CEUR-WS.org/Vol-2508/paper—jan.pdf

Dynamic Testing of Executable UML Models with
Sequence Diagrams

TAMAS JANOSI, KRISZTIAN MOZSI, PETER BERECZKY, DAVID J. NEMETH and
TIBOR GREGORICS, E6tvios Lorand University

Executable UML makes it possible to define high-level models of software systems, which then can be inspected independently
of the target platform or translated to efficient platform-specific code. This not only provides early validation, but enables
modeling to even be considered an additional layer of abstraction over programs written in a general-purpose language. In both
cases, reasoning about the properties of constructed models plays an important role in the development process.

To advance this area, in our paper we propose a framework supporting the definition and evaluation of sequence diagram-based
test cases for executable UML models. As part of this, we introduce a textual language capable of describing assertions about the
communication in and between, and the state of, system components. We also discuss a test evaluation strategy characterized
by the idea of executing sequence diagrams and models alternately, and show how arising challenges like synchronization or
the quantification of possible divergence can be tackled. Finally, we illustrate the feasibility of our approach by presenting our
prototype implementation, embedded into an open-source xUML modeling toolchain.

1. INTRODUCTION

As software systems gradually grow both in size and complexity, their design, development and mainte-
nance become increasingly difficult tasks. Although modern general-purpose programming languages
offer a rather high level of abstraction, the structure and behavior of large-scale architectures can still
be hard to manage in conventional source code. One way to address this issue is the use of UML [Ob-
ject Management Group 2017], a language which enables us to model several aspects of a system in
the form of high-level diagrams. With the help of dedicated tooling, appropriately defined, potentially
platform-independent models can also be executed directly or translated to runnable platform-specific
representations. This is the essence of executable UML (xUML) modeling [Mellor and Balcer 2002] —
a method for early functional validation, or even a paradigm for developing software on a higher layer
of abstraction.

Whichever aim of xXUML we consider, the ability to reason about properties of constructed models
is of great importance. Static analysis is an emerging possibility, however, in this paper we focus on
monitoring the runtime behavior by dynamic testing. To realize this, one could observe the interpreted
model or the generated platform-specific code in a black-box fashion. Yet we argue that formulating
test cases as part of, and on the same layer with, defined models has the advantage of keeping the
specification and implementation coupled together closely enough for simplified comparison and main-

This research has been supported by the European Union, co-financed by the European Social Fund (EFOP-3.6.3-VEKOP-16-
2017-00002, Integrated Program for Training a New Generation of Scientists in the Fields of Computer Science).

Author’s address: Eétvos Lorand University, Faculty of Informatics, Pazmany Péter sétany 1/C., Budapest, H-1117, Hungary.
Email: {yaki96,mozsik,berpeti,ndj,gt}@inf.elte.hu. ORCID: 0000-0002-0080-8689, 0000-0002-6165-1865, 0000-0003-3183-0712,
0000-0002-1503-812X, 0000-0002-9503-9623.

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 Interna-
tional (CC BY 4.0).

In: Z. Budimac and B. Koteska (eds.): Proceedings of the SQAMIA 2019: 8th Workshop on Software Quality, Analysis, Mon-
itoring, Improvement, and Applications, Ohrid, North Macedonia, 22—-25. September 2019. Also published online by CEUR
Workshop Proceedings (http://ceur-ws.org, ISSN 1613-0073)

7:2 . Tamas Janosi et al.

tenance. Inspecting the feature set of UML, sequence diagrams appear to be a suitable candidate for
expressing expected interaction in and between components. Regarding the evaluation of described
test cases, we optimize for traceability and interactivity. To achieve these goals, our solution executes
sequence diagrams directly and in parallel with models under test. Building upon these ideas, in the
following we propose a framework supporting the definition and evaluation of sequence diagram-based
test cases for executable UML models.

The main contributions of this paper are the following:

—a textual language for defining sequence diagram-based test cases for executable UML models,

—a methodology for evaluating these tests by executing sequence diagrams and inspected models
synchronously,

—a prototype implementation of the proposed framework embedded into an open-source xUML mod-
eling toolchain.

