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Abstract. To perform the analysis of a structural model of a software
system (like a class diagram), it is often necessary to compute sample
valid instantiations (like object diagrams), for example, for testing pur-
poses. Classifying terms (CTs) provide a technique for improving diver-
sity in the instantiation generation process.

CTs have been proposed and studied in the context of UML class di-
agrams annotated with OCL invariants. Nevertheless, they can also be
employed in other declarative specification languages. This paper ex-
plores the feasibility of using CTs in the context of Alloy. The discussion
considers both the Alloy notation and the integration with the Alloy
Analyzer.

Keywords: Software Modeling - Verification and Validation - Testing -
Classifying term - OCL - Alloy.

1 Introduction

Models in software engineering are frequently used to describe the conceptual
schema of a software system, e.g., a UML class diagram in object-oriented de-
velopment or an Entity-Relationship schema in database design. At this level of
abstraction, one defines the concepts that establish the model, the information
that is recorded for each concept, the relationships among the concepts, and the
integrity constraints that establish what is required or forbidden in our model.
From a quality perspective, a fundamental problem about a conceptual schema
is satisfiability: finding an instantiation (like an object diagram) populating the
concepts, data and relationships that fulfills all integrity constraints in the model.
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Model finders, the tools in charge for finding such valid instantiations, use a va-
riety of techniques: SAT, SMT or constraint solving, theorem proving, search
based methods and others have been applied. One of their major concerns is ef-
ficiency in finding instantiations. Nevertheless, the output of a model finder can
be used for validation (instantiations as (counter-)examples) but also for testing
purposes (instantiations as test cases). Hence, it is necessary for outputs of the
model finder to be diverse, that is, to represent a wide range of scenarios and sit-
uations. Otherwise, the outputs of the model finder may fail to include relevant
corner cases and mask quality issues that may appear later in the development
process.

The premise of this paper is a technique for improving the diversity of model
finders: classifying terms (CTs) [8]. This approach relies on the software designer
to provide a list of expressions that can help us detect if there are meaningful
differences between two instantiations. Then, CTs can guide the model finding
process to catch a set of solutions that are diverse by construction. This method
has been used successfully in the context of UML class diagrams annotated with
integrity constraints written in the Object Constraint Language (OCL). In this
setting, support for classifying terms has been implemented in the tool USE
(UML-based Specification Environment) [7]. Nevertheless, there is no support
for applying classifying terms in other modeling notations.

Hence, this paper studies the feasibility of using classifying terms in a popular
notation for the verification of declarative specifications: Alloy [9]. In addition
to describing how CTs can be used in Alloy, we will discuss the benefits and
limitations of the language and the toolkit from the point of view of CTs. For
instance, a shortcoming of the Alloy textual notation is the lack of support for
querying solutions provided by the model finder: query expressions on a solution
can only be evaluated interactively through the Alloy GUI or programmatically
by calling the Alloy API.

The remainder of the paper is structured as follows. Section 2 describes the
running example used throughout the paper. Then, Sect. 3 presents classifying
terms and how they are used in the USE tool in the context of UML and OCL.
Section 4 describes how to apply classifying terms in Alloy. After that, Sect. 5
presents related work on diversity in Alloy. Finally, Sect. 6 concludes the paper
and discusses future lines of work.

2 Running example

2.1 UML and OCL model

As a running example, we will use a simple UML class diagram describing the
relationship between parents and children in a family tree. This class diagram is
presented in Fig. 1, depicted utilizing the USE modeling environment.

This class diagram focuses around a single class (Person), that stores the
first name (fName), last name (1Name) and year of birth (yearB) of a person in a
family. A relationship (Parenthood) links parents and their offspring, with each
person having at most two parents and an unlimited number of children.
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Fig. 1. Class diagram used as our running example.

