly do you mean by usable?” unanswered. If pressed for an answer
we would say that our abstraction allows any answer to that question that you personally are
happy to accept. Here we are totally agnostic about what usable means. Think of the definition
of usable as being a parameter of our rules.

The aims of these techniques can be summarised by saying that we are trying to bring some
good engineering principles to bear, namely:
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– model a system before going to the expense of building it;
– use maths to check that the system is fit for purpose;
– for a good design, don’t get concrete too early or we’ll lock ourselves into design choices too

soon;
– build a system, not by adding features at will and on the fly—but in a controlled, structured

way as this keeps complexity under control.

These points are usually summarised as—

– modelling
– maths
– abstraction
– compositionality (i.e. start with a small set of very simple, basic actions and then have a

few simple rules which given already constructed pieces allows us to compose them into new,
larger systems).

2 Basic definitions

We assume that each system is made up of components (which might be people, computers,
software systems and so on right down to simple widgets) and connections between them. A
connection represents a use of one component by the other. That is almost all we say, so we are
going for maximum generality here.

In order to define this precisely, we make the following definitions.

Definition 1. A system is 〈C ,N 〉, where C is a component set {c1, c2, ..., cn}, and N is a
connection set, {n1,n2, ...,nm}, where each nj = 〈ci , ck 〉 for some ci , ck ∈ C .

This definition is a starting point, but it clearly too general to be very interesting. With our
problem in mind, namely designing usable systems, we introduce two further ideas. Firstly, we
have a subset of C , called I , which is a set of components which can be interacted with. Secondly,
each interactive component, i ∈ I , is associated with its own set of components that are allowed
to interact with it, Ai , which we refer to as an interactive component’s allowed set.

For a component to be allowed access to an interactive component, that component needs to
be added into the allowed set of that interactive component. These sets of “allowed” components
can be thought of as expressing propositions about the system—that, assuming that allowing
the components access to the interactive components is sensible or allowable (a decision of the
designers, perhaps based on experimental or past design knowledge or experience, etc.), the
system as whole is accepted as usable. The sets can be thought of sets of permissions too: if a
component is in an interactive component’s allowed set then that component has permission to
use that interactive component while keeping the whole system ajudged as usable.

We refer to systems with these two additional sets as acceptable systems.

Definition 2. An acceptable system 〈C ,N , I ,A〉 extends a system 〈C ,N 〉, where I ⊆ C is a
set of components that are interactive and A is a family of sets of components

⋃
i Ai , where for

i ∈ I , Ai ⊆ C . Ai is a set of components allowed (for agreed reasons) to use the interactive
component i.

Now we need to think of how we can combine such systems, via tactics, preserving usability—
so we are going for a compositional approach here. These tactics are connect, disconnect, create,
and delete. Given the space restrictions we look at just two.

In what follows we make the (surely benign) assumption that every component has access to
itself.
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3 Tactics

We introduce various rules (which we call tactics) for building systems from smaller systems,
and ultimately from single components, with the aim that the result of each tactic, assuming
we start with usable systems, will necessarily be usable systems. Note that this system is very
liberal, in the sense that connections between systems containing interactive components are
generally allowed, but we also without exception keep track of what components have access to
what interactive components. So, usability here comes about because we are completely open
and honest about who has access to what.

Recall that our overall plan is to have simple rules to start with, see how far we can get,
then introduce further rules carefully to get us closer to our aim, without disturbing (as far as
possible) the simplicity of the modelling.

To help the presentation we introduce the notion of a path:

Definition 3. Given a system Σ = 〈C ,N , I ,A〉, a path exists between components c and c′ in
C , which we write as c  Σ c′, iff either:

1. c is connected to c′, i.e. 〈c, c′〉 ∈ N , or

2. there is some d ∈ C such that c  Σ d and 〈d , c′〉 ∈ N

We drop the subscript where the context allows, and we iterate the notion of path, so that, for
example, c  d  e abbreviates c  d ∧ d  e. Also, by ∀ c ∈ a  b.P we mean that all
components on the path between a and b satisfy the predicate P .