The rest of the paper is structured in the following way. As introduction, Section 2 summarizes re-
lated work. In Section 3 we present general decision concerns of the proposed framework, including the
main ideas behind the testing language and its intended evaluation strategy. The latter are discussed
in detail in Section 4 and Section 5, respectively. Section 6 introduces our prototype implementation,
demonstrating the feasibility of our approach. Finally, Section 7 briefly evaluates our results and Sec-
tion 8 concludes.

2. RELATED WORK

Model-based testing (MBT) [Utting et al. 2012] builds upon the idea that test cases can be generated
automatically from abstract, simplified representations of the system under test, which encode its
intended behavior. When the system to be tested is a UML model itself, for example interaction dia-
grams can be seen as the higher-level specification descriptions MBT promotes. This approach helps
keep the system and its test cases close, however, the abstractional difference between tested systems
and generated test cases makes traceability challenging.

Executable UML models can also be evaluated by manually examining their behavior during direct
execution, a method called model debugging. Two xXUML modeling tools providing this feature are
BridgePoint [One Fact 2012] and txtUML [Dévai et al. 2018], where the latter even offers a visual
debugger which highlights transitions in state machines during execution. One great disadvantage of
this approach is that instead of automatically evaluating predefined test cases, the model has to be
actively monitored while it is running.

In conclusion regarding xXUML testing, currently we have to choose between well-defined test cases
(MBT) and interactive traceability (model debugging). A new approach would be desirable to combine
the advantages of the two discussed methods. In the following we show how this can be achieved with
executable sequence diagrams.

3. METHODOLOGY

Our approach is to create executable sequence diagrams to test existing models written with an xXUML
tool. In this way, users could test their programs by expressing message interactions during a specific
execution. This could eliminate the need for writing test programs, because the sequence diagrams
themselves would serve as test cases. The level of abstraction of these test cases would be the same as
of the models’.

Dynamic Testing of Executable UML Models with Sequence Diagrams e 73

3.1 Abstractions required to construct meaningful test cases

To achieve the abovementioned goal, a textual domain-specific language is needed to provide a way to
define and execute sequence diagrams. In this language, there should be a language element which
makes it possible to create the lifelines of the given diagram. Each lifeline will represent a model
element. As we also want to draw sequence diagrams from the written format, we need to provide a
way for users to manipulate the drawn position of the lifelines inside the textual notation.

Before executing the sequence diagram, some initializing steps are needed. Model elements have
to be created and users have to define explicitly which model element is represented by each lifeline.
This means that each sequence diagram needs an initializing part, which will be performed before we
execute the sequence diagram itself.

During the execution, we want to be capable of investigating message exchanges and state asser-
tions. Users should be able to define the order of sent messages during an execution with the sources
and the targets of the messages. Combined fragments from the UML standard can be used in the
sequence diagrams too, and messages can be defined in these fragments.

State assertions are not part of the UML standard, but as our model elements in an executable UML
tool are state machines, we wanted to provide a way to check the state of a given model element at a
given point of the execution.

3.2 Advantages of making the test description language textual

Textual descriptions have numerous advantages over graphical approaches [Gronniger et al. 2007].
In a graphical solution, models are usually persisted in a format that is hard or impossible to edit
directly. Experience shows that the existing tools still need to evolve a lot. Furthermore, while graphi-
cal notations help understand software more than textual representations, editing graphics is usually
less productive than editing text. At the same time, many high-quality text editors with editing and
search-related features, as well as merge and compare tools exist, which can help the user during the
development process. Moreover, graphical diagrams can be generated easily from textual descriptions
to visualize the defined diagram.

3.3 Evaluating test cases

To test a model with sequence diagrams, we have to execute both the model and the diagram. To be
able to test a model based on message exchanges, the execution strategy of the host xXUML tool has
to be message-driven. When running a sequence diagram, a given model will be executed. Each time
a message exchange happens in the executed model, we have to check whether it is equal to the next
exchange in the sequence diagram. Two exchanges are said to be equal if their sources and targets are
respectively the same and their included messages are equal as well.

4. THE TEST DESCRIPTION LANGUAGE

As it was mentioned earlier, to create sequence diagrams the language has to provide a way to declare
the lifelines of the diagram. This can be achieved with the following syntax:

lifeline <identifier> <positive number>

The positive number is an optional part of the declaration. It defines the order of the lifelines on
the diagram generated from the textual description — therefore positions will be ignored during the
execution.

7:4 . Tamas Janosi et al.

