
Formalizing
Program Equivalences in Dependent Type Theory

Giorgio Marabelli1 and Alberto Momigliano2?

1 Dipartimento di
Matematica, Università degli Studi di Milano, giorgio.marabellli@studenti.unimi.it

2 Dipartimento di Informatica, Università degli Studi di Milano
momigliano@di.unimi.it

Abstract. This brief note summarizes our formalization in a dependently
typed setting of the meta-theory of several notions of program equivalences
in higher-order functional programming languages.

1 Introduction

The equivalence of given programs is an important problem, especially in higher-order
programming languages. If we manage to prove that two phrases behave “in the
same manner” under every context — known as Morris-style contextual/observational
equivalence [22] — then we can exchange them preserving the behavior of the whole
programs. Examples abound in compilers optimization [12], interchangeability of
ADT [16] and extend to more intensional properties than behavioral equivalence such
as security [21].

Contextual equivalence is an appealing notion: it is easily shown to be a congruence,
and this supports equational reasoning via rewriting and Leibniz equality. However,
the quantification over all contexts makes a direct proof of the equivalence of two
code fragments quite hard. Therefore, other more manageable notions of equivalence
have emerged: a successful proposal coming from concurrency theory is (applicative)
bisimilarity [22]: two programsm and n are bisimilar if wheneverm evaluates to a value,
so does n, and (roughly) all the subprograms of the resulting values are also bisimilar,
and vice versa. While it is not immediate that bisimilarity is a congruence [11], it
may offer modular and incremental ways to address programs equivalence.

This topic has become a sort of benchmark for researchers interested in mech-
anizing with proof assistants not only the equivalence of concrete programs, but
more in general the meta-theory of program equivalences, see the formalizations
in [19,17,15,3,18] to name just a few. This is challenging as the logical framework
(and associated proof assistant) with which we wish to carry out the formalization
needs to support several features that are not easily found together:

– a way to represent syntax with binders, which are ubiquitous in higher order
languages such as ones based on the λ-calculus: in fact, the representation ought

? Copyright @ 2019 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0). Partially funded by the
INdAM-GNCS project 2018 “Metodi di prova orientati al ragionamento automatico per
logiche non-classiche”.

to be abstract enough so that mundane tasks such as α-equivalence or lookup
in a context of assumptions do not overwhelm the development, while, at the
same time it must not preclude dealing correctly with exotic syntactical entities
such as non-capture avoiding contexts;

– tools for general inductive and more crucially coinductive reasoning;
– a logic powerful enough to formulate a general theory of (dependent) relations

making the development modular and economic.

It is fair to say that none of the research so far has managed to exploit all of
the above. In this note, we revisit and significantly extend the approach in [19],
namely the proof that (applicative) similarity is a precongruence following Howe’s
method [23]. Rather than using a specialized proof assistant such as Beluga (http:
//complogic.cs.mcgill.ca/beluga/), which supports higher-order abstract syntax
as a representation technique, but is restricted (so far) to essentially a first order fixed-
point logic, we choose to carry out our development in the fully dependently-typed
higher-order logic of Coq (https://coq.inria.fr). Thanks to Coq’s impredicativity,
we can approach our topic abstractly via Lassen’s theory of relational reasoning [14].
This has two immediate benefits: for one, we can easily change our choice of observ-
ables, that is of what we consider the result of evaluating a program, and therefore
of observational equivalence, and retain essentially the same proof of congruence
for the correspond notion of bisimilarity. Secondly, we go much further than [19] by
characterizing contextual equivalence both in terms of concrete well-typed contexts
as in [17] and in the “context-less” way advocated by Gordon [10]. We close the
circle by showing that the three equivalences (contextual, context-less and similarity)
coincide, giving us the leisure to use one or the other at our convenience.

2 Formalizing program equivalences

Syntax First, we fix our model of a higher-order programming language in the guise
of a simply-typed λ-calculus with recursion and lazy lists over the unit type (for
simplicity), known as PCFL [22]:

Ty τ ::= >|τ→τ |τ list
Exp m ::= x | lamx.p |m1 m2 |fix x. m |〈〉|nil |cons m1 m2 | lcase m of {nil⇒n |cons h t⇒p}

Selecting a faithful and effective representation for the syntax of an object language
is crucial for a successful development. While there are many choices compatible with
Coq (to wit [6,7] and see [8] for a critical discussion), we use well-scoped and well-typed
DeBruijn terms [2] to encode expressions as the following inductive definition.

Inductive Exp (E:Env) : Ty →Type :=
| VAR : ∀ t, Var E t →Exp E t

| LAM : ∀ t1 t2, Exp (t1 :: E) t2 →Exp E (ARR t1 t2)
| APP : ∀ t1 t2, Exp E (ARR t1 t2) →Exp E t1→Exp E t2...

