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Abstract. In a recent work we have determined the local limit distri-
bution of pattern statistics representing the number of occurrences of a
symbol in words of length n in a regular language generated at random
according to a suitable stochastic model. Such a model is defined by a
finite automaton with weights in R+, consisting of two primitive com-
ponents, having some transition from the first to the second component.
In the present work we extend those results to the case when there is no
communication among the components, and hence the associated formal
series is the sum of two rational series recognized by finite state automata
with primitive transition matrix. We obtain local limit laws of Gaussian
type when there is a dominant component or when, in equipotent case,
the main terms of mean value and variance are equal. On the contrary, if
these terms are not the same then the local limit distribution is a convex
combination of Gaussian laws. All convergence rates of our limits are of
the order O(n−1/2). This completes the analysis of local limit laws of
symbol statistics under a bicomponent stochastic model1.

Keywords: rational formal series, pattern statistics, limit distributions, local
limit laws, Saddle Point Method.

1 Introduction

The Saddle Point Method is a classical tool used to determine the asymptotic ex-
pression of integrals, defined over closed curves in the complex plane, depending
on an additional parameter. This method is of particular interest in Analytic
Combinatorics where, generally, the parameter varies in N and represents the
size of a family of combinatorial structures; in that context several enumeration
problems can be reduced to evaluating the coefficients of generating functions,
which coincide (by the Cauchy formula) with the integral of the corresponding
function along a circle centred at the origin (see for instance [8, Chapter VII]).

A traditional application of this technique concerns the so-called local limit
theorems of Gaussian type for sequences of discrete random variables. A well-
known example is the classical De Moivre - Laplace Theorem, stating that the
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probability functions of sequences of Binomial r.v.’s approximate a Gaussian den-
sity function (see for instance [9]). A general framework for this type of theorems
considers a sequence {Xn} of r.v.’s, each of which takes value in {0, 1, . . . , n}.
The main goal is to prove that the family of probabilities {pn(k)}k∈{0,1,...,n},
where pn(k) = Pr(Xn = k), suitably standardized converges to the Normal den-
sity of mean 0 and variance 1, uniformly with respect to k ∈ {0, 1, . . . , n}. Several
results of this type can be proved by using the Saddle Point Method since the
coefficients pn(k) are related to the characteristic function Ψn(t) of Xn by the
well-known inversion formula:

pn(k) =
1

2π

∫ π

−π
Ψn(t)e−itkdt (1)

for every k ∈ {0, 1, . . . , n} [8,9]. One can see the previous expression as a circuit
integral over the complex plain, where the curve is given by the unit circle with
centre in 0. It may occur that the main contribution to the integral comes from a
small portion of the curve passing near a particular point, called “saddle point”
since at that position the modulus of the integrand forms a surface that resembles
a mountain pass. In these cases a convenient method to compute the coefficient
often consists of evaluating the integral near the saddle point and proving that
the contribution coming from the remaining part of the curve is negligible. See
[8, Ch. VIII] for an appealing introduction to the method and an interesting
discussion on its applications. In our cases the curve is just the unit circle (eit

with −π ≤ t ≤ π) and the “saddle point” always corresponds to 1 = e0.
We recall that a local limit theorem does not follow immediately from a

traditional convergence in distribution (that is the type of convergence in the
usual central limit theorems), since point probabilities are differences of values
of the corresponding distribution functions, and hence they may not be detected
by a standard analysis of convergence in law. Usually, in order to prove a local
limit theorem from a convergence in distribution, some additional regularity or
aperiodicity conditions are necessary; standard counterexamples show that such
conditions cannot be avoided. Moreover, another evaluation often occurring in
local limit properties concerns the convergence rate, which measures the speed
of approximation. Finding a tight convergence rate in central limit theorems is
a natural goal of literature [12].

In the present paper we adapt the Saddle Point Method to a problem on
formal languages, i.e. the analysis of patterns statistics defined over words of
regular languages. More precisely, we consider a sequence of r.v.’s {Yn}, where
each Yn is the number of occurrences of a symbol a in a word w of length n
generated at random in a rational stochastic model. Such a model can be formally
defined by a finite state automaton with real positive weights on transitions. In
this setting the probability of generating a word w is proportional to the weight
the automaton associates with w; thus the language recognized by the automaton
is the family of all words having non-null probability to be generated. This model
is quite general, it includes as a special cases the traditional Bernoullian and
Markovian sources and comprises the random generation of words of length n in
any regular language under uniform distribution.