Moreover, this model also includes integrity constraints describing three well-
formedness rules that families in this model should fulfill: the combination of first
and last name should be unique (nameUnique); a person cannot be her or his
own ancestor (acyclicParenthood); and all parents should be at least 15 years
older than their children (parent0lderChild). These integrity constraints can
be described as invariants in OCL as follows:

context pl,p2:Person inv nameUnique:
pl<>p2 implies (pl.fName<>p2.fName or pl.lName<>p2.lName)

context p:Person inv acyclicParenthood:
p.parent—>closure(p | p.parent)—>excludes(p)

context p:Person inv parentOlderChild:
p.child—>forAll(c | p.yearB+15 <= c.yearB)

For applying classifying terms in that model, the mentioned model elements
are enough. For explaining the CT approach in USE and for comparing it with
Alloy, the class diagram also includes another class (CTDashboard), several query
operations (w2c0OP, w2p0P, wGpOP) and an invariant (attributes_EQ_operations).
These elements will be used to illustrate classifying terms and they will be dis-
cussed in Section 3.

2.2 Alloy model

The running example can also be described using the Alloy textual notation. In
Alloy, the notion of “class” is described as a signature (sig). Signatures may have
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fields of a given type, either a basic type like String or Int, a set or a relation.
Well-formedness constraints that should always hold are called facts (fact). The
proposed encoding adds all attributes and association ends as fields of signature
Person. Notice that two constraints that were implicit in the UML notation
must be stated explicitly: the multiplicity of the association end parent and the
fact that the association end parent is the inverse of association end child.

-- Class "Person"
sig Person {
-- Attributes
fName: String,
1Name: String,
yearB: Int,
-- Relationship "Parenthood"
parent: set Person,
child: set Person
}
-- Multiplicity of role parent
fact multiplicityParent {
all p: Person | #(p.parent) <= 2
}

-- Parent is the inverse of child
fact parentChildRelated {

all p: Person | p.child = p. parent
}

Besides this description of the structure of the class diagram, the original
OCL invariants can also be encoded in Alloy using additional fact constraints:

-- Invariant uniqueName
fact uniqueName {
all pl, p2: Person | pl != p2 implies (
(pl.fName != p2.fName) or (pl.lName != p2.1Name))

}

-- Invariant acyclicParenthood
fact acyclicParenthood {
no p: Person | p in p.” parent
}
-- Invariant parentOlderChild
fact parentOlderChild ({
all p: Person | all c: p.child | p.yearB + 15 <= c.yearB
}

There are many potential ways to model our running UML and OCL example.
In this paper, we will consider the encoding presented in this Section to illustrate
the proposed approach.

3 Classifying terms

Classifying terms are boolean or integer expressions that describe relevant prop-
erties about instantiations of a model. The goal is defining classifying terms in
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such a way that instantiations with different values for the CT expressions will
be diverse. That is, they have a characteristic structure or exhibit distinct prop-
erties that are considered significant from the point of view of the domain. Such
classifying terms are proposed by the designer using domain knowledge.

For example, in our running example we may be interested in considering
family trees with the following properties: (a) at least three levels of depth (a
grandparent, a parent and a child) are present (with grandparent: wGp); (b) a
parent with two children is present (with 2 children: w2c); (c¢) a child with two
parents is present (with 2 parent: w2p). To this end we define three named
boolean expressions that check each of these conditions and use them as clas-
sifying terms. The expressions do not have any free variables, i.e., classifying
terms are closed OCL expressions of type boolean or integer. The examples that
we have chosen show classifying terms with existential quantification, and thus
suggest that sort of patterns are formulated. We emphasize that CTs can be gen-
eral terms in which also universal quantification may occur, so not only required
patterns may be specified.

wGp
Person.allInstances—>exists(g,p,c |
g.child—>includes(p) and p.child—>includes(c))
w2c
Person.alllnstances—>exists(p | p.child—>size=2)
w2p
Person.alllnstances—>exists(p | p.parent—>size=2)

Considering our running example, we will show how the CTs can be used
to compute a set of diverse instantiations with USE. Given that USE employs
the model finder Kodkod that performs bounded verification, it is necessary to
define the bounds of the search space that will be used for verification. The USE
model validator, the component in USE responsible for generating instantiations,
is called with additionally providing a so-called configuration that specifies the
search space and defines lower and upper bounds for the number of objects in a
class, the number of links in an association and possible attribute values:

Person: 1..3

Parenthood: 1..3

Person:: fName: Set{'Ada','Bob','Cyd'}
Person::1Name: Set{'Alewife', 'Baker','Cook'}
Person::yearB: Set{15,30,45,60,75,90}

As shown in Fig. 2, the USE model validator finds five instantiations, i.e.,
object diagrams, that satisfy the model under the stated configuration. One ob-
serves that the five instantiations show different shapes. In technical terms, each
two instantiations show at least one classifying term that is evaluated differently
in the two instantiations.