In the above snippet of Coq code, for which we assume a passing familiarity, the type
family Exp represents intrinsically-typed PCFL expressions of type t over a type environ-
ment E. In particular, a variable VAR is an expression for which there is proof Var E t

that the nameless variable represented by the position of t belongs to E. We define

http://complogic.cs.mcgill.ca/beluga/
http://complogic.cs.mcgill.ca/beluga/
https://coq.inria.fr

lazy evaluation as a type-preserving inductive relation between closed expressions
(programs). We show the clause for application, where STmExp {| e2 |} e denotes
the substitution in e of e2 for the nameless variable bound in Lam e, that is e[e2/x]:

Inductive Ev: ∀ t, Exp [] t →Exp [] t →Prop :=
| EvAPP : ∀ t1 t2 e v (e1 : Exp [] (ARR t1 t2)) e2,

Ev e1 (LAM e) →Ev (STmExp {| e2 |} e) v →Ev (APP e1 e2) v

Relations The idea of type-preserving relations is so pervasive that we are lead to the
development of a general theory of dependent relations: while the Coq library defines
relation (A : Type) := A→A→Prop, we require A to depend on arbitrary indexes:

Definition Relations {E1 E2 : Type} (A:E1→E2→Type) :=
∀ (e1 : E1) (e2 : E2), A e1 e2 →A e1 e2 →Prop.

Consider relations over expressions ExpRelations := Relations Exp: the E1,E2 in-
dexes are fixed to Env,Ty: in GrndRelations, we restrict to programs and we will also
talk about substitutive relations Relations Sub, which are dependent on substitutions,
namely, functions from Var E t to Exp E’ t. In fact, substitutive relations mediate
between properties defined over programs, but which must be extended to open
expressions, given the presence of variable binding constructors such as functions etc.

We develop a point-free algebra of dependent intrinsically-typed relations under
composition (CompRel below), identity and inverse, from which we obtain the usual
formulation of an equivalence relation.

Definition CompRel {E1 E2} {A:E1 →E2→Type} (R R’:Relations A) : Relations A :=
fun e1 e2 e f ⇒∃ g, R e1 e2 e g ∧ R’ e1 e2 g f.

Any reasonable program equivalence needs to be a congruence. A congruence is
any ExpRelation that is symmetric, transitive and compatible, i.e., it respects the
constructors of PCFL. Following Gordon [10], we define contextual equivalence as
the greatest compatible and adequate relation, where a relation is adequate if the
related terms either both diverge or converge to some value. Depending on the type
at which we observe convergence, at any type or at certain ground types, we vary
the coarseness of the equivalence, which in the latter case is called observational.

Similarity and Howe’s method As we have mentioned, the above equivalences are hard
to use in practice and we turn to applicative (bi)similarity. From now on, we discuss
only similarity (and pre-orders), since equivalences can be achieved by symmetrization.
In the presence of non-termination, the standard way to make sense of the circular
definition of similarity (here shown for the function case) is coinductively:

CoInductive aSim : GrndRelations :=
| aSimARR : ∀ s t (e f:Exp [] (ARR s t)), (∀ e’, Ev e (LAM e’) →
∃ f’, Ev f (LAM f’) ∧ ∀ g, aSim (STmExp {|g|} e’) (STmExp {|g|} f’)) →aSim e f

Next, we extend it to open similarity (OaSim) via grounding substitutions. We do
that abstractly as an operation R◦ to lift ground relations, which, to increase read-
ability, we describe in mathematical (rather than Coq’s) notation: E `mR◦τm′ iff
[γ]mRτ [γ]m′, for any grounding substitution ·`γ :E, that is substitutions that take
open expressions over E to programs.

While it is easy to show that (open) similarity is a pre-order, substitutivity,
the stepping stone towards pre-congruence, does not hold. Howe’s idea [11] was to
introduce a candidate relation that contains open similarity and can be shown with
relative ease to be a substitutive pre-congruence. Then one proves that it entails open
similarity. Our proof follows quite closely the structure laid out in [19], with the obvious
difference that the former is carried out in Beluga writing proof-terms manually, while
this one relies on Coq’s tactics. The biggest improvement, however, is that we can follow
Howe’s original account, by which the candidate relation does not refine only open
similarity, but any pre-order which is also closed under substitution (CuS). Thanks to
Coq’s type classes [24], we can encode Howe’s relation as a type preserving inductive
family parameterized over any CuS pre-order — again, we show only a couple of cases:

