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Abstract. While the traditional philosophical epistemology stresses the
importance of distinguishing knowledge from true beliefs, the formalisa-
tion of this distinction with standard logical means turns out to be prob-
lematic. In Knowledge Representation (KR) as a Computer Science disci-
pline this crucial distinction is largely neglected. A practical consequence
of this neglect is that the existing KR systems store and communicate
knowledge that cannot be verified and justified by users of these systems
without external means. Information obtained from such systems does
not qualify as knowledge in the sense of philosophical epistemology.
Recent advances in the research area at the crossroad of the compu-
tational mathematical logic, formal epistemology and computer science
open new perspectives for an effective computational realisation of jus-
tificatory procedures in KR. After exposing the problem of justification
in logic, epistemology and KR, we sketch a novel framework for rep-
resenting knowledge along with relevant justificatory procedures, which
is based on the Homotopy Type theory (HoTT). This formal framework
supports representation of both propositional knowledge, aka knowledge-
that, and non-propositional knowledge, aka knowledge-how or procedu-
ral knowledge. The default proof-theoretic semantics of HoTT allows for
combining the two sorts of represented knowledge at the formal level
by interpreting all permissible constructions as justification terms (wit-
nesses) of associated propositions.
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1 Concept of Knowledge

1.1 Knowledge according to the Philosophical Epistemology

JTB and Gettier Problem The current philosophical discussion on the con-
cept of knowledge focuses on the so-called JTB theory of knowledge according
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to which knowledge is Justified True Belief. The JTB theory dates back to Plato
and, in modern terms, states that subject S knows that p (where p is a propo-
sition) just in case the following three conditions are satisfied [1]:

1. p is true
2. S believes that p
3. S is justified in believing that p.

Leaving the psychological concept of belief aside of our present analysis we would
like to stress the following features of JTB theory:

– JTB identifies knowledge with knowledge of certain proposition or proposi-
tions; this type of knowledge is conventionally referred to as propositional
knowledge aka knowledge-that.

– JTB assumes that the truth-value of a given proposition is determined wholly
independently of one’s knowledge of this proposition. Such an account of
truth has a long tradition in logic and has been strongly defended, among
other people, by Gottlob Frege. We shall shortly show that this conception
of truth is not commonly accepted in the philosophical logic.

– According to JTB, a true belief, i.e., one’s belief in certain true proposition,
by itself does not constitute knowledge. A missing element is justification.
Assuming that a mathematical proof is a special form of justification, for
a motivating example think of Bob who is able to state the Pythagorean
theorem (provided she understands its meaning and believes it is true) and
Alice who is also able to prove it. In terms of JTB theory Alice knows the
theorem but Bob doesn’t. What is at stake here is not the linguistic meaning
of “know” but the difference between the two sorts of epistemic states, viz.
knowledge and (true) belief (or however one may prefer to call them).

A major part of the mainstream discussion on and about JTB concerns the so-
called Gettier Problems. In 1963 Edmund Gettier published a highly influential
paper [2] where he showed using some linguistic examples that the concept of
justification involved into JTB is very problematic: a subject can be compelled
to belief that p, where p is true proposition, by certain reason r, which she
relates to p by a mere mistake; allegedly such “false reasons” cannot be ruled
out by the JTB theory, so this theory is at best incomplete and at worst wholly
wrong. Without being able to discuss here Gettier-style epistemological problems
systematically we would like to express our general take on this issue: in our
view, the core problem here is that the concept of justification unlike that of
truth is not adequately accounted for by standard logical tools. On the contrary
to a popular opinion it also concerns mathematical proofs. However during last
decades there was a significant progress towards this goal some elements of which
are described in what follows.

