
A Mehanization of Phylogeneti TreesMamoun Filali�lali�irit.frIRIT CNRSUniversité Paul Sabatier118 Route de NarnonneF-31062 Toulouse FraneAbstrat. We study the mehanization of phylogeneti trees in higher order logi.After haraterizing trees within suh a logi, we state how to reason and to om-pute about them. We introdue the so alled generative partitions and relations whosepurpose is to allow the reonstrution of a tree from its leaves. After introduing treetransformations, we de�ne the graft operation. and onsider su�ient onditions forthe preservation of the generative partitions or relations after a graft. It follows that wean reonstrut a tree given its set of leaves and its generative relation whih has beenpreserved along the growth of the tree. We apply this result to the reonstrution of adistributed omputation.keywords: HOL, tree struture, veri�ation, ISAR.1 IntrodutionThis paper gives a de�nitional formalization, in higher order logi (HOL), ofphylogeneti trees. We also formalize how to reason and ompute on suh trees.We de�ne the notion of a generative relation, that aims at haraterizing in-formation whih enables to rebuild a tree. Finally, we propose a reonstrutionalgorithm based on the set of leaves and a generative relation. The orretnessof the algorithm is established. We introdue an operation, the graft, that allowsto represent the growth of a tree. a graft are stated. We illustrate suh a reon-strution through the so-alled leaf vetors and a onrete generative relation. Itshould be stressed that our study is not only onerned with the proposal of anoriginal algorithm but also by the formal de�nitions and proofs within a logialframework.The rest of this paper is organized as follows: Setion 2 gives the repre-sentation and the basi operations. Setion 3 introdues the graft operation andstudies its reonstrution properties.Setion 4 presents a onrete example wherewe apply the reonstrution algorithm. Setion 5 ontains the onlusions andrelated works.2 A phylogeneti tree representation and basi operationsIn this setion, we introdue the formal representation of phylogeneti trees;For suh a representation, we onsider how to reason about it and how to om-pute on it. We rely mainly on basi set theory. However, rather than working



22 Mamoun Filaliwith set theory only, we use type theoreti reasoning also. We have done themehanization within the Isabelle logial framework [13℄. Atually, we have usedthe Isabelle/Isar1 [19℄ environment whih goal is to assist in the developmentof human-readable proof douments omposed by the user and heked by themahine.2.1 Notations and basi de�nitionsIn this setion, we reall the basi set theory and order notions, we will use.Wehope that the name of the de�nitions and their formal expression are self ex-planatory. We have used the de�nitions given in [6℄. Moreover, we express themin the Isabelle syntax [13℄. For eah de�nition, �rst, we give its signature, thenits formal expression. For instane, we have used the following de�nitions:"Maximal , λ S . {m ∈ S . ∀ m' ∈ S . m ⊆ m' ⇒ m = m'}""Down , λ(S , e ) . { s ∈ S . s ⊆ e }""PDown , λ(S , e ) . { s ∈ S . s ⊂ e }"
−−{∗ proper p a r t i t i o n ∗}"PPart i t ion , λ (n , S ) . Pa r t i t i on (n , S) ∧ (∀ e ∈ S . e ⊂ n) ""A// r ,

⋃x ∈ A. {r ` ` { x}}" −− {∗ s e t o f equiv  l a s s e s ∗}In Isabelle, the re�exive transitive losure of relation r, denoted rˆ⋆, is in-trodued as an indutive data type [2℄. Its introdution rules are rtranl_reflwhih spei�es that every ouple (a,a) belongs to the transitive losure, andrtranl_into_rtranl whih spei�es that if (a,b) belongs to rˆ⋆ and (b,)belongs to r, then (a,) belongs also to rˆ⋆.i ndu t i v e " r^∗"i n t r o sr t r a n  l_ r e f l : "( a , a ) ∈ r^∗"r t ran l_ in to_rt ran l :"(a , b ) ∈ r^∗ =⇒ (b ,  ) ∈ r =⇒ ( a ,  ) ∈ r ^∗"With respet to the proofs, we have used the Isabelle/Isar format. A proof isestablished by a sequene of intermediate results whih has to be proved reur-sively or already established. Eventually, results are justi�ed either as axiomsof the logi or by rules of the logi. With respet to proofs, Isar promotes the1 �Isar� abbreviates �Intelligible semi-automated reasoning�.