Inductive Howe R ‘{CuS_Preorder R} : ∀ E t, Exp E t →Exp E t →Prop :=
| HVAR : ∀ E t (v:Var E t) e, R E t (VAR v) e →Howe (VAR v) e

| HLAM : ∀ E t1 t2 (e f:Exp (t1:: E) t2) g,
Howe e f →R E (ARR t1 t2) (LAM f) g →Howe (LAM e) g

Thus, Howe’s properties leading to pre-congruence are proven once and for all, e.g.,

Lemma Howe_comp_subs: ∀(R : ExpRelations) (H : CuS_Preorder R),
Compatible Howe ∧Substitutive Howe.

and can be recycled once we instantiate R to any flavor of similarity that happens
to be a CuS pre-order. In our case-study, beside applicative, we have also studied
the coarser notion of ground similarity [22], which differs in the function case:

CoInductive gSim : GrndRelations :=
| gSimARR : ∀ (s t : Ty)(e f : Exp [] (ARR s t)),

(∀ a : Exp [] s, gSim (APP e a) (APP f a)) →gSim e f

We follow the applicative path for exposition sake, the other being very similar modulo
the function case. Once we have shown that the Howe’s relation mimics the simulation
conditions and it is downward closed w.r.t. evaluation, both rather labor-intensive lem-
mas, we can show the relational equality (notation <:>) of open similarity and Howe’s:

Theorem aHowe_is_OaSim : aHowe <:> OaSim.

and have our main objective:

Corollary OaSim_precongruence : Precongruence OaSim.

Implementing the contextual pre-order If we want to use similarity in lieu of the contex-
tual pre-order when proving programs equivalent, we need to show that they coincide.
Recall that a PCFL’s context C is an expression with a hole ◦, which can be thought
as a logic variable inside the expression tree; filling a hole with a program m, denoted
C{m}, substitutes m for the hole, possibly capturing some of the free variables of m.
We say thatm and n are contextually equivalent iff for every closing C, C{m} converges
iff C{n} does. Again, we distinguish between applicative and observational contextual
equivalence depending on the type at which we observe convergence (reflected in the
definition of adequacy). The above definition is reputed to be “unpleasantly concrete”
([23]) and the literature [10] has suggested to use a “context-less” representation,
namely as the largest compatible and adequate open relation. We have implemented

CA ⊆ Observational CA
‖ ‖

Applicative Contextual Pre-order ⊆ Observational Contextual Pre-order
‖ ‖

Applicative Similarity ⊆ Ground Similarity

Fig. 1. Equivalences and their relations.

both (context-less and context-full) and showed their equivalence, but here we report
only the former, which is novel. Gordon’s definition translates immediately in:

Definition CA : ExpRelations := fun E t e f ⇒
∃ R, Compatible R ∧OPreAdequate R ∧R E t e f.

This definition makes sense since we can show that CA is not empty. Then, while it is
immediate that similarity is in CA (via Howe’s result), the converse is more complicated.
We have to show that the (ground restriction of) CA is a simulation, that is we have to
reason by coinduction. On paper, this is straightforward thanks to previous lemmas,
but a formal proof runs afoul of Coq’s infamous guardedness check. Coq in fact imple-
ments a limited form of coinduction via guarded induction, realized by a very restrictive
syntactic check that essentially prevents to apply any lemma inside a coinductive
argument — curiously, Howe’s proof did not violate it, suggesting that it is not a good
benchmark for coinduction. A way out is offered by parameterized coinduction [13]
(PACO), which replaces guarded induction with support for reasoning directly with
greatest fixed points. To avoid starting from scratch, we show the coincidence of the
coinductive and the PACO version of similarity and transfer all relevant lemmas from
the former to the latter, a trick suggested in [9]. With this in place we (eventually) have:

Corollary CA_is_OaSim : CA <:> OaSim.

We summarize the relationships among equivalences in Fig. 1.

3 Conclusions

Our full development consists of around 110 theorems and 70 definitions for circa
2300 lines of code including sparse comments; the sources can be downloaded at
http://momigliano.di.unimi.it/FPEDT. Although originated from a M.S. thesis,
with both of the authors being Coq novices, we managed to go a little farther than
the state of the art. We do not have the space for an exhaustive comparison, but the
closest competitor is [17], which does not use Howe’s method but context lemmas.