Since JTB accounts only for the propositional knowledge certain authors ar-
gue that it doesn’t cover the concept of knowledge in its full extent leaving aside
an irreducibly procedural knowledge aka knowledge-how. We endorse this view
and remark after Ryle [3] that knowing how to make logical inferences and oth-
erwise justify one’s beliefs is (irreducibly) procedural rather than propositional



in its character. Another challenge for JTB comes from the constructive tra-
dition in logic, which tightly relates truth and knowledge by identifying truth
of proposition with the existence of its proof (evidence). From the constructive
point of view the tripartition of knowledge into (i) true proposition, (ii) one’s
belief in this proposition and (iii) justification of this belief is hardly tenable be-
cause here truth of a given proposition requires its justification (proof) in some
form at the first place. Notice that even if this constructive approach is incom-
patible with JTB in its usual form, it shares with JTB the notion according to
which justification is a necessary element of knowledge. In fact the constructive
approach takes justification to be even more important by making it constitutive
for truth and logic itself. M. Cohen and E. Nagel express this view on logic when
they describe its purpose, in full generality, as the “determination of the best
available evidence” 4.

1.2 Knowledge in Computer Science and Information Technology

Knowledge Representation (KR) sometimes also referred to as Knowledge Rep-
resentation and Reasoning is an established discipline in Computer Science and
a devoping information technology. Obviously one should not expect to find in
KR literature a thorough analysis of the knowledge concept, which can be more
appropriate in the philosophical literature. Nevertheless authors of some mono-
graphs and textbooks in KR provide informal descriptions of basic concepts of
the discipline including that of knowledge and reasoning [5],[6],[7]. Remarkably,
none of such descriptions found by us in the CS literature mentions the standard
epistemological condition according to which knowledge needs to be justified.

This observation squares with another one. In 1980-ies the philosophical term
“ontology” began its independent life in CS and since 1995 the latest [8] has been
used systematically as a standard technical term and concept in the KR design
and research. In philosophy the term “ontology” refers to the problematic area of
research and reflection that concerns, to use Aristotle’s famous word, the being
qua being or, in more modern terms, general features of all entities in their mere
capacity of being existent: it includes classifications of entities into different sorts
(e.g., objects, events and their properties) and the like. Ontologies used in KR
are computationally implemented formal semantic frameworks for representing
objects and their mutual relations; knowledge represented in a KR system refers
to these objects and relations as its subject-matter, i.e., to what this knowledge
is “about”.

4 Here is the full quote:

[T]he constant and universal feature of science is its general method, which
consists in the persisting search for truth, constantly asking: Is it so? To what
extent is it so? Why is it so? [. . .] And this can be seen on reflection to be
the demand for the best available evidence, the determination of which we
call logic. Scientific method is thus the persistent application of logic as the
common feature of all reasoned knowledge [4, p. 192]



Despite the fact that KR ontologies lose at some extent their philosophical
origins, the difference between the philosophical and the CS concepts of ontology
is not dramatic. Formal ontology, which is a philosophical ontology developed
with a support of formal logical methods, can be seen as a middle ground that
links the traditional philosophical ontology, on the one hand, and the technical
concept of ontology used in KR, on the other hand.

What is puzzling here in eyes of a philosopher is the following. A philosophi-
cal discipline that covers problems concerning knowledge is called epistemology
but not ontology. Just like ontology epistemology is developed, in part, with a
support of formal methods; this approach is known as formal epistemology. Yet,
the CS discipline that essentially involves the concept of knowledge, viz. KR, for
some reason makes use of ontology but not of epistemology.

We don’t assume here that CS or any other engineering discipline must re-
spect traditional philosophical distinctions when it borrows philosophical terms
and concepts and then modifies them for its own use. However we claim that
the above observations point to a real problem, which has a practical dimension.
The issue of reliability of information available via electronic communications
is widely discussed in special and general literature and since recently is also
recognised as an important social and even political problem [9]. The existing
data verification technologies are designed for serving developers and adminis-
trators of KR systems rather than its regular users, and for this reason don’t
fully address this problem. In order to make a piece of information obtained by
a user of KR system reliable in eyes of this very user (as this is required by
the JTB conception of knowledge and by any other conception that takes the
issue of justification seriously) a supporting evidence needs to be available to
the user herself. We assume here that this evidence also needs to be specific and
not reduce to a general assurance that the given KR system is reliable.