A Mehanization of Phylogeneti Trees 23so alled �delarative style� [18℄ whih is loser to the usual mathematial rea-soning than the proedural format. Let us mention that, basially, Isar supportsnatural dedution but also supports alulational reasoning [7℄.As an example, the following statement whih onsists in assumptions2 (assumes),a onlusion (shows) and a proof sript (proof) establishes that the union oftwo hierarhies (see setion 2.2) is also a hierarhy. A basi statement of theproof has the format:
from 〈fats〉 have label ′ :′ 〈proposition〉 by 〈method〉whih aim is to establish proposition from fats by applying method.theorem Hierarhy_union :assumes h1 : "H1 ∈ Hierarhy "assumes h2 : "H2 ∈ Hierarhy "assumes s : "∀ n1 ∈ H1 . ∀ n2 ∈ H2 . SDS(n1 , n2 ) "shows "(H1 ∪ H2) ∈ Hierarhy "proof −from h1 h2 have e : "∅ 6∈ H1 ∪ H2" by (unfoldHierarhy_def , b l a s t )from s have "∀ n1 ∈ H1 . ∀ n2 ∈ H2 . SDS(n2 , n1 ) "by ( auto simp only : SDS_def )from this have "∀ n1 ∈ H2 . ∀ n2 ∈ H1 . SDS(n1 , n2 ) " byautofrom s this h1 h2 have sds : "∀ n1 ∈ H1 ∪ H2 . ∀ n2 ∈ H1 ∪H2 . SDS(n1 , n2 ) "by (unfold Hierarhy_def , b l a s t )from h1 h2 have f : " f i n i t e (H1 ∪ H2) " by (unfoldHierarhy_def , auto )from h1 h2 have "∀ n ∈ H1 ∪ H2 . f i n i t e n" by(unfoldHierarhy_def , auto )from e sds f this show ? thesis by (unfold Hierarhy_def ,b l a s t )qed2.2 Hierarhies and treesOur mehanization is based on the introdution of phylogeneti trees startingfrom the basi notions of set theory. For suh a purpose, we �rst onsider hier-arhies [3℄ and then introdue trees as restrited hierarhies. Along with thesehierarhies, we give some general de�nitions that will be used later.2 Sometimes assumptions are also alled preonditions.



24 Mamoun FilaliThe basi idea of the following representations is to infer a struture fromthe relations between its elements; the struture is not enoded diretly. Suh aontent based enoding is motivated by the fat that our basi onern is thereonstrution starting from some of the elements, namely the leaves, of the treestruture.Hierarhies. We �rst introdue a generi graph as a set of nodes. A node is aset of generi elements.types' e graph = "( ' e s e t ) s e t " −− {∗ g en e r i  graph ∗}' e node = "( ' e s e t ) " −− {∗ g en e r i  node ∗}Hierarhies are �nite graphs whih elements are �nite and non empty andobey to the SDS: �Subset Disjoint Subset� relation:"SDS , λ( s1 , s2 ) . s1 ⊆ s2 ∨ s1 ∩ s2 = ∅ ∨ s2 ⊆ s1 ""Hierarhy , {H. f i n i t e (H)
∧ (∀ n ∈ H. f i n i t e (n) )
∧ ∅ 6∈ H
∧ (∀ n1 ∈ H. ∀ n2 ∈ H. SDS (n1 , n2 ) )}"In the following, we give the formal de�nitions that will be used."Leaves , λ h . { l ∈ h . PDown(h , l ) = ∅}""ROOT , λ h . ⋃ h"" Subtrees , λ t . image (λ e . Down( t , e ) ) (Maximal ( t ) ) "