The properties of {Yn} are of particular interest for the analysis of regular
patterns occurring in words generated by Markovian models [3,13,14] and for the
asymptotic estimate of the coefficients of rational series in commutative variables
[3,4]. It is also related to various research topics of Computer Science such as
the descriptional complexity of languages and computational models [5], and
the analysis of additive functions defined on regular languages [11]. Clearly, the
asymptotic behaviour of {Yn} depends on properties of the finite automaton A
defining the stochastic model. It is known that if A has a primitive transition
matrix then Yn has a Gaussian limit distribution [3,13] and, under a suitable
aperiodicity condition, it also satisfies a (Gaussian) local limit theorem [3]. The
limit distribution of Yn in the global sense is known also when the transition
matrix of A consists of two primitive components [7] and an analysis of local
limit laws in the bicomponent models is presented in [10] in the case when there
is some transition from the first to the second component.

Here we improve those results by presenting some local limit laws for the
bicomponent models when there is no communication between the components.
As in the previous works [3,10], we have to add suitable aperiodicity conditions
to guarantee appropriate local limits. In particular, we prove that the sequence
of statistics {Yn} has a local limit law of Gaussian type if the main eigenvalues
of the two components are different; in this case the aperiodicity condition only
concerns the dominant component, which determines the asymptotic behaviour
of the sequence. On the other hand, when the main eigenvalues of the two com-
ponents coincide (equipotent model) the results depend on the values of four
constants: β1, γ1 and β2, γ2, representing the leading terms of mean value and
variance of our statistics associated to the first and second component, respec-
tively. If β1 6= β2 or γ1 6= γ2 then the local limit distribution of {Yn} is a convex
combination of two Gaussian laws. On the contrary, if β1 = β2 and γ1 = γ2, then
the local limit density of {Yn} turns out to be Gaussian again. All local limit
laws obtained in this work have a convergence rate of the order O(n−1/2). These
results are similar to the local limit laws obtained in the communicating models
[10] when the limit distribution is Gaussian, while they are rather different in
the other cases (equipotent models with unequal parameters).

The material we present is organized as follows. In Section 2 we recall the
problem and some known results concerning the primitive models. In Section
3 we introduce the non-communicating bicomponent models and prove a local
limit law in the dominant case. Then, in Section 4 we study the equipotent (non-
communicating bicomponent) models, present the local limit laws in these cases
and discuss briefly their meaning. In the last section we compare these results
with the previous ones and discuss possible future investigations.

2 Preliminary notions and previous results

Given the binary alphabet {a, b}, for every word w ∈ {a, b}∗ we denote by |w|
the length of w and by |w|a the number of occurrences of a in w. For each n ∈ N,
we also represent by {a, b}n the set {w ∈ {a, b}∗ : |w| = n}. Here a formal series



in the non-commutative variables a, b is a function r : {a, b}∗ → R+, where
R+ = {x ∈ R | x ≥ 0}, and for every w ∈ {a, b}∗ we denote by (r, w) the
value of r at w. Such a series r is called rational if for some integer m > 0
there is a monoid morphism µ : {a, b}∗ → Rm×m+ and two arrays ξ, η ∈ Rm+ ,
such that (r, w) = ξ′µ(w)η, for every w ∈ {a, b}∗. In this case, as the morphism
µ is generated by matrices A = µ(a) and B = µ(b), we say that the 4-tuple
(ξ, A,B, η) is a linear representation of r of size m. Clearly, such a 4-tuple can be
considered as a finite state automaton over the alphabet {a, b}, with transitions
(as well as initial and final states) weighted by positive real values. Throughout
this work we assume that the set {w ∈ {a, b}n : (r, w) > 0} is not empty for
every n ∈ N+ (so that ξ 6= 0 6= η), and that A and B are not null matrices,
i.e. A 6= [0] 6= B. Then we can consider the probability measure Pr over the set
{a, b}n given by