A part of the problem, as we see it, is that the standard logical tools such
as the first-order Classical logic along with its usual philosophical underpinning
leave the epistemic concept of justification aside. The philosophical conceptions
of truth and logical reasoning that underline this notion of logic prioritise onto-
logical aspects with respect to epistemological ones. Correspondingly, theoretical
prototypes of KR systems, which use this standard logical and semantic frame-
work, essentially use ontologies but don’t support the epistemic procedure of
justification. If Sundolm is right that epistemic considerations have been sys-
tematically neglected in the mainstream logical research until very recently [10],
it is a little surprise that they have been also neglected in CS. In the next Section
we elaborate on this point providing more details and then propose a remedy.



2 Model-theoretic and Proof-theoretic Semantics

The standard notion of axiomatic theory that stems from Hilbert assumes that:

– A theory is set T of formulas that are interpreted as true statements; such
interpretations of formulas are called models of the given theory;

– A theory has a subset of formulas A ⊂ T called axioms of the given theory;
– A theory comprises set R of syntactic rules, which, in particular, regulate

derivations of new T -formulas from some given T -formulas. T -derivations
preserve truth in the sense that given any model m of T , they derive from
true sentences only true sentences (soundness). T comprises all formulas
T -derivable from its axioms (deductive closure).

– T -formulas, which are T -derivable from the axioms (other than the axioms)
are called theorems of T . A derivation of theorem from axioms (and by ex-
tension also from some intermediate theorems) is called a proof of a given
theorem. The standard notation for the derivability of theorem B from ax-
ioms A1, . . . , An in theory T is as follows: A1, . . . , An `T B.

This familiar scheme involves at least one epistemic term, namely, “proof”.
However as convincingly, in our view, argues Prawitz the bold identification of
proofs with syntactic derivations is not justified [11]. In order to explain the
argument we need the following formal notion of logical consequence relation
due to Tarski [12]:

Definition 1 T -formula B is called a logical consequence of T -formulas A1, . . . , An,
in symbols A1, . . . , An |=T B just is case every interpretation m that interprets
A1, . . . , An as true sentences also interprets B as true sentence.

Since T is sound (with respect to some fixed class of its interpretations), every
T -theorem B derived from T -axioms A1, . . . , An is a logical consequence of these
axioms. Prima facie this observation justifies the idea that a formal derivation of
B represents its logical inference from T -axioms, which qualifies as its T -proof.
Prawitz argues to the contrary. Even if it is the case that a given syntactic deriva-
tion faithfully represents a truth-preserving logical inference, nothing guarantees
in this setting that the same symbolic representation allows one to see that truth
is preserved. A further problem concerns the specific Hilbertian notion of axiom
and the related Tarskian notion of truth-in-a-model, which has little to do with
the traditional notion of axiom as a self-evident truth. The concept of evidence is
wholly alien to this approach and ruled out as psychological and hence logically
irrelevant. This makes a sharp contrast with the aforementioned Cohen&Nagel’s
conception of logic where the notion of evidence has a central role [4]. What is
an epistemic value, if any, of a formal proof in the above technical sense remains
unclear.

At the same time the above logico-semantic framework can be straightfor-
wardly related to ontology via the following principle known as the truthmaker
realism (TMR):

Given a true statement there exists an entity (or entities) that make(s) this
statement true. [13]



Once one accepts TMR the notion of formal ontology readily suggests itself
as a useful formal semantic tool, which helps one to supplement, and in many
applications even to replace, the talk of models and interpretations by talks
about some familiar entities that a given theory is supposed to account for.
The Tarski-style formal semantics helps to make this ontological talk formal
and rigorous. This is a pragmatic reason to accept some form of TMR and the
notion of formal ontology, which may convince even those people, including KR
developers, who are not interested in traditional philosophical debates about
being and existence. One does not need to explore deep philosophical questions
about being in order to use formal ontologies as semantic tools. This explains
why the notion of formal ontology became useful and popular in the AI research.