−− {∗ proper subt r e e s ∗}"PSubtrees , λ t . Subtrees ( t − Maximal ( t ) ) "
−− {∗ roo t s o f proper subtrees ,  h i l d nodes ∗}"R1 , λ t . image ROOT ( PSubtrees ( t ) ) ""Sigma , λ S . {⋃ (⋃ S) } ∪ (⋃ S) "Due to the lak of spae, we do not state all the established results. We willgive them on the �y when needed.Trees and phylogeneti trees. Starting from hierarhies, we �rst de�ne atree as a hierarhy with its ROOT as the single maximal element :



A Mehanization of Phylogeneti Trees 25"Tree , {h ∈ Hierarhy . Maximal (h) = {ROOT(h) }}"Then, we introdue phylogeneti trees as trees whih nodes are either leavesor the union of all its subnodes:"Phylo ,{ t ∈ Tree . ∀ n ∈ t . n ∈ Leaves ( t ) ∨ n = ⋃ PDown( t , n ) }"With respet to phylogeneti trees, we just mention the following equalitythat will allow us to say that the reonstrution an proeed starting from theleaves, while the statement of the reonstrution theorem is over the root. Atu-ally, for a phylogeneti tree t, we have: ROOT(t) =
⋃Leaves(t). Moreover, wewill rely on the following result about the union of phylogeneti trees:lemma phylo_union :assumes t1 : " t1 ∈ Phylo"assumes t2 : " t2 ∈ Phylo"assumes u : "ROOT( t2 ) ∈ Leaves ( t1 ) "shows " t1 ∪ t2 ∈ Phylo"proof . . . qed

Examples. The �gure 1 illustrates the representation of phylogeneti trees. Forinstane, with respet to the previous de�nitions and the tree let t2, we have:
t0 {x}

{a,e,b}

{a} {e} {b}

t1
{x,y,a,e,b,u,v,w}

{x,y} {a,e,b} {u,v,w}

{x} {y} {a} {e} {b} {u} {v} {w}

t2

Fig. 1. phylogeneti trees



26 Mamoun Filali
t2 = {{x, y, a, e, b, u, v, w}, {x, y}, {x}, {y}

, {a, e, b}, {a}, {e}, {b}, {u, v, w}, {u}, {v}, {w}}Leaves(t2) = {{x}, {y}, {a}, {e}, {b}, {u}, {v}, {w}}ROOT(t2) = {x, y, a, e, b, u, v, w}R1(t2) = {{x, y}, {a, e, b}, {u, v, w}}The deomposition and indution theorems. In order to reason aboutphylogeneti trees, we �rst introdue a deomposition theorem: a tree is eithera singleton ontaining its ROOT, or the sum (Sigma) of its proper subtrees.theorem phylo_ases :assumes t : " t ∈ Phylo"shows " t = {ROOT( t ) } ∨ t = Sigma ( PSubtrees ( t ) ) "proof . . . qedWe state the indution theorem about phylogeneti trees as follows:theorem phylo_indut :assumes b : "∀ e . P({ e }) "assumes r : "∀ T ∈ domSigma . (∀ t ∈ T. t ∈ Phylo ∧ P( t ) )
⇒ P( Sigma (T) ) "shows "∀ t ∈ Phylo . P( t ) "proof . . . qedwhere domSigma spei�es the set of trees whih an be �joined� to form a phy-logeneti tree:"domSigma ,{S . S 6= ∅ ∧ f i n i t e (S ) ∧ S ⊆ Tree
∧ (∀ t1 ∈ S . ∀ t2 ∈ S . t1 6= t2 ⇒

⋃ t1 ∩
⋃ t2 = ∅ )

∧ PPart i t ion (⋃ ⋃ S , image ROOT S)}"2.3 TransformationsThe basi property of the studied transformations is to preserve the underlyingstruture while transforming the nodes.Hierarhy transformations and preservation theorem. First, we intro-due general transformations whih basi property is to preserve the ardinalityof a set of nodes."G_tr , λ g . { t r . ∀ n1 ∈ g . ∀ n2 ∈ g .( t r ( n1 ) = t r ( n2 ) ) = (n1 = n2 ) }"