Pr(w) =
(r, w)∑

x∈{a,b}n(r, x)
=

ξ′µ(w)η

ξ′(A+B)nη
∀ w ∈ {a, b}n

Note that, if r is the characteristic series of a language L ⊆ {a, b}∗ then Pr is
the uniform probability function over the set L ∩ {a, b}n. Thus we can define
the random variable (r.v. for short) Yn = |w|a, where w is chosen at random in
{a, b}n with probability Pr(w). As A 6= [0] 6= B, Yn is not a degenerate r.v. . It
is clear that, for every k ∈ {0, 1, . . . , n},

pn(k) := Pr(Yn = k) =

∑
|w|=n,|w|a=k(r, w)∑
w∈{a,b}n(r, w)

Since r is rational also the previous probability can be expressed by using its
linear representation. It turns out that

pn(k) =
[xk]ξ′(Ax+B)nη

ξ′(A+B)nη
∀ k ∈ {0, 1, . . . , n} (2)

For sake of brevity we say that Yn is defined by the linear representation (ξ, A,B, η).
The distribution of Yn can be represented by the map hn(z) and the character-
istic function Ψn(t), given respectively by

hn(z) = ξ′(Aez +B)nη ∀ z ∈ C (3)

Ψn(t) =

n∑
k=0

pn(k)eitk =
ξ′(Aeit +B)nη

ξ′(A+B)nη
=
hn(it)

hn(0)
∀ t ∈ R (4)

In particular mean value and variance of Yn are determined by

E(Yn) =
h′n(0)

hn(0)
, Var(Yn) =

h′′n(0)

hn(0)
−
(
h′n(0)

hn(0)

)2

(5)

Our general goal is to study the limit distribution of {Yn} as n grows to +∞
and in particular its possible local limit law.



We recall that a sequence of r.v.’s {Xn} converges in distribution (or in law) to
a random variableX of distribution function F if limn→+∞ Pr(Xn ≤ x) = F (x) ,
for every x ∈ R of continuity for F . The central limit theorems yield classical
examples of convergence in distribution to a Gaussian random variable.

Instead, the local limit laws establish the convergence of single probabilities
to a density function (see for instance [9,8]). More precisely, consider a sequence
of r.v.’s {Xn} such that each Xn takes value in {0, 1, . . . , n}. We say that {Xn}
satisfies a local limit law of Gaussian type if there are two real sequences {an},
{sn}, satisfying E(Xn) ∼ an, Var(Xn) ∼ s2n, with sn > 0 for all n, such that for
some real εn → 0, the relation∣∣∣∣∣snPr (Xn = k) − e−( k−ansn

)
2
/2

√
2π

∣∣∣∣∣ ≤ εn (6)

holds uniformly for every k ∈ {0, 1, . . . , n} and every n ∈ N large enough. Here,
εn yields the convergence rate (or the speed) of the law. The best known example
of such a property is the de Moivre-Laplace local limit theorem, which concerns
sequences of binomial r.v.’s [9].

Similar definitions can be given for other (non-Gaussian) types of local limit

laws. In this case the Gaussian density e−x
2/2/
√

2π appearing in (6) is replaced
by some density function f(x); clearly, if f(x) is not continuous at some points,
the uniformity of k must be adapted to the specific conditions.

2.1 Primitive models

A relevant case occurs when M = A+B is primitive, i.e. Mk > 0 for some k ∈ N
[16]. In this case it is known that Yn has a local limit law of Gaussian type with
a convergence rate O(n−1/2) [10] and here we recall some properties useful in
subsequent sections.

First note that by Perron-Frobenius Theorem, a primitive matrix M admits
a real eigenvalue λ > 0 greater than the modulus of any other eigenvalue. More-
over, strictly positive left and right eigenvectors ζ, ν of M w.r.t. λ can be defined
so that ζ ′ν = 1. Thus, we can consider the function u = u(z) implicitly defined
by the equation

Det(Iu−Aez −B) = 0

such that u(0) = λ. It turns out that, in a neighbourhood of z = 0, u(z) is
analytic, is a simple root of the characteristic polynomial of Aez+B and |u(z)| is
strictly greater than the modulus of all other eigenvalues of Aez+B. Moreover, a
precise relationship between u(z) and function h(z), defined in (3), is well-known
and states that for two positive constants c, ρ and a function r(z) analytic and
non-null at z = 0, one has

hn(z) = r(z) u(z)n +O(ρn) ∀z ∈ C : |z| ≤ c (7)

where ρ < |u(z)| and in particular ρ < λ.