There should be an initialization part too, where model elements can be created and linked with the
lifelines. While the syntax of the model element creation is based on the host xXUML tool, connecting
the elements with the lifelines should look like the following:

<lifeline> = createLifeline(<model element instance>)

The lifeline will represent the given model element instance during the execution.

After the initialization, the execution itself can be described. Message exchange expectations have
two different syntaxes, because we differentiate messages between model elements and between an
actor and a model element.

assertSend(<lifeline>, <message>, <lifeline>)
fromActor (<message>, <lifeline>)

In the first case we have to define the source, the message and the target. In the second case the mes-
sage comes from an actor, so the source does not have to be specified. If a message exchange happens
during the model execution, we try to match the source, the message and the target with the currently
expected message in the diagram.

State assertions can also be made with the help of a lifeline and a state as parameters.

assertState(<lifeline>, <state>)

If the sequence diagram execution starts with state assertions, the parameter model element in-
stances have to be in the given states before the execution. Whereas if a state assertion is placed after
an expected message exchange, the model element has to be in the given state after the exchange
happens.

Sequence diagrams may also contain combined fragments. Currently, our language supports only
the loop, opt, alt and par fragments from the UML standard. The loop, opt and alt fragments can
be defined with conventional loop and conditional statements, and they can contain further message
exchange expectations, state assertions and combined fragments. The par combined fragment can be
used with the following language element to express parallel execution of child sequence diagrams.

par(<sequence diagram>+)

By using the language defined above, not all models could be tested. Model element instances should
be observable from outside the model, as their references are needed to connect them with lifelines.
This is not always feasible, since some references may only be accessible from inside the model. Our
idea is to introduce dummy objects, called proxies to substitute such instances. Proxies can be thought
of as special lifelines, as they behave quite similar. The language is extended with proxy creation,
where the only information needed for this is the type of the object to be substituted.

<proxy> = createProxy(<type of model element>)

4.1 Example diagram

Let us demonstrate our language with an example model. The model has two elements: the factory
and the customer. If a customer gets an Order message from the actor, it orders from the factory by
sending it a DoOrder message. If the factory gets a DoOrder message and the number of orders reached
a limit, it starts working until it fulfils all orders. It has a counter which indicates the number of the
active orders. Every time an order is ready, it sends an OrderReady message to the customer who gave
the order. This model can be tested for example with the following sequence diagram.

Dynamic Testing of Executable UML Models with Sequence Diagrams

seqdiag factorySequenceDiagram {
lifeline factory 1;

lifeline customerl 2;
lifeline customer2 3;
lifeline customer3 4;

b

initialize {

run

Factory f = createFactory(3);

Customer c1 = createCustomer();
Customer c2 = createCustomer();
Customer c3 = createCustomer();

factory = createLifeline(f);

customer1 = createLifeline(c1);
customer2 = createLifeline(c2);
customer3 = createlLifeline(c3);

{

assertState(factory, WaitingForOrder);
fromActor(Order, customer?)
assertSend(customer1, DoOrder, factory);
fromActor(Order, customer2)
assertSend(customer2, DoOrder, factory);
fromActor(Order, customer3)
assertSend(customer3, DoOrder, factory);
assertState(factory, Working);
assertSend(factory, OrderReady, customerl);
assertSend(factory, OrderReady, customer2);
assertSend(factory, OrderReady, customer3);

Fig. 1. Example textual sequence diagram describing a test case for a producer-consumer model

factory customerl customer2 | | customer3

DoOrder |
T

DoOrder

A

DoOrder

OrderReady

Y

OrderReady

i
i
|
|
i
|
1
|
i
T
i
|
|
i
|
i
|
I o
| -~
L

| OrderReady _,
I%-I

factory customerl customer2 customer3

75

Fig. 2. Graphical sequence diagram corresponding to the textual example (generated with PlantUML [Arnaud Roques 2009])

7:6 . Tamas Janosi et al.

5. EVALUATION STRATEGY

One of the problems which have to be solved to create executable sequence diagrams is synchroniza-
tion. When running a sequence diagram, we have to execute the model which is under test, and the
sequence diagram which tests the given model. The reason behind this is that we want to be able to
check the state of model elements for state assertions and guards of the interaction operators. This
can be achieved either by saving the states of the model elements after every message exchange dur-
ing the model execution; or by stopping the execution of the model at certain points to run a part of the
sequence diagram. The latter is much more efficient if we have a complex model and a long execution,
so we chose this solution.