However, as we have already stressed, the neglect of epistemic considerations
in the foundations of the above logico-semantic framework and, more specifically,
the lack of satisfactory formal treatment of justification, rises a problem, which
is not only theoretical but also practical. Once the theoretical and practical sig-
nificance of justification is recognised, it becomes clear that the standard logical
and semantical tools are not sufficient for developing theoretical prototypes of
reliable KR systems.

In the philosophical and mathematical logic this epistemological problem is
well recognised and understood by a part of the professional community. There
is presently a number of tentative solutions on the market. A systematic formal
treatment of Justification Logic with explicit justificatory terms is given in the
new monograph by S. Artemov and M. Fitting [14]. A variety of approaches that
attempt to supplement or replace the standard model-theoretic logical semantics
(MTS) outlined above by some version of alternative epistemically relevant se-
mantic is now grouped under the header of proof-theoretic semantics (PTS) [15].
It is remarkable that many versions of PTS are more “computer-friendly”, i.e.,
more apt for computer implementation, than their MTS analogues because they
give semantic values directly to syntactic rules and procedures rather than only
to formulas. A systematic overview of this actively developing area of research
is out of the scope of this paper. In the next Section we only briefly describe a
formal theory that belongs to the PTS family (albeit arguably goes beyond PTS
in some essential aspects) and propose it to the role of novel formal semantic
framework for KR.

3 Homotopy Type theory as KR framework

3.1 MLTT, HoTT and Their Proof-Theoretic Semantics

Homotopy Type theory (HoTT) is a growing family of type theories with depen-
dent types, which are interpreted (more or less formally) in terms of Homotopy
theory, which is a part of Algebraic Topology5. Such homotopical interpretations
of type theories were discovered independently by Steven Awodey and Vladimir

5 The exposition of MLTT/HoTT found in this subsection reuses some materials pub-
lished in [18].



Voevodsky in mid 2000-ies. We consider here the standard HoTT presented in
[17], which uses the syntax of Martin-Löf’s Type theory (MLTT) [16] extended
with the single Univalence Axiom, which is out of the scope of the present dis-
cussion. This version of HoTT preserves the core proof-theoretic semantics of
the original MLTT and extends it with a new homotopy semantics. We analyse
the relationships between the original MLTT semantics and the HoTT semantics
and attempt to make their combination coherent.

MLTT is a rule-based formal system that comprises no axiom. Its basic for-
mulas are called judgements and interpreted accordingly. MLTT comprises four
basic forms of judgements.

(i) A : TY PE;
(ii) A ≡TY PE B;
(iii) a : A;
(iv) a ≡A a′

In words (i) says that A is a type, (ii) that types A and B are the same, (iii)
that a is a term of type A and (iv) that a and a′ are the same term of type A.
We now leave (i) and (ii) aside and provide more details on (iii) and (iv).

Martin-Löf offers four different informal readings of (iii) [16, p. 5]:

1. a is an element of set A
2. a is a proof (construction) of proposition A (“propositions-as-types”)
3. a is a method of fulfilling (realizing) the intention (expectation) A
4. a is a method of solving the problem (doing the task) A (BHK semantics)

The author argues that these interpretations of judgement form (iii) not
only share a logical form but also are closely conceptually related despite of
their different linguistic appearance.

Let us now turn to judgement form (iv). It says that terms a, a′, both of
the same type A, are equal. This equality is called judgemental or definitional
and does not qualify as a proposition; the corresponding propositional equality
writes as a =A a′ and counts as a type on its own (a =A a′ : TY PE) called
an identity type. In accordance to reading (2) of judgement form (iii) a term
of identity type is understood as a proof (also called a witness or evidence) of
the corresponding proposition. MLTT validates the rule according to which a
judgemental equality entails the corresponding propositional equality:

a ≡A a′

refla : a =A a′

where refla is the canonical proof of proposition a =A a′.
The extensional version of MLTT also validates the converse rule called the

equality reflection rule:

p : a =A a′

a ≡A a′



HoTT draws on an intensional version of MLTT that does not use such a
principle and allows for multiple proofs of the same propositional equality.

