A Note on the Descriptional Complexity of
Semi-Conditional Grammars

Tomas Masopust

Dept. of Information Systems, Faculty of Information Technology,
Brno University of Technology, Bozetéchova 2,
612 66 Brno, Czech Republic
masopust@fit.vutbr.cz

Abstract. The descriptional complexity of semi-conditional grammars
is studied. A proof that every recursively enumerable language is gener-
ated by a semi-conditional grammar of degree (2,1) with no more than
seven conditional productions and eight nonterminals is given.

Keywords: formal languages, descriptional complexity, semi-conditio-
nal grammars

1 Introduction

This paper studies the descriptional complexity of semi-conditional grammars
(see [4,7-9] for more details) with respect to the number of conditional produc-
tions and nonterminals.

Semi-conditional grammars are modified context-free grammars, where a per-
mitting and a forbidding context is associated with each production. This means
that a production is applicable if its permitting context is contained in the cur-
rent sentential form and its forbidding context is not. As a special case of semi-
conditional grammars, we obtain simple semi-conditional grammars introduced
in (3], where one of the contexts is required to be a special symbol 0, i.e., either
a permitting or a forbidding context is associated with each production.

Whereas the descriptional complexity of simple semi-conditional grammars
has been studied carefully (see (5,7, 8,10]), the descriptional complexity of semi-
conditional grammars has not been studied at all, and all results concerning
the descriptional complexity of semi-conditional grammars are consequences of
results concerning the descriptional complexity of simple semi-conditional gram-
mars. Specifically, in [8], a proof that every recursively enumerable language is
generated by a (simple) semi-conditional grammar of degree (2, 1) with no more
than twelve conditional productions and thirteen nonterminals was given. Later,
in [10], this result was improved and a proof that every recursively enumerable
language is generated by a (simple) semi-conditional grammar of degree (2,1)
with no more than ten conditional productions and twelve nonterminals was
given. Finally, the result from [10] was improved in [5], where a proof that ev-
ery recursively enumerable language is generated by a (simple) semi-conditional

214 T. Masopust

grammar of degree (2,1) with no more than nine conditional productions and
ten nonterminals was given. However, a better result can be achieved for semi-
conditional grammars than for simple semi-conditional grammars. In this pa-
per, a proof that every recursively enumerable language is generated by a semi-
conditional grammar of degree (2,1) with no more than seven conditional pro-
ductions and eight nonterminals is given.

2 Preliminaries and Definitions

This paper assumes that the reader is familiar with the theory of formal lan-
guages (see [1,6]). For an alphabet V, V* represents the free monoid generated
by V. The unit of V* is denoted by . Set V' = V* — {e}. Set sub(w) = {u: uis
a substring of w}.

In [2], it was shown that every recursively enumerable language is generated

by a grammar
G =({S,A,B,C},T,PU{ABC — €}, 5)

in the Geffert normal form, where P contains context-free productions of the
form

S — uSa, where u € {A,AB}*, a €T,
S — uSv, where u € {A, AB}", v € {BC,C}~,
S — uv, where u € {A, AB}*, v € {BC,C}*.

In addition, any terminal derivation is of the form
S =" wiwaw
by productions from P, where wy € {A, B}*, wa € {B,C}*, weT* and

wwow =" W

by ABC — €.
A semi-conditional grammar, G, is a quadruple

G=(N,T,P,S),
where

— N is a nonterminal alphabet,

— T is a terminal alphabet such that NNT = 0,
— S € N is the start symbol, and

— P is a finite set of productions of the form

(X = a,u,v)

with X e N, a € (NUT)*, and u,v € (NUT)* U {0}, where 0 g NUT is
a special symbol.

A Note on the Descriptional Complexity of Semi-Conditional Grammars 215

If u # 0 or v # 0, then the production (X — «,u,v) € P issaid to be conditional.
G has degree (i, 7) if for all productions (X — a,u,v) € P, u # 0 implies |u] <1
and v # 0 implies |v] < j. Forz € (NUT)" and y € (NUT)*, x directly derives
y according to the production (X — «,u,v) € P, denoted by

T =y

if r = 21 X0, y = z1029, for some z1, 22 € (N UT)*, and u # 0 implies that
u € sub(z) and v # 0 implies that v € sub(z). As usual, = is extended to =",
for i > 0, =1, and =*. The language generated by a semi-conditional grammar,
G, is defined as

ZG)={weT :5S="w}

Let G = (N,T, P,S) be a semi-conditional grammar. If (X — a,u,v) € P
implies that 0 € {u, v}, then G is said to be a simple semi-conditional grammar.

3 Main Result

This section presents the main result concerning the descriptional complexity of
semi-conditional grammars.

Theorem 1. Every recursively enumerable language is generated by a semi-
conditional grammar of degree (2,1) with no more than 7 conditional productions
and 8 nonterminals.

Proof idea.
The main idea of the proof is to simulate a terminal derivation of a grammar,
G, in the Geffert normal form.

To do this, we first apply all context-free productions as applied in the G’s
derivation, and then we simulate the production ABC — ¢ so that we mark
with ’ only one occurrence of A, one of B, and one of C' and check that these
marked symbols form a substring A’B’C’ of the current sentential form. If so,
the marked symbols can be removed, which completes the simulation of the
production ABC — ¢ in G; otherwise, the derivation must be blocked.