5.1 Synchronization

The execution of a sequence diagram must start with initializing the needed elements, as it was de-
scribed in Section 3.1. After that, we have to execute the main part of the diagram, which describes
the expected exchanges, until we arrive at a message exchange. If the exchange is between an actor
and a model element, the message has to be sent before we can check if the exchange happened during
the model execution. At this point, we have to stop the execution of the sequence diagram and start
executing the model. This is because the model has to run to send messages which we can test in our
sequence diagram. Here is where the most difficult question regarding synchronization arose. When
do we stop the execution of the model and continue executing the sequence diagram?

We came to the conclusion that we have two options. The model execution can be stopped after
a message is sent — which we call sending semantics — or after a message is processed — which we
call processing semantics. Both solutions has its advantages and disadvantages. Synchronizing after
message sending is probably more intuitive, but this way we can only check if the given message was
sent — we do not know whether it was processed or not. This is problematic because if a message
is sent during the execution, most of the time we want that message to be processed by the target.
Furthermore, with this solution if we want to write a condition in the sequence diagram which checks
the number of the orders in our previous example, we have to know whether the counter is increased
before or after an OrderReady message was sent by the factory. If the order of events changes here, the
sequence diagram has to be altered too.

Synchronizing after processing a signal is not so intuitive, and writing conditions can be tricky. The
condition has to reflect to the state after the signal was processed. On the other hand, if the behavior
of our model does not change, the sequence diagram does not need to be altered either, as opposed to
the previously discussed solution. Last but not least, if we synchronize after processing a signal, the
message processing can also be checked in addition to the sending, which is a huge advantage.

We concluded that stopping the model execution after processing a message has more significant
advantages than synchronizing after message sending. Therefore, this is our chosen solution for the
described synchronization problem.

5.2 Error counting

Counting errors during the execution is not a trivial problem either. Diagrams can be executed with
lenient and strict execution mode and both of them require a different error counting logic. Lenient
execution mode means that a test passes if there is a subsequence of the actual exchanges which
matches the diagram. Additional messages can be sent, and they are not counted as an error. The test
fails only if there is at least one message exchange in the diagram which did not happen during the
execution, or there is a state assertion which is not correct. In strict execution mode the test passes
only if the diagram describes exactly the same exchanges that happened during the model execution.

Dynamic Testing of Executable UML Models with Sequence Diagrams o 77

In lenient mode the error counting problem is simple. We have to execute the model, and when
a message exchanges happens, we check the next exchange in our diagram. If the two exchanges
are not equal, we keep checking the same exchange from the diagram after every message in the
model execution, until we get a match. Then we can continue to execute the rest of the diagram. After
the execution terminates, every expected message exchange which did not happen during the model
execution is an error.

In strict execution mode counting errors is more complicated. If an actual exchange is not equal to
the next exchange in the diagram, should we proceed with the sequence diagram execution — which we
call continuous semantics —; or keep trying to match the missed message exchange from our diagram
until it occurs in the model — which we call recurrent semantics.

First consider continuous semantics. If we encounter a mismatching pair of expected and actual
message exchanges, but after that all remaining exchanges match, only one error will be shown. This
is desirable. However, if we only miss (and not mismatch) a message exchange from our test case, and
we proceed with the execution, every remaining exchange processed during the execution will raise a
new error. Here, it would be more intuitive to report only one.

Now consider recurrent semantics. If the only problem is that actual exchanges were left out of the
diagram, the number of reported errors will be the same as the number of missed messages. This is an
advantage compared to the other possible solution. However, in cases where the diagram contains an
exchange which does not occur in the model, we will keep trying to check the same expected exchange
until the model execution terminates. With this semantics there is also another open question: should
we count errors individually or group them between matching exchanges? In the first case it can hap-
pen that we have a diagram with one expected message exchange and we get for example twenty errors
after the execution, which may be considered unexpected.

This problem is still under discussion, as the most suitable solution seems to be different for ev-
ery diagram and model. Currently, we use recurrent semantics and we raise a new error for every
mismatch. This may change in the future.