As future work, we plan to extend our object language to a version of PCFL with
arbitrary algebraic data types, by viewing object types coinductively, as suggested
in [1]. We conjecture that our general algebraic setting should make this extension easy
to accomplish. Another short-term goal is writing some tactics to make more automatic
the verification of equivalence of concrete programs such as the ones listed in [22].
Finally, it would be interesting to see whether the complimentary phase of validation of
specifications via property-based testing, see e.g., [20,4,5], is applicable in this context.

http://momigliano.di.unimi.it/FPEDT

References

1. A. Abel and A. Vezzosi. A formalized proof of strong normalization for guarded
recursive types. In APLAS, volume 8858 of LNCS, pages 140–158. Springer, 2014.

2. N. Benton, C. Hur, A. Kennedy, and C. McBride. Strongly typed term representations
in Coq. J. Autom. Reasoning, 49(2):141–159, 2012.

3. K. Chaudhuri, M. Cimini, and D. Miller. A lightweight formalization of the metatheory
of bisimulation-up-to. In CPP, pages 157–166. ACM, 2015.

4. J. Cheney and A. Momigliano. αcheck: A mechanized metatheory model checker.
TPLP, 17(3):311–352, 2017.

5. J. Cheney, A. Momigliano, and M. Pessina. Advances in property-based testing for
αprolog. In TAP, volume 9762 of LNCS, pages 37–56. Springer, 2016.

6. A. Ciaffaglione and I. Scagnetto. Mechanizing type environments in weak HOAS.
Theor. Comput. Sci., 606:57–78, 2015.

7. A. P. Felty and A. Momigliano. Hybrid: A definitional two-level approach to reasoning
with higher-order abstract syntax. Journal of Automated Reasoning, 48(1):43–105, 2012.

8. A. P. Felty, A. Momigliano, and B. Pientka. The next 700 challenge problems for
reasoning with higher-order abstract syntax representations - part 2 - A survey. J.
Autom. Reasoning, 55(4):307–372, 2015.

9. E. Giménez. Codifying guarded definitions with recursive schemes. In TYPES, volume
996 of Lecture Notes in Computer Science, pages 39–59. Springer, 1994.

10. A. D. Gordon. Bisimilarity as a theory of functional programming. Theor. Comput.
Sci., 228(1-2):5–47, 1999.

11. D. J. Howe. Proving congruence of bisimulation in functional programming languages.
Information and Computation, 124(2):103–112, 1996.

12. C.-K. Hur and D. Dreyer. A Kripke logical relation between ML and assembly. In
POPL ’11, pages 133–146, NY, USA, 2011. ACM.

13. C.-K. Hur, G. Neis, D. Dreyer, and V. Vafeiadis. The power of parameterization in
coinductive proof. In POPL ’13, pages 193–206, NY, USA, 2013. ACM.

14. S. B. Lassen. Relational Reasoning about Functions and Nondeterminism. PhD thesis,
Dept of Computer Science, Univ of Aarhus, 1998.

15. S. Lenglet and A. Schmitt. Hoπ in Coq. In J. Andronick and A. P. Felty, editors, CPP
2018, pages 252–265. ACM, 2018.

16. J. Matthews and A. Ahmed. Parametric polymorphism through run-time sealing or, the-
orems for low, low prices! In ESOP, volume 4960 of LNCS, pages 16–31. Springer, 2008.

17. C. McLaughlin, J. McKinna, and I. Stark. Triangulating context lemmas. In
J. Andronick and A. P. Felty, editors, CPP 2018, pages 102–114. ACM, 2018.

18. A. Momigliano. A supposedly fun thing I may have to do again: A HOAS encoding
of Howe’s method. In LFMTP’12, pages 33–42. ACM, 2012.

19. A. Momigliano, B. Pientka, and D. Thibodeau. A case study in programming
coinductive proofs: Howe’s method. MSCS, in press, 2018.

20. Z. Paraskevopoulou, C. Hritcu, M. Dénès, L. Lampropoulos, and B. C. Pierce.
Foundational property-based testing. In ITP, volume 9236 of Lecture Notes in
Computer Science, pages 325–343. Springer, 2015.

21. M. Patrignani, A. Ahmed, and D. Clarke. Formal approaches to secure compilation.
ACM Comput. Surv., 51(6):125:1–125:36, Feb. 2019.

22. A. M. Pitts. Operationally Based Theories of Program Equivalence. In P. Dybjer and
A. M. Pitts, editors, Semantics and Logics of Computation, 1997.

23. A. M. Pitts. Howe’s method for higher-order languages. In D. Sangiorgi and J. Rutten,
editors, Advanced Topics in Bisimulation and Coinduction, volume 52, chapter 5, pages
197–232. Cambridge University Press, Nov. 2011.

24. M. Sozeau and N. Oury. First-class type classes. In TPHOLs, volume 5170 of LNCS,
pages 278–293. Springer, 2008.

	Formalizing Program Equivalences in Dependent Type Theory