A Mehanization of Phylogeneti Trees 27A hierarhy transformation is a general transformation whih preserves therelations between the nodes of a hierarhy:{∗ h i e ra r hy t rans f o rmat i on s s e t ∗}"H_tr , λ h .{ t r ∈ G_tr(h ) . (∀ n ∈ h . f i n i t e (n) ⇒ f i n i t e ( t r (n ) ) )
∧(∀ n ∈ h . n 6= ∅ ⇒ t r (n) 6= ∅ )
∧(∀ n1 ∈ h . ∀ n2 ∈ h . n1 ⊆ n2 ⇒ t r ( n1 ) ⊆ t r ( n2 ) )
∧(∀ n1 ∈ h . ∀ n2 ∈ h . n1 ∩ n2 =∅ ⇒ t r ( n1 ) ∩ t r ( n2 ) =∅ )}"A hierarhy is preserved by a hierarhy transformation:theorem hierarhy_trans :assumes t : " t ∈ Hierarhy "assumes t r : " t r ∈ H_tr( t ) "shows "image t r t ∈ Hierarhy "proof . . . qedA tree is also preserved by a hierarhy transformation.Phylogeneti transformations and preservation theorem. Intuitively,when a phylogeneti transformation is applied to a non-leaf node, the deompo-sition into its desendant nodes is preserved. The haraterizing property of aphylogeneti transformation is expressed as follows:"P_tr , λ h . { t r ∈ H_tr(h ) . ∀ n ∈ h .n ∈ Leaves (h ) ∨ t r (n ) = ⋃ ( image t r (R1(Down(h , n) ) ) ) }"Then, we state the preservation theorem:theorem phylo_trans :assumes t : " t ∈ Phylo"assumes t r : " t r ∈ P_tr ( t ) "shows " image t r t ∈ Phylo"proof . . . qedExample. A Mutation is a transformation that onerns the nodes up a graphnode: gp, suh �up� nodes ontain gp, and a mutation is expressed as follows:"Mutation , λ( gp ,R) .λ n . i f gp ⊆ n then (n − gp ) ∪ R else n"We show that the Mutation transformation is a phylogeneti transformation:theorem Mutation_P_tr :assumes h : "h ∈ Phylo "assumes g : "g ∈ Phylo "



28 Mamoun Filaliassumes pre : "PreGraft (h , gp , g ) "shows "Mutation ( gp ,ROOT( g ) ) ∈ P_tr (h ) "proof . . . qedwhere PreGraft (We will use this prediate as the preondition of the Graftoperation.) is de�ned as follows:"PreGraft , λ(h , gp , g ) . h ∈ Hierarhy ∧ ( ( (ROOT h) ∩ (ROOT g ) ) = ∅ ) ∧gp ∈ Leaves (h) ∧ g ∈ Hierarhy ∧ g 6= ∅"2.4 Generative partitions and relationsOne of our onerns is the reonstrution of a phylogeneti tree starting fromthe set of its leaves. The basi idea of suh a reonstrution is to partitionthe leaves aording to its diret proper subtrees and to apply reursively thereonstrution to eah of the sets of the partition. These suessive partitionsde�ne the sets whih are generated by a generative partition.Generative partitions. Given a phylogeneti tree h, GP is alled a generativepartition of h, if eah node is either a leaf or partitioned aording the diretsub-roots of n (Down(h,n) is the subtree of h whih root is n)."Gene ra t i v ePar t i t i on, λ(h ,GP) . ∀ n ∈ h .GP(n) =( i f n ∈ Leaves (h ) then {n} else R1(Down(h , n ) ) ) "Generative relations. Semantially, the generative relation is a symmetrirelation of whih the transitive losure is a generative partition. The motivationfor introduing generative relations is to make loal the reasoning about the ofgrowth the tree and onsequently easier than a global one. First, we de�ne R2Pwhih onverts a relation to the partition funtion given by its re�exive andtransitive losure: a node n is partitioned by the lasses of the orrespondingequivalene relation."R2P( r ) , λ n . (n // ( ( r (n ) ) ^∗) ) ""Generat iveRe lat ion , λ (h ,GR) .(∀ n ∈ h . GR(n) ⊆ n × n ∧ sym(GR(n) ) )
∧ Genera t i v ePar t i t i on (h , R2P(GR) ) "2.5 The reonstrution funtion and theoremWe introdue the auxiliary funtion Reonstrut. Its de�nition is set up inorder to be aepted as a well de�ned funtion by Isabelle: sine it is a reursivefuntion that is not primitive, we have to provide a measure that dereases