5.3 Proxy objects

Introducing the concept of proxies brings additional questions about the execution. First, in some cases
during test execution it is not trivial to determine which proxy substitutes which instance. Another
question is, what are the similarities and differences between concrete and proxy objects, as it would
be desirable to handle them as similarly as possible. Limitations and effects should be considered as
well.

As proxy objects and concrete model objects are considerably similar, let us generalize and call them
lifelines. The only difference between them is that in case of model objects, it is known initially which
instance is denoted, while with proxies only the type of the object is known. Therefore proxies do not
specify a concrete instance when they are created.

To determine the concrete instance denoted by a proxy, the concept of binding should be introduced.
Binding can only happen during message comparison, thus it should be defined how to introduce prox-
ies into the existing comparison method of expected and actual communication. Proxies without con-
crete meaning may be encountered as senders or targets of expected messages. If both sender and
target is an unbound proxy, furthermore types of these proxies match with the types of the actual
objects, binding happens for both sender and target. If only one proxy is bound and the types are
matching, one binding happens. Otherwise expected and actual exchanges are not matching. If both
participants are bound proxies, the original matching method is appropriate, as they behave similarly
to concrete objects. Note that message sending assertions with unbound proxy participants not only

7:8 . Tamas Janosi et al.

assert communication, but a binding might also happen in the background. This concept is hidden
from the sequence diagram code.

Let us consider corner cases. If a proxy is created to substitute an object that can be referenced
from sequence diagram code, the proxy behaves as an alias after it is bound to the object. Two or more
distinct proxy objects can be bound to the same concrete object as well. In this case, similarly to the
previous one, the concrete object will be accessible via multiple different proxies.

6. PROTOTYPE IMPLEMENTATION

We created an implementation of our language in the txtUML tool. It is an open-source textual, exe-
cutable and translatable UML tool, implemented in Java. We chose txtUML as the host of our prototype
because it is open-source; fulfils the criteria of message driven execution; and its model executor was
created in a way that only minor changes are needed to implement the synchronization of two executor
threads. The latter makes the technical part of integrating the capability to execute sequence diagrams
into the tool relatively easy. Furthermore, unlike in most xXUML tools, users can create models in a tex-
tual representation instead of a graphical one. This fits into our concept that sequence diagrams should
be defined in text because of the advantages mentioned in Section 3.2.

public class FactorySequenceDiagram extends SequenceDiagram {
@Position(1) Lifeline<Factory> factory;
@Position(2) Lifeline<Customer> customeri;
/...

@Override

public void initialize() {
Factory f = Action.create(Factory.class, 3);
Customer c1 = Action.create(Customer.class);
/...

factory = Sequence.createlLifeline(f);
customer1 = Sequence.createLifeline(c1);
/] ...

}

@Override

@ExecutionMode (ExecMode.STRICT)

public void run() {
assertState(factory, Factory.WaitingForOrder.class);
fromActor(new Order(), customer?)
assertSend(customer1, new DoOrder(), factory);
fromActor(new Order(), customer2)
assertSend(customer2, new DoOrder(), factory);
fromActor(new Order(), customer3);
/...

Fig. 3. The previous example diagram embedded in Java (excerpt)

Dynamic Testing of Executable UML Models with Sequence Diagrams e 79

6.1 Embedding the language in Java

Our sequence diagram language prototype is capable of executing and testing txtUML models. As
both txtUML and its domain-specific modeling language are embedded in Java, we also created the
sequence diagram language in this way. Users can define their own sequence diagrams by extending
the provided SequenceDiagram class. To specify expected message exchanges, state assertions and par
fragments, they can use the static methods of the Sequence API.

Lifelines can be declared as attributes of the diagram. Their position on the visualized diagram can
be specified with the ePosition annotation. The initialization and the execution part can be described
in the initialize and the run methods of the diagram, respectively. The execution type (strict or lenient)
can be defined with the @ExecutionMode annotation on the run method.

6.2 Synchronized execution

Diagrams can be executed with an executor (SequenceDiagramExecutor) which runs the model and the
sequence diagram on two different threads in a synchronized way. The synchronization is implemented
with a BlockingQueue which contains the current message in the sequence diagram. After the model
processes a signal, we pop the current message from the queue, and the model execution waits until a
message is placed into it. The queue contains a message only if the sequence diagram thread is waiting
or terminated, indicating that the model executor thread can continue its execution.