Mean value and variance of Yn can be estimated from relations (7) and (5).
In turns out [3] that the constants

α = ξ′νζ ′η , β =
u′(0)

λ
and γ =

u′′(0)

λ
−
(
u′(0)

λ

)2

(8)

are strictly positive and satisfy the relations

E(Yn) = βn+O(1) and Var(Yn) = γn+O(1)

Other properties concern function y(t) = u(it)/λ, defined for real t in a neigh-
bourhood of 0. In particular, there exists a constant c > 0, for which relation
(7) holds true, satisfying the following relations [3]:

|y(t)| = 1− γ

2
t2 +O(t4), arg y(t) = βt+O(t3), |y(t)| ≤ e−

γ
4 t

2

∀ |t| ≤ c (9)

The behaviour of y(t) can be estimated precisely when t tends to 0. For any q
such that 1/3 < q < 1/2 it can be proved [3] that

y(t)n = e−
γ
2 t

2n+iβtn(1 +O(t3)n) for |t| ≤ n−q (10)

The previous properties are used in [10] to prove a local limit theorem for
{Yn} when M is primitive, with a convergence rate O(n−1/2). The result holds
under a further assumption, introduced to avoid periodicity phenomena, defined
as follows: consider the transition graph of the finite state automaton defined
by matrices A and B, i.e. the directed graph G with vertex set {1, 2, . . . ,m}
such that, for every i, j ∈ {1, 2, . . . ,m}, G has an edge from i to j labelled by
a letter a (b, respectively) whenever Aij > 0 (Bij > 0, resp.). Also denote by
d the GCD of the differences in the number of occurrences of a in the (labels
of) cycles of equal length of G. the pair (A,B) is said to be aperiodic if d = 1.
Such a property is often verified; for instance it holds true whenever Aij > 0 and
Bij > 0 for two (possibly equal) indices i, j. Moreover, it can be proved [4] that
(A,B) is aperiodic if and only if, for every real t such that 0 < t < 2π, we have

|µ| < λ for every eigenvalue µ of Aeit +B (11)

3 The “sum model”

In this section we study the behaviour of {Yn}n∈N defined by a linear repre-
sentation (ξ, A,B, η) of size m consisting of two non-communicating irreducible
components. Formally, there are two linear representations, (ξ1, A1, B1, η1) and
(ξ2, A2, B2, η2), of size m1 and m2 respectively, where m = m1 +m2, such that:

1. ξ′ = (ξ′1, ξ
′
2), A =

(
A1 0
0 A2

)
, B =

(
B1 0
0 B2

)
, η =

(
η1
η2

)
2. ξ1 6= 0 6= η1, ξ2 6= 0 6= η2, A1 6= 0 6= B1 and A2 6= 0 6= B2;



3. M1 = A1 + B1 and M2 = A2 + B2 are irreducible matrices and we denote
by λ1 and λ2 the corresponding Perron-Frobenius eigenvalues.

Note that condition 3 is weaker than a primitivity assumption for M1 and
M2. Clearly a formal series r with a linear representation of this kind is given
by the sum of two rational formal series r1, r2, both having an irreducible linear
representation, i.e. (r, w) = (r1, w) + (r2, w) for every w ∈ {a, b}∗.

Assuming these hypotheses, we say that {Yn}n is defined in a non-communi-
cating bicomponent model or, for sake of brevity, in a sum model. As in the
corresponding “communicating” case [10], its limit distribution first depends
on whether λ1 6= λ2 or λ1 = λ2. If λ1 6= λ2 there is a dominant component,
corresponding to the greater between λ1 and λ2, that determines the asymptotic
behaviour of {Yn}. If λ1 = λ2 the two components are equipotent and they both
contribute to the limit behaviour of {Yn}.