For better explaining and handling classifying terms in Alloy, we have slightly
extended the above sketched USE model with a (singleton) class CTDashboard
and add the classifying terms to our model as operations: wGpOP, w2p0P and
w2c0P. However, for simply applying classifying terms CTDashboard is not needed.
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Fig. 2. Instantiations found for the CTs in our running example.

We also define in the class CTDashboard one boolean attribute per classifying
term. An auxiliary invariant attributes_EQ_operations, which was not part
of the original model, forces the value of these attributes to be equal to the result
of the corresponding operations that evaluate the classifying term on the current
instantiation. The class CTDashboard, the operations for the classifying terms
and the invariant attributes_EQ_operations are defined as follows:

class CTDashboard --
attributes --
wGpAT: Boolean --
w2cAT: Boolean --
w2pAT: Boolean --
operations
wGpOP () :

Boolean

singleton
AT attribute

- OP operation
with grandparent

with 2 children

with 2 parents

Person.allinstantiations—>exists(g,p,c |
g.child—>includes(p) and p.child—>includes(c))

w2cOP () : Boolean =
w2p0P () : Boolean =
end
constraints

context CTDashboard inv attributes_EQ_operations:
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1 function findDiverselInstantiations(model, invariants, (CT,...,CTy,))
input : A model constrained by invariants; CTh, ..., CT,: Classifying
Terms
output: A set of diverse instantiations of model that satisfy invariants
solutions <+ (;
while instantiation of model satisfying invariants exists do
instantiation <— findValidInstantiation (model, invariants);
solutions < solutions U instantiation;
(v1,...,vn) < evaluate (instantiation, (CT1,...,CTy));
newlnvariant < =(CT1 = v1 A ... ACTy = vn);
invariants < invariants U newlnvariant;

© N0 s N

return solutions

Algorithm 1: Generating diverse instantiations using classifying terms.

wGpAT=wGpOP () and w2cAT=w2cOP () and w2pAT—=w2pOP ()

When there are several classifying terms, we are interested in the interactions
among them. Our goal will be finding instantiations that have different combina-
tions of values for the classifying terms. For example, with n boolean classifying
terms we would be interested in finding up to 2™ instantiations, each for each
combination of values. Nevertheless, some combinations may be impossible as
they cause a contradiction among themselves or with the invariants in the model.
Again, deciding the suitable number and structure of classifying terms is up to
the designer.

Once we have defined the set of classifying terms, they can be used in order
to generate diverse instantiations. Algorithm 1 describes this iterative process,
which runs internally in USE and invokes the model finder in each iteration to
find a valid instantiation (line 4). Then, each classifying term is evaluated in
the new instantiation (line 6) and a new auxiliary constraint is defined (line 7)
to forbid future instantiations to have the same combination of values for the
classifying term. This new constraint is added as an invariant (line 8) and the
process is repeated until the model finder is unable to find new instantiations
(line 3). In this way, all instantiations computed by the algorithm differ in at
least the value of one classifying term.

Notice that Algorithm 1 is general in the sense that it supports both integer
and boolean classifying terms. For instance, in line 7 the values vy,...,v, for
each classifying term may be boolean or integer. For an integer classifying term
CTy we would write constraints like C'T; = v with an integer value v. For boolean
classifying terms CT;, we may prefer to write CT; and —=CT; for clarity rather
than CT; = true or CT; = false, but the algorithm operates in the same way.

Figure 3 depicts the search space defined in USE for finding instantiations of
our running example in graphical form. The procedure presented in Algorithm 1
can then be applied: by invoking a command called mv -scrollingAl1CT in the
USE shell, that instructs the model finder to find all instantiations considering
a set of CTs provided as a parameter.
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Fig. 3. Search space used for model finding in USE.