3.1 Connect Tactic

The connect tactic adds a connection between two components of a system under certain condi-
tions. (We can also see this rule as allowing us to join two such systems together via the joined
components. In the full treatment we have rules to deal with this eliding of meaning.) This is
done by creating an edge between two components.

Definition 4. Connects to
If Σ = 〈C ,N , I ,A〉 then making a new connection between ca and cb in C means creating
Σ′ = 〈C ,N ∪ {〈ca , cb〉}, I ,A〉, and 〈ca , cb〉 /∈ N with the condition that:

∀ i ∈ I .∀ c, d ′ ∈ C .∀ d ∈ cb  d ′.∀ c′ ∈ c  ca .d ∈ Ai ⇒ c′ ∈ Ai

The condition here simply says that any elements on any path c  ca that gets joined to
a path cb  d , where this path contains elements allowed access to any interactive component,
must already be allowed access to those same interactive components. This is, of course, a very
general condition, i.e. it means that almost every component in any system might have to be
allowed access to almost all interactive elements in that system. For the moment, though, we are
concerned with giving rules which preserve usability.

Some simple results follow directly from this definition. For example, given some system
containing c and i , if c  i for i an interactive component, then c ∈ Ai , which is itself a special
case of the more general result that if c  d and d ∈ Ai for some interactive component i , then
c ∈ Ai .
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3.2 Disconnect Tactic

The disconnect tactic removes a connection between a source component and a target compo-
nent. This is done by removing a connection between two components in the connection graph.
Structurally, a use of the target component is revoked from the source component. (It may be
that this gives us two completely disconnected sets of components.)

The disconnect tactic requires two parameters, i.e. the source component and the target
component.

Definition 5. Disconnects from
If Σ = 〈C ,N , I ,A〉, then disconnecting ca ∈ C from cb ∈ C means deleting a connection,
〈ca , cb〉 ∈ N , and creating Σ′ = 〈C ,N ′, I ,A〉, where N ′ = N \ 〈ca , cb〉

3.3 Grant Tactic

The grant tactic allows a component to have access to an interactive component. This is done by
adding a component to the set of components that are allowed to have access to the interactive
one.

Definition 6. Add to Granted set
If Σ = 〈C ,N , I ,A〉, then allowing ci access to cj means creating Σ′ = 〈C ,N , I ,A′〉, where

A′ = A⊕ {cj 7→ Acj ∪ {ci}} iff cj ∈ I . Otherwise, A′ = A.

The grant tactic loosens the restriction of the connect tactic. Given this loosening, we have
to be careful about what we claim for a system constructed with our tactics. In particular, we
have to ensure that the assumption that the family of sets of components A have been allowed
access to interactive components is made explicit in any guarantees we give about the system
constructed. So, if we have constructed the system 〈C ,N , I ,A〉 then we have to say that:

assuming that the family of sets of components A have correctly been allowed to access
certain interactive components, then we guarantee that the constructed system is usable

which we might write formally as1:

A �< C ,N , I >

So, when we “hand” a system to a client, we hand them something that, as long as they use
it in the right context, ı.e. a context in which the assumption is satisfied, ı.e. a context where
it is permitted to allow the interactions that have been allowed to the components that they
have been granted to, then we guarantee that the system is usable. Stated alternatively (as
we mentioned above in a previous section) we can think of A as recording the permissions for
accessing interactive components, so A �< C ,N , I > is saying that assuming that we are happy
to allow the permissions as given in A, then the system as described by < C ,N , I > is usable.

It is useful to think of this notation as stating a contract between modeller and client. It
makes plain exactly what is being assumed (A), and exactly what may then be taken to be a
usable system (< C ,N , I >) under those assumptions.