A Mehanization of Phylogeneti Trees 29at eah all. The ondition of the if expression ensures it. The reonstrutfuntion is a urry�ed version of Reonstrut.redef Reonstrut "measure (λ (GP, s ) . ard s ) ""Reonstrut (GP, s ) =( i f ( f i n i t e s ) ∧ (∀ s ' ∈ GP( s ) . s ' ⊂ s ) thenSigma ( image (λ e . Reonstrut (GP, e ) ) (GP s ) )else { s }) "(hints simp add : psubset_ard_mono )" r e  on s t ru  t (GP) , λ s . Reonstrut (GP, s ) "The theorem haraterizing the reonstrution is stated as follows:theorem gene ra t i v e_par t i t i on_reons t ru  t i on :shows"∀ GP. ∀ t ∈ Phylo . Gene ra t i v ePar t i t i on ( t ,GP)
⇒ ( r e  on s t ru  t (GP) (ROOT( t ) ) = t ) "proof . . . qedThis theorem is established thanks to the indution theorem over phyloge-neti trees (2.2).2.6 DisussionIn this setion, we disuss the de�nition of phylogeneti trees that has beenelaborated. With respet to the strutural point of view: a phylogeneti tree anbe de�ned as either a singleton node or as the Sigma of its subtrees. Suh aset based onstrution is not admitted by most of the type theory based logialframeworks [9, 1, 4, 13℄. In fat, in suh frameworks a tree is usually reursivelyde�ned through the list of its subtrees, or through a map of its subtrees from agiven index type. We have tried to work with eah of these representations. Theirmain drawbak is to break the underlying natural on�uene. For instane, withsuh representations, inserting a subtree after atually removing it, does not yieldthe original tree. Suh a on�uene is fundamental for establishing naturally ourreonstrution result. Otherwise, we would have to introdue modulo relationsin order to not distinguish between trees of whih subtrees are idential but notin the same order.3 The graft operationIn our setting, the graft operation models the growth of a tree. As its namesuggests, the graft operation onsists in grafting a tree at a given node. In thisstudy, we onsider a restrited version: grafting ours at singleton nodes only.



30 Mamoun Filali3.1 Graft deompositionLet h be a graph, gp a node of h where the graft should our and g the graph tograft. We express the graft through two basi operations: �rst, h is transformedthrough a Mutation, seond, g is grafted through the union (∪) operation. Suha deomposition is illustrated by �gure 2. The Graft is expressed as follows:"Graft , λ(h , gp , g ) . ( image (Mutation ( gp ,ROOT(g ) ) ) h) ∪ g"
{x,y,a,e,b,u,v,w}

{x,y} {a,e,b} {u,v,w}

{x} {y} {a} {e} {b} {u} {v} {w}

Graft

{x,y,a,n1,n2,b,u,v,w}

{x,y} {a,n1,n2,b} {u,v,w}

{x} {y} {a} {n1,n2}{b} {u} {v} {w}

{n1} {n2}

{x,y,a,e,b,u,v,w}

{x,y} {a,e,b} {u,v,w}

{x} {y} {a} {e} {b} {u} {v} {w}

{x,y,a,n1,n2,b,u,v,w}

{x,y} {a,n1,n2,b} {u,v,w}

{x} {y} {a} {n1,n2}{b} {u} {v} {w}

{n1,n2}

{n1} {n2}

transformation

union

Fig. 2. Deomposition of a graftWe show that the grafted tree is also a phylogeneti tree. The proof is estab-lished thanks to the deomposition of the graft operation; we �rst establish thatMutation is a phylogeneti transformation, then thanks to the union theorem,g being phylogeneti, it follows that the grafted tree is phylogeneti.theorem graft_phylo :assumes h : "h ∈ Phylo"assumes g : "g ∈ Phylo"assumes pre : "PreGraft (h , gp , g ) "shows "Graft (gp , g ) (h ) ∈ Phylo"proof . . . qed