In both cases, for j = 1, 2, we can define h
(j)
n (z), uj(z), yj(t), αj , βj , and

γj , respectively, as the values hn(z), u(z), y(t), α, β, γ referred to component
j. Note that the hypotheses above guarantee 0 < βj < 1 and 0 < γj , for both
j = 1, 2). We also define H(x, y) as the matrix-valued function given by

H(x, y) =

+∞∑
n=0

(Ax+B)nyn =

[
H(1)(x, y) 0

0 H(2)(x, y)

]
, where

H(1)(x, y) =
Adj (I − (A1x+B1)y)

Det (I − (A1x+B1)y)
, H(2)(x, y) =

Adj (I − (A2x+B2)y)

Det (I − (A2x+B2)y)
(12)

Thus, the generating function of {hn(z)}n satisfies the identities

∞∑
n=0

hn(z)yn = ξ′H(ez, y)η = ξ′1H
(1)(ez, y)η1 + ξ′2H

(2)(ez, y)η2 (13)

and, for every z ∈ C and every t ∈ R, we have

hn(z) = h(1)n (z) + h(2)n (z) Ψn(it) =
h
(1)
n (it) + h

(2)
n (it)

hn(0)
(14)

3.1 Dominant sum models

First, let us consider the dominant case. Assume λ1 > λ2 and let M1 be aperiodic
(and hence primitive). For sake of brevity, we say that {Yn} is defined in a
dominant sum model with λ1 > λ2. In this case we have 0 < β1 < 1, 0 < γ1,
and it is known that Yn−β1n√

γ1n
converges in distribution to a normal r.v. of mean

value 0 and variance 1 [7]. Here we show that a Gaussian local limit law holds
true at the cost of assuming to be aperiodic only the pair (A1, B1).

Theorem 1. Let {Yn} be defined in a dominant sum model with λ1 > λ2 and
assume (A1, B1) aperiodic. Then, as n tends to +∞, the relation∣∣∣∣∣∣√nPr (Yn = k) − e−

(k−β1n)2

2γ1n

√
2πγ1

∣∣∣∣∣∣ = O
(
n−1/2

)



holds true uniformly for every k ∈ {0, 1, . . . , n}.
Proof. First, to simplify the notation set β = β1 and γ = γ1 (only in this proof).
Then, the main idea is to study the characteristic function Ψn(t) for t ∈ [−π, π]
by splitting this interval into three sets:

[−n−q, n−q] , {t ∈ R : n−q < |t| ≤ c} , {t ∈ R : c < |t| ≤ π} , (15)

where c ∈ (0, π) is a constant satisfying relations (9) for both y1(t) and y2(t),
and q is an arbitrary value such that 1

3 < q < 1
2 . The behaviour of Ψn(t) in these

sets is characterized by the following properties:
a. for some ε ∈ (0, 1) we have

|Ψn(t)| = O(εn) ∀ t ∈ R : c < |t| ≤ π (16)

b.
|Ψn(t)| = O

(
e−

γ
4 n

1−2q
)

∀ t ∈ R : n−q < |t| ≤ c (17)

c. ∫
|t|≤n−q

∣∣∣Ψn(t)− e−
γ
2 t

2n+iβtn
∣∣∣ dt = O(n−1) (18)

Proof of (16). Note that, by relations (12) and (13), for every t ∈ R the singular-
ities of the generating function ξ′H(eit, y)η =

∑∞
n=0 hn(it)yn are the inverses of

the eigenvalues of A1e
it+B1 and A2e

it+B2. Since c < |t| ≤ π, the first ones are
in modulus smaller than λ1 by the aperiodicity of (A1, B1) and property (11),
while the second ones are in modulus smaller or equal to λ2 as a consequence
of Perron-Frobenius Theorem for irreducible matrices [16, Ex. 1.9]. Thus, since
λ1 > λ2, for some positive τ < λ1 we have |hn(it)| = O(τn) for all real t such
that c < |t| ≤ π. By the same reason it is clear that hn(0) = Θ(λn1 ), and hence

for some ε ∈ (0, 1) we have |Ψn(t)| =
∣∣∣hn(it)hn(0)

∣∣∣ = O(τn)
Θ(λn1 )

= O(εn), as required.