1 The symbol � is borrowed from formal logic, and there it is usually called a turnstile. These are
conventionally used to seperate assumptions from conclusions, hence our use of the symbol here
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4 The rules

In this section we re-state the rules above in a more formal setting. This does two things: it
makes clear exactly what is being assumed and what is being concluded; and it allows us to
move towards a logic for usable systems, which itself (via a proof assistant, theorem-prover or
other programmed form of the rules coupled with some search strategy) leads to algorithmic
construction of usable systems. We expand on these points as follows:

Rules are good because:

– they allow goal-directed construction (examples below), because a rule read backwards (or
upwards) tells us what we must show in order to have the conclusion we desire;

– they are good for design in general since such rules—

• provide some guidance (the shape of the desired system determines, to some extent, the
rules that must be used to build it);

• suggest a pattern to look for (the use of a restricted set of rules soon gives rise to
repeated patterns of development, which then gives rise in turn to derived rules which
usefully encode recurring, common patterns);

• ease explanation (the structure suggest the form and content of answers to the question:
how was this system constructed, and why is it usable?);

• promote understanding (see: all the above);

– although we trade away complete flexibility (i.e. on the fly, ad hoc design), we gain better
understanding, structure, robustness etc.

– they take us towards a method for checking and building systems: the rules, being formal,
can easily be read as algorithms.

The rules will (following standard methods) follow from the definitions of the tactics that we
have given earlier in the paper.

4.1 Disconnect rule

Consider the disconnect tactic, and recall its definition:

Disconnects from
If Σ = 〈C ,N , I ,A〉, then disconnecting ca ∈ C from cb ∈ C means deleting a connection,
〈ca , cb〉 ∈ N , and creating Σ′ = 〈C ,N ′, I ,A〉, where N ′ = N \ 〈ca , cb〉

This gives us two rules: one “introduction” rule for moving from a system with a certain
connection to one where a disconnection (i.e. removal of that certain connection) has happened:

A � 〈C ,N , I 〉 〈ca , cb〉 ∈ N
disconnect+

A � 〈C ,N \ 〈ca , cb〉, I 〉

and an “elimination” rule which, given a system that has had a disconnection performed on it,
can “reverse” this (somewhat artificially perhaps, but it is a rule we gain nonetheless):

A � 〈C ,N , I 〉 ca , cb ∈ C
disconnect−

A � 〈C ,N ∪ {〈ca , cb〉}, I 〉
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4.2 Connect rule

A � 〈C ,N , I 〉 ca ∈ C cb ∈ C

∀ i ∈ I .∀ c, d ′ ∈ C .∀ d ∈ cb  d ′.∀ c′ ∈ c  ca .d ∈ Ai ⇒ c′ ∈ Ai···
d ∈ Ai ⇒ c′ ∈ Ai

connect+
A � 〈C , I ∪ 〈ca , cb〉, I 〉

Note that we may have to use granted before these rules in order that we can connect to an
interactive component.

4.3 Granted

The point of the granted set for some interactive component is that it records our actions in
granting access since this forms part of our contract. Recall that A � 〈C ,N , I 〉 simply means
that assuming we have correctly (acceptably) granted access as recorded in A, then the system
is usable.

A � 〈C ,N , I 〉 i ∈ I c ∈ C
granted+

A⊕ {i 7→ Ai ∪ {c}} � 〈C ,N , I 〉

5 Tiny examples

5.1 connect+ and disconnect+ are inverses

If we make a new connection and then disconnect immediately afterwards we get back to the
same system that we started with.

As we can see from this tiny proof in Figure 1, under the assumptions that we start with
the system A � 〈C ,N , I 〉 where ca ∈ C and cb ∈ C and assuming all the components involved
respect the accessability requirements of i as summarised in Ai (which is what the fourth—big–
premise is saying), which allow a connection to happen, then undoing the connection results in
the system A � 〈C ,N , I 〉 we started with.

This is about the simplest general property we would expect to be provable if the rules have
correctly captured the intended meaning of such systems and their properties. Showing that such
proofs are possible is part of the usual validation process for any formalisation.

We also give the proof required to construct a small part of a system, where we prove that the
fragment where G and H connect with interactive component A, as in Figure 5, is constructable.

6 Usage

Apart from giving us a logic for reasoning about systems, these rules can help guide us in
the construction of systems. For example, say we had to construct a system of the form A �
〈C , {〈da , db〉, 〈ca , cb〉}, I 〉, then disconnect−, read “upwards” tells us that we must show how to
construct a system of the form A � 〈C , {〈da , db〉}, I 〉 and also show that ca , cb ∈ C . So, starting
with a desired system, and using the rules upwards, we get some guidance, via pattern matching
the system we want with the conclusions of the rules, as to how to build it. If we continue this
process along all branches of the proof tree that we thus construct until we reach its tips, which
require no further proof (for example the system ∅ � 〈∅, ∅, ∅〉 is trivially constructible and usable;
it is like the zero of usable systems) then by reading the proof tree “forwards” we see both how
to construct our desired system and have a proof that it is usable.