The output of this procedure will be a set of diverse instantiations. For exam-
ple, Fig. 2 presents the 5 instantiations computed for the running example using
the 3 classifying terms introduced in this section and the verification bounds pre-
sented in Fig. 3. Notice that out of 8 potential partitions, only 5 include a valid
instantiation. This is due to the maximum bound of 3 objects of class Person
set in the verification bounds. These bounds make it impossible, for example,
to have two (different) parents and two (different) children (so four different
objects) in one solution. However, please be aware of the fact that in solution 4
there is one person with two children and one person with two parents, but there
are only three persons in total.

4 Using classifying terms in Alloy

In the following, we describe a strategy to apply classifying terms in Alloy. Our
goal is providing the same capabilities available in USE in the context of the
Alloy notation and Analyzer. To this end, we need to implement the different
steps in the procedure described in Algorithm 1. In particular, the following
tasks should be supported:

Defining classifying terms.

Finding a valid instantiation.

Evaluating classifying terms on a given instantiation.
Defining a new auxiliary invariant for our model.

Ll e

Defining classifying terms. Alloy allows the definition of predicates (named
boolean expressions with parameters) and functions (named expressions with
parameters). Predicates can be used to define boolean classifying terms while
functions can describe integer classifying terms.
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For example, the three classifying terms in our running example can be de-
fined as the following three Alloy predicates:

pred wGp () {
some g, p, c¢: Person | (c in p.child) and (p in g.child) }

pred w2c() { some p: Person | #(p.child) = 2 }
pred w2p() { some p: Person | #(p.parent) = 2 }

Finding a valid instantiation. Analysis in Alloy is based on commands like
run (find a valid example instantiation of a predicate) or check (find a coun-
terexample of an assertion). Similar to configurations in USE, the command
scope defines the bounds of our search space.

For example, the following command asks the Alloy Analyzer to find a valid
instantiation with at most 3 elements in signature Person, using at most 3
different strings and encoding integers using 8 bits:

pred show() {}
run show for 3 Person, 8 Int, exactly 3 String

Evaluating classifying terms on an instantiation. The Alloy textual no-
tation does not provide any mechanism to access or query the instantiations
computed by the model finder. Nevertheless, the GUI for the Alloy tool offers
an “Evaluator” view within the instantiation viewer where it is possible to eval-
uate expressions, including predicates or functions. Furthermore, it is possible
to evaluate an expression over an instantiation using the Alloy API.

Using the Evaluator view, we can check the predicates on the instantiation
computed by the Alloy Analyzer. Figure 4 shows a sample evaluation, displaying
an instantiation where all three classifying terms evaluate to false (no grandpar-

ent, no parent with two children and no children with two parents).
Defining a new auxiliary invariant for our model. After computing an

instantiation, further instantiations should avoid previously visited combinations
of values for the classifying terms. This means to define a new predicate like the
following one, that forbids having all three classifying terms evaluating to false:

pred forbidFFF () {
not (not wGp|[| and not w2c[] and not w2p|[]) }

This predicate can be included in our analysis by setting a new target pred-
icate for our next Alloy command:

pred cti() { forbidFFF[]| }
run ctl for 3 Person, 8 Int, exactly 3 String

This leads to the new instantiation in Fig. 5 where now the classifying term
w2p evaluates to true: there is a person (Person2) with two parents. We have
taken the freedom to manually modify the Alloy representation of the instanti-
ation for better comprehension and added our view in terms of a UML object
diagram.
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The next iteration would forbid this combination of values (as well as the
previous ones) and continue searching for an instantiation in a similar way. The
process would continue until the Alloy command failed to find a valid instanti-
ation within the defined scope:

pred forbidFFT() { not (not wGp[|] and not w2c[] and w2p[]) }

pred ct2() { forbidFFF || and forbidFFT || }
run ct2 for 3 Person, 8 Int, exactly 3 String

Discussion. The proposed strategy allows the implementation of classifying
terms in Alloy to improve diversity in the set of generated instantiations. As
a result, a set of diverse instantiations of the model is computed. It supports
both boolean or integer classifying terms and it does not require changing the
original conceptual schema, only adding predicates that describe the classifying
terms using the Alloy textual notation. An alternative approach could define a
“dashboard” as in the second part of the USE example. The dashboard allows
to observe the values of the classifying terms in the current solution.