Proof of (17). By relation (7), there exists ρ ∈ (0, λ1) such that, for some ε ∈
(0, 1),

Ψn(t) =
hn(it)

hn(0)
=
r1(it)λn1y1(t)n +O(ρn)

r1(0)λn1 +O(ρn)
= [1 +O(t)]y1(t)n +O(εn) (19)

for all t ∈ R satisfying |t| ≤ c. Also, by inequality (9), we know that |y1(t)|n ≤
e−

γ
4 t

2n whenever |t| ≤ c. Thus, the result follows by replacing this bound in the
previous equation and recalling that n−q ≤ |t| ≤ c.
Proof of (18). From equality (19), applying relation (10) and recalling that
nO(t3) = o(1) for |t| ≤ n−q, we get

Ψn(t) = (1 +O(t) + nO(t3))e−
γ
2 t

2n+iβtn +O(εn) ∀ t ∈ R : |t| ≤ n−q

Then, by a direct computation we obtain∫
|t|≤n−q

∣∣∣Ψn(t)− e−
γ
2 t

2n+iβtn
∣∣∣ dt =

∫
|t|≤n−q

|O(t) + nO(t3)| e−
γ
2 t

2ndt+O(εn)

= O

([
− e

− γ
2
t2n

γn

]n−q

0

+ n

[
− e

− γ
2
t2n

γn
(t2 + 2

γn
)

]n−q

0

)
+O(εn) = O

(
n−1

)



Going back to our main goal, recall that the probability pn(k) = Pr {Yn = k} can
be obtained from the inversion formula (1) and, to evaluate the integral therein,
we can split [−π, π] into the three sets defined in (15). Then, by equalities (16)
and (17), for some ε ∈ (0, 1) we obtain

pn(k) =
1

2π

∫
|t|≤n−q

Ψn(t)e−itkdt+O
(
e−

γ
4 n

1−2q
)

+O(εn) (20)

Moreover, by relation (18), defining the variable v(= vk,n) = k−βn√
γn , we have∫

|t|≤n−q
Ψn(t)e−itkdt =

∫
|t|≤n−q

e−
γ
2 t

2n+iβtne−itkdt+O(n−1)

=

∫
|t|≤n−q

e−
γ
2 t

2n−itv√γndt+O(n−1) (21)

Now, setting t
√
γn = x, the last integral becomes∫

|t|≤n−q
e−

γ
2 t

2n−itv√γndt =
1
√
γn

∫
|x|≤n

1
2
−q√γ

e−ivx−
x2

2 dx

= 1√
γn

[∫ +∞
−∞ e−ivx−

x2

2 dx−
∫
|x|>n

1
2
−q√

γ
e−ivx−

x2

2 dx

]
= 1√

γn

[√
2π e−

v2

2 +O

(∫ +∞
√
γn

1
2
−q xe

− x
2

2 dx

)]
= (γn)−1/2

(√
2π e−

v2

2 +O(e−
γ
2 n

1−2q

)
)

(22)

Thus the result follows by replacing (22) in (21) and (21) in (20). �

4 Equipotent sum models

Now, let us study the local limit properties of our statistics for non-communi-
cating bicomponent models in the equipotent case. More precisely, let {Yn} be
defined by a linear representation (ξ, A,B, η) satisfying the above conditions 1,
2, 3. Assume λ1 = λ2 = λ and let both matrices M1, M2 be aperiodic (and hence
primitive). Under these hypotheses we say that {Yn} is defined in an equipotent
sum model. The limit distribution of {Yn} in this case is studied in [7] and
depends on the parameters α1, α2, β1, β2, γ1, γ2. Here we extend those results
to local limit properties, with a convergence rate O(n−1/2), under the further
assumption that both pairs (A1, B1) and (A2, B2) are aperiodic. To this end we
first determine some identities for function hn(z) in the present case, using the
notation introduced in Section 2.

From the properties of primitive matrices [16] it is easy to see that

hn(0) = ξ′Mnη = ξ′1ν1ζ
′
1η1 · λn + ξ′2ν2ζ

′
2η2 · λn +O(ρn)

= (α1 + α2)λn +O(ρn) 0 ≤ ρ < λ



where αj ’s, for j = 1, 2, are defined in (8). Also note that αj = rj(0) for each j.
Using these facts function Ψn(t) can be evaluated from (14).