Our new logic (for usable systems) inherits the internal consistency of the underlying logic
since the new logic was produced via conservative extension, and so it is sound, which means
that any system constructed via the rules is guaranteed to be usable.
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A

G

H

Fig. 5: A tiny system

7 Introducing usable components

Next we can introduce usable (not merely “interactive”) components which some components
in I might be, or that can play the role of, wrappers that guard the rest of the system against
non-usability to make I components usable, or perhaps make C components usable (by wrapping
and/or guarding).

Then we have a condition that simplifies the structure by making the Ai smaller by shrinking
the family of sets A: if some components have been proved to be usable, or been proved the
protect the system against undesirable (and otherwise non-usable components—i.e. components
that we might want in the system because of some very useful properties they have, but which are
otherwise appallingly non-usable) by wrapping them up or filtering out or restricting their unde-
sirable features, then we can take away some of the assumptions (which is what A is essentially
giving us) and get a simpler design.

Here is a sketch of something we might introduce as a sort of healthiness condition which pares
down large permission sets into smaller ones once the usable components have been introduced:

Lemma 1. Healthiness due to usable components
Consider a system Σ of the form A �< C ,N ,U , I >. Assume one of the components u in C
is designated as a usable component (as in the discussion above). Then we have an equivalently
usable system Σ′ of the form A′ �< C ,N ,U ∪ {u}, I > and A′ is related to A as follows:

1. for all interactive components i ∈ I , all components of A that are only on paths that are
prefixes of paths from u to i are removed from Ai ;

2. for all interactive components i ∈ I , all components of A on any paths that start at u and
do not go through i are removed from Ai

The set of components that that remains as Ai , due to the clauses above, form A′i .

8 Conclusions

The work recounted here, which centres around a need to consider the ways of designing and
constructing a usable system made of various components, has several properties:

– It allows an abstract characterisation of a usable system;
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– It has logical rules that allow for checking and construction;
– Any complicated system may be built in terms of simpler ones using a small set of operations;
– We may use it as a basis for deriving further construction operations.

The rules here are, of course, tedious to use by hand (as the examples show), but we can
express the rules very directly in the various proof assistants available (e.g. PVS [5]) or perhaps
program them in a language that already deals with search, like Prolog. Then by giving the
desired system as conjecture to the proof assistant or a goal to a Prolog program, it can be
used to (mainly automatically, given the simplicity of our rules) then construct a proof that the
system is usable. For realistically large systems, with hundreds of components, this would be an
important feature.

Another way of seeing this utility is to acknowledge that one the problems with realistically
large systems is keeping track of dependencies (like our “allowed access to interaction” idea)
and the rules given here do that. The fact that a large system, once built, can automatically be
checked for conformance to requirements of dependencies is obviously valuable (even if the idea
of having a logic to construct such system does not appeal).

There remains the question of how a very abstract model, once we have one, can be used
as the basis for an implementation. Our expectation would be to proceed via the existing and
well-known and established techniques that are called refinement [2], which would take us from
a design that provably has the required properties (i.e. built with usability as a constructed
and provably existing property) to provably usable implementations, since the central point of
refinement is that it allows us to move from abstract to concrete (design to implementation)
while preserving meaning and properties. Taken together, then, we have rules that allow us to
design and specify usable systems, and refinement rules that, preserving usability, take us to
implementations or provably usable systems. As one of the reviewers said: “[it would be good]
to apply the concepts on the ISO 9241 definition of usability and to a concrete small example
(maybe a cash machine?) to see in practice the concepts developed” and I agree, a nice piece of
work for the future.

Finally, this abstract system does not have the interpretation of components decided in any
way, though the idea of “interactive” does begin to impose one. However, we have a set of rules
here which simply allows construction of connected components where some needed properties
which make a system “proper” can be kept track of—so this has general application.
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