A Mehanization of Phylogeneti Trees 313.2 Reonstruting a graft through a generative partitionThis setion states a general result about the preservation of a generative par-tition GP. In fat, we have a preondition about the partitioning of the mutatednodes.theorem generat ive_part i t ion_gra f t_phylo :assumes h : "h ∈ Phylo"assumes g : "g ∈ Phylo"assumes pre : "PreGraft (h , gp , g ) "assumes gp_h : "Gene ra t i v ePar t i t i on (h ,GP) "assumes gp_g : "Gene ra t i v ePar t i t i on ( g ,GP) "assumes gp_tr :"∀ n ∈ h . GP(Mutation (gp ,ROOT(g ) ) (n ) ) =( i f n ∈ Leaves (h ) then {Mutation ( gp ,ROOT(g ) ) (n) }else image (Mutation ( gp ,ROOT( g ) ) ) (GP(n) ) ) "shows "Gene ra t i v ePar t i t i on ( Graft (h , gp , g ) ,GP) "proof . . . qed3.3 Reonstruting a graft through a generative relationIn the same way, a generative relation an be preserved while extending a treethrough a graft. Thanks to this preservation: a tree, growing through graft op-erations, will always be reonstrutible from its leaves through its invariant gen-erative relation.A simpli�ed mutation: the basi update upd. For the purpose of ourappliation, we onsider the following node transformation:"upd , λ ( l ,N) . λ S . i f l ∈ S then S − { l } ∪ N else S"Sine we have: upd(l, N) = Mutation({l}, N), upd inherits the property ofMutation; then it is a phylogeneti transformation.Moreover, in order to simplify the proof obligations for establishing thata generative relation is preserved after a graft, we have elaborated su�ientonditions that should be established by the update funtion. Due to the lakof spae, we do not detail them.We have established the preservation of the generative relation for the graftof a so alled anonial tree whih onsists of a root and a set of leaves:"Canoni , λ N. {N} ∪ (S e ∈ N. {{ e }}) "We have the following invariant theorem establishing the preservation of agenerative relation when grafting a anoni tree:



32 Mamoun Filalilemma generat ive_re lat ion_gra f t_phylo :assumes t : " t ∈ Phylo"assumes up : "{ l } ∈ t "assumes gp1 : "Generat iveRe lat ion ( t ,GR) "assumes gr_m: "∀ n . GR(n) ⊆ n × n ∧ sym(GR(n) ) "assumes te rmina l : "Terminal ( t ) "assumes N: "∀ n ∈ t . N ∩ n = ∅"assumes N_e: "N 6= ∅ ∧ f i n i t e (N) "assumes gp2 : "Generat iveRe lat ion ( Canoni (N) ,GR)"assumes gr_tr :"∀ n ∈ t . l ∈ n ⇒ r_upd( l ,N) (n) (GR(n) ,GR(upd ( l ,N) (n) ) ) "shows "Generat iveRe lat ion ( Graft ({ l } , Canoni (N) ) ( t ) ,GR) "proof . . . qed4 AppliationAs an appliation of phylogeneti trees, we onsider distributed di�using om-putations. In the initial state, one site (or proess) multi-asts a message to asubset of other nodes. Then, all nodes share the same behavior: when a messageis reeived, the reeiver performs a omputation step and, possibly, multi-astsa message to a subset of other nodes.We are interested in the following problem: how to reonstrut the globalhistory of suh a omputation, after its termination3, from information gatheredduring the omputation. For suh a di�using omputation, the ontrol �ow is atree in whih the nodes are the omputation steps and the edges are the messageommuniations. Our algorithm onsists in olleting an enoded representationof these leaves. From this leaves set, we apply the reonstrution algorithm basedupon a generative relation de�ned on the omputation as a phylogeneti tree.4.1 Control tree enodingWe de�ne an enoding for the ontrol tree. The nodes generated during theomputation (temporary leaves) are enoded as vetors. At eah site, a loalounter is inremented by p − 1 eah time a omputation step multi-asts pmessages. Thus, one4 plus the sum of the loal ounters represents the numberof the ontrol tree leaves. Moreover, the value of the ounter of site s is themaximum of the vetors omponent at the index s.3 Suh a reonstrution is usually used for debugging purposes.4 We have to take into aount the initial states where the ounters are all null and the tree onsistsof one leaf node.
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collected visit tag