Here we obtain a local limit law of a type depending on the parameters α1,
α2, β1, β2, γ1, γ2. In particular, if β1 = β2 or γ1 = γ2 we again obtain a local limit
law of Gaussian type, similar to Theorem 1 (independent of α1, α2). Otherwise
we get a convex combination of two Gaussian distribution.

Theorem 2. Let {Yn} be defined in an equipotent sum model and assume that
both pairs (A1, B1), (A2, B2) are aperiodic. Then, as n tends to +∞, the relation∣∣∣∣∣∣√nPr (Yn = k) −

 α1

α1 + α2

e−
(k−β1n)2

2γ1n

√
2πγ1

+
α2

α1 + α2

e−
(k−β2n)2

2γ2n

√
2πγ2

∣∣∣∣∣∣ = O
(
n−1/2

)
holds true uniformly for every k ∈ {0, 1, . . . , n}.

Proof. Again the main idea is to study the characteristic function Ψn(t) for
t ∈ [−π, π] by splitting this interval into the three sets given in (15), where
c ∈ (0, π) is a constant satisfying relations (9) for both y1(t) and y2(t), and q is
an arbitrary value such that 1

3 < q < 1
2 . The behaviour of Ψn(t) in these sets is

characterized by the following properties:
d. For some ε ∈ (0, 1) we have

|Ψn(t)| = O(εn) ∀ t ∈ R : c < |t| ≤ π (23)

e. There exists a > 0 such that

|Ψn(t)| = O
(
e−an

1−2q
)

∀ t ∈ R : n−q < |t| ≤ c (24)

f.
∫
|t|≤n−q

∣∣∣Ψn(t)− α1
α1+α2

e−
γ1
2
t2n+iβ1tn − α2

α1+α2
e−

γ2
2
t2n+iβ2tn

∣∣∣ dt = O(n−1)

(25)
Proof of (23). The reasoning is similar to proving relation (16). The only differ-
ence is that now also the eigenvalues of A2e

it +B2 are smaller than λ = λ2, and
this actually simplifies the argument.

Proof of (24). By relation (7), for some ε ∈ (0, 1) and all t ∈ R satisfying |t| ≤ c,
we have

Ψn(t) =
hn(it)

hn(0)
=
r1(it)u1(it)n + r2(t)u2(it)n

(r1(0) + r2(0))λn
+ O(εn) =

∑
j=1,2

cjyj(t)
n + O(εn)

(26)
where c1 and c2 are positive constants. Also, setting a = min{γ1/4, γ2/4}, by

inequality (9) recalling n−q ≤ |t| ≤ c we obtain |yj(t)|n ≤ e−an
1−2q

, for each
j = 1, 2. Thus, the result follows by replacing this bound in the previous relation.

Proof of (25). From equality (26), applying relation (10) and recalling that
nO(t3) = o(1) for |t| ≤ n−q, in the same interval for t we get

Ψn(t) =
∑
j=1,2

rj(0) +O(t)

r1(0) + r2(0)
(1 + nO(t3))e−

γj
2 t

2n+iβjtn +O(εn)



Thus, since rj(0) = αj for each j, reasoning as in the proof of (18) we obtain∫
|t|≤n−q

∣∣∣∣∣∣Ψn(t)−
∑
j=1,2

αj
α1 + α2

e−
γj
2 t

2n+iβjtn

∣∣∣∣∣∣ dt =

=
∑
j=1,2

∫
|t|≤n−q

|O(t) + nO(t3)| e−
γj
2 t

2ndt+O(εn) = O
(
n−1

)
(27)

Now consider our main goal. Defining pn(k) = Pr {Yn = k}, from the inversion
formula (1), by relations (23), (24) and (25), we obtain

pn(k) =
1

2π

∫
|t|≤n−q

Ψn(t)e−itkdt+O
(
e−an

1−2q
)

+O(εn)

=
1

2π

∑
j=1,2

αj
α1 + α2

∫
|t|≤n−q

e−
γj
2 t

2n+iβjtn−itkdt+O(n−1) (28)