Nevertheless, the Alloy toolkit is designed for running individual analysis:
after running a command, the textual Alloy notation does not support accessing
the computed instantiation or to invoke further commands. These tasks can
either be implemented using the GUI (which requires user intervention) or by
invoking the Alloy API from a Java program.

In our experiment, both the USE Model Validator and Alloy used the Kod-
Kod constraint solver to find relevant instantiations. Given that both tools are
using the same underlying solver, it does not make sense to compare the efficiency
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of both approaches. Also, as the description of the constraint is very similar but
not exactly equal, comparing the size or shape of the resulting instances does
not provide interesting insights.

However, there is one difference between Alloy and USE in their usage of
KodKod: the Alloy language offers limited control of the problem bounds. In
Alloy it is possible to specify an upper bound or an exact value for the population
of each signature in the model or for the values of integers. While it is possible
to constrain signatures and values by defining additional Alloy facts, the solver
does not take advantage of the additional bound information and there may be
a performance overhead. Instead, USE allows the definition of sets of potential
values for attributes and lower and upper domain bounds for class populations.
This makes the definition of the instantiations of interest more usable to the
designer as it is possible to define meaningful values for attributes (e.g., require
the values of attribute name to be in the set “Ada, Bob, Cyd”).

5 Related work

Classifying terms [8] have been proposed in the context of UML class diagrams
annotated with OCL invariants. Support for classifying terms has been imple-
mented in USE (UML-based Specification Environment) [7]. This paper de-
scribes the first attempt to implement classifying terms in Alloy. Relationships
between UML and OCL on the one hand and Alloy on the other hand have also
been studied in [2].

First, we discuss related work on how a user can guide the output of Alloy
for a given command. One way to control the output is by changing the scope
(keyword for) defined in the command, i.e., the number of elements in each
signature or the bit-width of integers, if the specification includes any. The scope
can either be defined as an upper bound (the default behavior) or a specific size
(using the keyword exactly). By adjusting the scope, diverse outputs can be
produced for the same command. Nevertheless, unlike classifying terms, there is
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no systematic way to generate all relevant configurations, and it is not possible
to control the structure of instantiations beyond their size.

Another approach to control Alloy’s output for a given command is changing
the predicate: defining a new predicate that invokes the one used in previous ex-
ecutions and adding additional constraints. This is the approach we have chosen
to implement classifying terms: adding additional predicates in each step that
forbid repeating instantiations belonging to previously visited partitions.

Regarding extensions of Alloy, it is possible to require the output instantia-
tion to be as close as possible to a target instantiation [3] or to some instantiation
of a target model [11]. Changing the target allows us to explore diverse types
of solutions. Furthermore, different criteria can be used to select which target
instantiation should be computed by the solver. For example, minimality aims
to find instantiations where no elements can be removed without violating the
property being checked [12]. In the context of UML/OCL, coverage [15] considers
a predefined catalog of properties for instantiations such as the multiplicity of
association ends in an association or user-defined graph-based properties on the
shape of the instantiation (e.g. being acylic) and attempts to compute diverse
instances with respect to these criteria.

Finally, there are alternatives to classifying terms in order to improve diver-
sity in solvers and model finders. Among them, symmetry breaking [14], random
sampling [1,5,4], abstract graph shapes [13] and distance metrics [6]. However,
a detailed comparison between these methods is out of the scope of this work.

6 Conclusions

In this paper, we have proposed a strategy for applying classifying terms in
Alloy. Classifying terms can be used as a way to control the output of the Alloy
Analyzer and to ensure the diversity of the generated instantiations.

Given a command, our approach works by computing the first output in-
stantiation and then changing the command after each output. In each output
instantiation, we assess the values of each classifying term. Then, we define a
new predicate that adds a new constraint to those existing in the previous run:
the combination of values for the classifying terms obtained by the last command
is now forbidden. This predicate will be used as the goal for the next command,
ensuring that the next instantiation differs in the value of at least one classifying
term from preceding outputs. The process continues until no further (diverse)
outputs can be found.

As future work, we plan to automate this approach and to implement it
in Alloy, so that the overall process of computing an instantiation, evaluating
classifying terms and generating predicates for the next command is performed
automatically. Furthermore, other textual modeling approaches like B or Event-
B [10] could be explored, checking whether the idea of classifying terms can be
applied for them as well.
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