Let now p, q be two judgmentally different proofs of proposition saying that
two terms of a given type are equal:

p, q : P =T Q

it may be the case that p, q, in their turn, are propositionally equal, and that
there are two judgmentally different proofs p′, q′ of this fact:

p′, q′ : p =P=TQ q

This and similar multi-layer syntactic constructions in MLTT can be con-
tinued unlimitedly. Before the rise of HoTT it was not clear that this syntactic
feature of the intensional MLTT can be significant from a semantic point of
view. However it became the key point of the homotopical interpretation of this
syntax. Under this interpretation

– types and their terms are interpreted, correspondingly, as spaces and their
points;

– identity proofs of form p, q : P =T Q are interpreted as paths between points
P,Q of space T ;

– identity proofs of the second level of form p′, q′ : p =P=TQ q are interpreted
as homotopies between paths p, q;

– all higher identity proofs are interpreted as higher homotopies;

Recall that path p between points P,Q of topological space T is continuous
map p : [0, 1] → T such that p(0) = P and p(1) = Q. Intuitively a path can
be thought of as a trajectory of moving test point where the real interval [0,1]
represents time. In a more abstract presentation the real unit interval [0,1] is
replaced by abstract unit object I. Homotopy h between paths p, q is continuous
map h : [0, 1]2 → T such that h(t, 0) = p(t) and h(t, 1) = q(t); intuitively it
can be thought of as a “path between paths” or a continuous transformation
of path p into path q. Higher homotopies are defined similarly. For a modern
introduction into the basic Homotopy theory see [19].

The homotopical interpretation makes the complex structure of identity types
in the intensional MLTT surveyable and suggests a revision of the original se-
mantics of MLTT by distinguishing between propositional and non-propositional
types on the syntactic level. According to this new point of view not every type
can be interpreted either as a proposition or as a set but each of these two in-
terpretations is admissible only for types of appropriate sorts. More precisely,
consider the following

Definition 2 Space aka homotopy type S is called contractible or space (type)
of h-level (-2) when there is point p : S connected by a path with each point x : A
in such a way that all these paths are homotopic (i.e., there exists a homotopy
between any two such paths).



Definition 3 We say that S is a space of h-level n + 1 if for all its points x, y
path spaces x =S y are of h-level n.

These definitions gives rise to the following stratification of types/spaces in
HoTT by their h-levels:

– h-level (-2): single point pt;
– h-level (-1): the empty space ∅ and the point pt: truth-values aka (mere)

propositions;
– h-level 0: sets aka discrete point spaces: comprise no non-contractible paths;
– h-level 1: flat path groupoids : comprise paths but no non-contractible sur-

faces;
– h-level 2: 2-groupoids : comprise paths and surfaces but no non-contractible

volumes;
– . . .
– h-level ω: ω-groupoids.

Space Sn of h-level n can be transformed into a space [S]k of h-level k < l via
its k-truncation, which can be informally described as a forced identification of all
homotopies (paths) of all levels higher than k. In particular, the (-1)-truncation
[S]−1 of any given space S brings point pt when S is not empty and brings the
empty space ∅ otherwise.

The notion of truncation allows for interpreting type [S]−1 as a proposition
and the original type S as a (h-stratified) space of proofs of this proposition:
[S]−1 is true when it has a proof in S and is false otherwise. Assuming that the
scope of logic restricts to propositional types one can now describe higher types
and their terms as being extra-logical. However the homotopic semantics of the
extra-logical terms still qualifies as proof-theoretic because such terms serve as
proof terms of certain propositions.

3.2 How to use HoTT for KR purposes

If different terms of the same type are not distinguished then HoTT is function-
ing as a constructive propositional logic with explicit proof terms, which in this
case can be also called internalised truth-values. If the (in)equalities of terms
are taken into account only up to the set level (which means that distinctions
between different paths between the same terms, i.e., between “different ways
of being equal”, are ignored) then HoTT functions as a constructive first-order
calculus with internalised (constructive) sets that already provides more informa-
tion about its proof terms. These sets are constructively internalised in the sense
that they are represented here with syntactic constructions available in HoTT
itself rather than introduced with a help of some external meta-theoretical tools
as this is done in case of standard Tarski semantics for the Classical first-order
logic.