Moreover, defining the variables vj =
k−βjn√
γjn

, for j = 1, 2, the last integrals can

be evaluated as in (21) and (22), obtaining∫
|t|≤n−q

e−
γj
2 t

2n+iβjtn−itkdt =
1
√
γjn

(√
2π e−

v2j
2 +O(e−

γj
2 n

1−2q

)

)
which replaced in (28) yields the result. �

We observe at once that if β1 = β2 and γ1 = γ2 then the limit density given
in Theorem 2 reduces to a Gaussian law. Then, we can state the following

Corollary 3. Let {Yn} be defined in an equipotent sum model with β1 = β2 = β,
γ1 = γ2 = γ and assume aperiodic both pairs (A1, B1), (A2, B2). Then, as n
tends to +∞, the relation∣∣∣∣∣∣√nPr (Yn = k) − e−

(k−βn)2

2γn

√
2πγ

∣∣∣∣∣∣ = O
(
n−1/2

)
holds true uniformly for every k ∈ {0, 1, . . . , n}.

On the contrary, when β1 6= β2 or γ1 6= γ2 the previous result yields a local
limit law toward a convex combination of two Gaussian distributions that differ
by their mean value or by their variance. More precisely, in this case the limit
distribution obtained by Theorem 2 is that one of a r.v. L of the form

L = [β1Bp + β2(1− Bp)]n+ [BpN0,γ1 + (1− Bp)N0,γ2 ]
√
n

where Bp is a Bernoullian r.v. of parameter p = α1

α1+α2
, and N0,γj is a Gaussian

r.v. of mean 0 and variance γj , assuming mutually independent all variables Bp,
N0,γ1 , N0,γ2 . In particular it is clear from the analysis of Ψn(t) that

Yn − [β1Bp + β2(1− Bp)]n√
n

tends in distribution to [BpN0,γ1 + (1− Bp)N0,γ2 ]



A curious fact in this case is that L also depends on the weights of initial and
final states (ξ, η). This does not occur in any other bicomponent model and
seems to state that the model is not ergodic.

As an example, consider the rational model defined by the weighted finite au-
tomaton of Figure 1, together with ξ = (1, 0, 1, 0) and η = (0, 1, 1, 1). Such an au-
tomaton recognizes the set {w ∈ {a, b}∗ | w has not pattern aa or pattern bb }.
Clearly this is a bicomponent model, with both pairs (A1, B1) and (A2, B2)
aperiodic. Moreover M1 = M2, while A1 6= A2. Hence the two components are
equipotent and β1 6= β2. This implies a local limit law towards a convex com-
bination of two Gaussian laws. Note that simple changes may modify the limit

distribution: for instance, setting to 2 the weight of transition 2
b→ 1 makes

dominant the first component, implying a Gaussian local limit law (Theorem 1).

����
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Fig. 1. Weighted finite automaton defining a non-communicating bicomponent model
with λ1 = λ2 = 2, α1 = 2/3, α2 = 4/3, β1 = 1/3, β2 = 2/3, γ1 = γ2 = 2/27.

5 Conclusions

The analysis of local limit laws of symbol statistics Yn’s presented in this work
concerns the rational stochastic models consisting of two primitive components
without communications. An analogous study has been presented in [10] for the
case when there is some transition from the first to second component.

It is interesting to discuss similarities and differences between the results
obtained in the two cases. Note that in both cases a dominant component implies
a Gaussian local limit law, with a convergence rate O(n−1/2), at the cost of
adding an aperiodicity condition only for the main component. The same occurs
in the equipotent models when both parameters of mean value and variance
for the two components are equal (β1 = β2, γ1 = γ2). On the contrary, if one
of the parameters is different then here we obtain a limit distribution of the
form L given above, while in [10] a uniform r.v. or a continuous mixture of
Gaussian laws are obtained according to whether β1 6= β2 or β1 = β2, γ1 6= γ2.
Another difference is that in [10] no limit distribution depends on the weights of
initial and final states. Intuitively those models are “ergodic”. On the contrary
in the present work L depends on ξ and η and hence the model is not “ergodic”.
Studying reasons and further consequences of these differences seems to be a
natural goal for future investigations.
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