6.3 Error counting

First consider the lenient execution mode. If an expected message in the diagram differs from the
actual message processed in the model, we keep trying to match subsequent actual messages with
the same expected message until the two are equal or the model execution stops. At the end, missed
expectations are stored as errors in a list. If the execution mode is strict, an additional error is recorded
each time an expected and an actual message differs. After the execution is finished, the executor
provides the list with the errors which were found during testing.

7. EVALUATION

txtUML comes with demo projects. We created tests for these projects with the help of our sequence di-
agram implementation. One of the demos is a producer-consumer model, which is excellent for demon-
strating the usage of the par combined fragment. Another demo project implements the model of a
train with a gearbox: every time a gear is shifted, the train goes into a different state. Here we were
able to write a test case with a lot of useful state assertions.

One of the demo projects contains model instances which cannot be accessed from outside the model.
This project provided a good opportunity to demonstrate the usefulness of proxy objects: here we were
able to create much more meaningful test cases than it would have been possible without proxies.

8. CONCLUSION

In this paper we proposed a novel approach to test XUML models with sequence diagrams. We aimed
for the goal of providing a framework which offers model tests that are convenient to write, run, trace
and maintain. We presented our methodology consisting of a textual test description language and an
evaluation strategy that executes sequence diagrams and models under test synchronously.
Considering the possible realizations of interaction-based testing, we derived abstractions suitable
for constructing meaningful test cases. We mainly built these elements upon the UML specification
but we also extended it with state assertions and proxy objects. We argued why it is desirable to design
the language as text-based and then intuitively defined its syntax with representative code examples.

7:10 o Tamas Janosi et al.

As for test evaluation, we elaborated two alternatives depending on whether synchronization hap-
pens at sending or at processing signals. We showed that the latter has more advantages, which can be
considered the informal semantics of our language. We also discussed possible ways to quantify diver-
gence between actual and expected communication in the form of continuous and recurrent semantics.
Regarding assertions concerning objects that are not directly accessible in a test case, we presented a
binding strategy to realize the previously introduced concept of proxies.

Finally, we demonstrated the feasibility of our approach by elaborating details from our prototype
implementation that is integrated into an xUML modeling tool. We presented how the designed lan-
guage can be embedded in Java using custom classes and annotations; how alternating execution can
be realized with standard synchronization features; and how we implemented the formerly discussed
error counting methods.

By publishing our framework and its open-source prototype [ELTE-Soft 2019], we intend to make a
useful contribution not only for the modeling community, but also for large-scale software development
in general.

REFERENCES

Arnaud Roques. 2009. PlantUML. http:/plantuml.com/. (2009).

Gergely Dévai, Tibor Gregorics, Boldizsar Németh, Balazs Gregorics, David Janos Németh, Gabor Ferenc Kovacs, Zoltan Gera,
Andréas Dobreff, and M4até Karacsony. 2018. Novel Architecture for Executable UML Tooling. In Proceedings of the 11th Joint
Conference on Mathematics and Computer Science (MaCS), Eger, Hungary, May 20-22, 2016. CEUR-WS.org, online CEUR-
WS.org/Vol-2046/devai-et-al.pdf, January 11, 2018.

ELTE-Soft. 2019. txtUML GitHub Repository. https:/github.com/ELTE-Soft/txtUML. (2019).

Hans Gronniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven Vélkel. 2007. Text-based Modeling. In Pro-
ceedings of the 4th International Workshop on Software Language Engineering (ateM 2007), Nashville, TN, USA, October
2007.

Stephen J. Mellor and Marc Balcer. 2002. Executable UML: A Foundation for Model-Driven Architectures. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

Object Management Group. 2017. Unified Modeling Language (UML), standard, version 2.5.1. https:/www.omg.org/spec/UML/
2.5.1/PDF. (2017).

One Fact. 2012. xtUML — eXecutable Translatable UML with BridgePoint. https:/xtuml.org/. (2012).

Mark Utting, Alexander Pretschner, and Bruno Legeard. 2012. A Taxonomy of Model-based Testing Approaches. Softw. Test.
Verif. Reliab. 22, 5 (Aug. 2012), 297-312. DOI:http://dx.doi.org/10.1002/stvr.456