This feature alone demonstrates a potential of HoTT as a representational
framework: it supports representation of propositions along with objects that



those propositions are “about”; the same terms can be also described as truth-
makers of their base propositions, their evidences or their proofs. Accordingly,
HoTT represents a propositional knowledge (since the true represented propo-
sitions are evidenced) along with an associated procedural knowledge, viz., the
knowledge of how to construct for the given proposition its evidences aka proofs.
Such a justificatory procedure for propositional knowledge has its formal dual in
the form of verification of the corresponding procedural knowledge. In this case
the epistemic goal is not to justify a propositional belief but to assure that an
accomplished construction has some required properties. Think of technological
processes which certain desired outcomes, which needs to be checked and veri-
fied. Since this difference in epistemic goals does not affect the basic semantics
of HoTT, our proposed approach applies to both these sorts of tasks.

Higher levels of the homotopy ladder provide more expressive power for rep-
resenting objects and spaces where these objects live. The (flat) groupoid spaces
(h-level 1) already allow for representing certain non-trivial topological features
of the base spaces. Leaving for another occasion a study of possible applications
of topological concepts in KR we would like to stress here its intuitive appeal.
This is not a minor issue when we are talking about possible ways to justify
knowledge obtained via a KR system, which is supposed to be available to a
regular user. A HoTT-based approach has been already successfully used for an
automated verification of non-trivial mathematical proofs [21]. An advantage of
this approach over other approaches in the automated proof verification is that
the homotopical interpretation allows a mathematician to express her reason-
ing with a commented program code or a pseudo-code without giving up the
usual intuitive support of this reasoning. This specific feature of HoTT might
be helpful for designing a format for human-readable evidences or certificates
that a hypothetical KR system could produce in order to justify the supplied
knowledge in eyes of its user. A toy example of HoTT-based representation used
outside the pure mathematics is found in [20].

We summarise our explanation of relevance and possible advantages of using
HoTT as a formal KR framework that supports justification as follows:

1. HoTT admits the constructive epistemically-laden proof-theoretic semantics
intended by Martin-Löf’s Type for MLTT (in a slightly modified form).

2. The cumulative h-hierarchy of types made explicit via the homotopical in-
terpretation supports the distinction between propositional, set-level and
higher-level types. This distinctive feature of HoTT supports formal con-
structive representation of objects (of various levels) and propositions “about”
these objects within the same framework. Each such object serves as a wit-
ness/truthmaker for proposition obtained via the propositional truncation
of type where the given object belongs.

3. HoTT comprises a system of formal rules, which are interpreted as logical
rules at the propositional h-level and as rules for object-construction at all
higher levels. This feature of HoTT supports representation various extra-
logical procedures (such as material technological procedures) keeping track



of the corresponding logical procedures at the propositional level of repre-
sentation.

4. HoTT/MLTT is computer-friendly, i.e., computationally implementable. Frag-
ments of HoTT/MLTT have been implemented in proof-assistant Coq, pro-
gram languages AGDA, LEAN and some other products.

5. HoTT-constructions admit intuitive spatial (homotopical) interpretations
that may be used for facilitating human-computer interactions.

4 Conclusion

During the last decade KR technologies have been enriched with approaches
based on the Big Data analysis, Machine Learning and artificial Neural Net-
works. According to a radical opinion, these new approaches make more tradi-
tional logical approaches based on the explicit representation of facts and rules
hopelessly outdated and irrelevant. We disagree. Because of their possible un-
predictable behaviour [22] Neural Networks and other tools of Big Data analysis
can significantly enrich but not replace logical approaches and logical tools in
KR.

At the same time we agree that standard logical architectures and formal
ontologies, which are presently used in KR, don’t provide a sufficient theoretical
background for KR because they have no epistemological content. In this paper
we explained the relevance of epistemological considerations in logic and KR and
then pointed to some recent advances in mathematical logic, more specifically
discussing the Homotopy Type theory, that may allow to use logical approaches
in KR more effectively.
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