The formal proof follows.

Proof. Let L be a recursively enumerable language. There is a grammar
G=({S,A,B,C},T,PU{ABC — ¢},S5)
in the Geffert normal form such that L = £(G). Construct the grammar
G'=({S,A,B,C,A,B,C',$},T,PUP"S),

where
P ={(X - ,0,0): X — a € P},

and P” contains following seven conditional productions:

216 T Masopust

(A—840,9),

(B — B, A, B),
(C—C'$,ADB,C),
(B' — ¢, B'C',0),
(C"— e, A4'C",0),
(A" — e, A'8,0),

(3 —¢,0,4).

To prove that Z(G) C #(G’), consider a derivation

NG W

S =" wABCw'v = ww'v

in G by productions from P with only one application of the production ABC' —
¢, where w,w’ € {A,B,C}* and v € T*. Then,

S =*wABCw'v

in G’ by productions from P’. Moreover, by productions 1, 2, 3, 4, 5, 6,7, 7, we
get

wABCw'v = w$A'BCw'v
= w$A'B'Cw'v
= wlA'B'C'$w'v
= w$A'C'$w'v
= wA'w'v
= wiw'v
= whw'v

= ww'v.

The inclusion follows by induction.

To prove that Z(G) 2 #£(G’), consider a terminal derivation. Let X €
{A, B,C} be in a sentential form of this derivation. To eliminate X , there are
following three possibilities:

L. If X = A, then there must be C and B (by productions 6 and 3) in the
derivation;

2. If X = B, then there must be C and A (by productions 4 and 3) in the
derivation;

3. It X = C, then there must be 4 and B (by productions 5 and 3) in the
derivation.

In all above cases, there are A, B, and C in the derivation. By productions 1, 2,
3, and 7, there cannot be more than one 4’, B’, and C’ in any sentential form of
this terminal derivation. Moreover, by productions 3 and 4, A'B'C" is a substring
of a sentential form of this terminal derivation, and there is no terminal symbol
between any two nonterminals; otherwise, there will be a situation in which (at

A Note on the Descriptional Complexity of Semi-Conditional Grammars 217

least) one of productions 3 and 4 will not be applicable. Thus, any first part of
a terminal derivation in G’ is of the form

S =" wy ABCwaw =3 w1 $A'B'C'$wow (1)

by productions from P’ and productions 1, 2, and 3, where w; € {4, B},
wy € {B,C}*, and w € T™*. Next, only production 4 is applicable. Thus,

= ’UJ1$A/C/$’LUQIU .

Besides a possible application of production 2, only production 5 is applicable.
Thus,

=+ w $A Swyw

where w| € {A,B,B'}*, wy € {B,B’,C}*. Besides a possible application of
production 2, only production 6 is applicable. Thus,

=7 wi$Swiw

where w{ € {A, B, B'}*, wi € {B, B’,C}*. Finally, only production 7 is appli-
cable, i.e.,

2 ",
= wjwyw.

Thus, by productions 1, 2, 3, or 1, 3, if production 2 has already been applied,
we get

=" uvw.

Here,
wow € {u18A'B'C'$usw : uy € {A, B}*,uz € {B,C}*}

or uv = €.

Thus, the substring ABC and only this substring was eliminated during the
previous derivation. By induction (see (1)), the inclusion holds. This derivation
can be performed in G with an application of the production ABC — ¢, too. O

This work has been supported by the Grant Agency of the Czech Republic within
the project No. 102/05/H050, FRVS grant No. FR762/2007/G1, and the Czech
Ministry of Education under the Research Plan No. MSM 0021630528.

References

1. J. Dassow and Gh. Pdun. Regulated Rewriting in Formal Language Theory.
Springer-Verlag, Berlin, 1989.

2. V. Geffert. Context-free-like forms for the phrase-structure grammars. In
M. Chytil, L. Janiga, and V. Koubek, editors, MFCS, volume 324 of Lecture Notes
in Computer Science, pages 309-317. Springer, 1988.

218 T Masopust

w

. A. Gopalaratnam and A. Meduna. On semi-conditional grammars with productions
having either forbidding or permitting conditions. Acta Cybernetica, 11(4):307-324,
1994.

4. J. Kelemen. Conditional grammars: Motivations, definitions, and some properties.
In Proc. Conf. Automata, Languages and Mathematical Sciences, pages 110-123,
Salgétarjan, 1984.

5. T. Masopust. An improvement of the descriptional complexity of grammars reg-
ulated by context conditions. In Second Doctoral Workshop on Mathematical
and Engineering Methods in Computer Science (MEMICS 2006), pages 105-112,
Mikulov, 2006.

6. A. Meduna. Automata and Languages: Theory and Applications. Springer-Verlag,
London, 2000.

7. A. Meduna and M. Svec. Reduction of simple semi-conditional grammars with
respect to the number of conditional productions. Acta Cybernetica, 15:353-360,
2002.

8. A. Meduna and M. Svec. Grammars with Context Conditions and Their Applica-
tions. John Wiley & Sons, New York, 2005.

9. Gh. Paun. A variant of random context grammars: Semi-conditional grammars.
Theoretical Computer Science, 41:1-17, 1985.

10. Gy. Vaszil. On the descriptional complexity of some rewriting mechanisms regu-

lated by context conditions. Theoretical Computer Science, 330:361-373, 2005.