(0,[0,0,0,0])

(1,[1,0,0,0])

S0

S1

S2

S3

(2,[1,1,0,0])

(3,[1,1,2,0])

(site,[x,y,z,t]) internal node tag (site,[x,y,z,t])

(2,[2,1,0,0])

(2,[1,1,2,2])

(1,[2,1,0,0])

(1,[1,1,2,2])

(0,[1,1,2,0])(0,[1,1,2,2])(0,[1,1,0,0])

(1,[1,1,2,0])

(2,[1,0,0,0])

Fig. 3. Visit tags enodingWe assoiate a "visit tag" to eah node. This tag is omposed of the site ofthe node and a natural integers vetor. This vetor V has a size N , orrespondingto the number of sites, and is assigned the loal ounter values of the sites ithas visited. Figure 3 shows the tagging of the nodes of a di�using omputationwith this enoding.The state spae of all the appliation is modeled by a global type State.It ontains the �elds related to the network, the loal omputations and theolletor. The omputation is onerned by the following �elds:� The �eld lounter implements the loal ounter of eah site;� The �eld olleted reords the visit tags of the omputation leaves.Two transitions are onsidered and eah of them is launhed when a messageis reeived:� ReeiveAndEnd desribes a omputing step without further message multi-ast. In this ase, the visit tag ontained in the reeived message is sent tothe olletor;� ReeiveAndSplit desribes a omputing step terminated by a message mul-tiast. In this ase, a new tag is reated: it holds the destination site (d) anda vetor whih is idential to the tag vetor of the splitting node (m.V ), ex-ept for the splitting site (self) omponent, whih gets the new loal ountervalue lcounter[self ] assigned by this omputation step. No message is sentto the olletor.



34 Mamoun FilaliWith respet to phylogeneti trees, the di�using omputation is seen as atree. A ReeiveAndEnd assigns to a node the de�nitive leaf status. While aReeiveAndSplit extends a tree with new leaves. We interpret it as a Graftoperation. Then, for validation purposes, we have an auxiliary variable auxTreefor reording the growth of suh a �superposed� tree: we prove that at termina-tion, this auxiliary tree and the reonstruted tree are the same.4.2 Termination detetion and reonstrutionWe introdue a olletor proess to gather vetors: a vetor is sent to the ol-letor when a proess performs a omputation step without multi-asting a newmessage. In suh a ase, this step generates a leaf with respet to the ontrol�ow of the omputation. Then, with respet to phylogeneti trees, the olletedtagged messages are in fat leaves of the phylogeneti tree superposed to thedi�using omputation ( and reorded in the auxiliary variable auxTree).The reonstrution of the ontrol tree an only start when the global om-putation is terminated. Several distributed algorithms an solve the terminationproblem, espeially, thanks to a olletor proess[12℄. However, the enoding it-self provides a simple riterion for termination detetion [8℄: a omputation isterminated when the number of olleted leaves is equal to one plus the sum ofthe elements in the maximum of the olleted visit vetors5:
| olleted |= 1 +

∑

s∈Site max
v∈collected

v.V [s]The generative relation for the di�using omputation as a phylogeneti treeis de�ned as follows:" gr , λ n . {( v1 , v2 ) . v1 ∈ n ∧ v2 ∈ n ∧( i f V(v1 ) = min_on(n) ∨ V( v2 ) = min_on(n)then ( v1 = v2 )else (∃ s . V( v1 ) ( s ) = V( v2 ) ( s ) ∧ s 6= w( v1 ) ∧s 6= w( v2 ) ∧ V( v1 ) ( s ) 6= min_on(n) ( s ) ) )}"We derive the orretness of the reonstrution through the following invari-ant:"Reons t ru t i on Invar i an t , λ s t . auxTree ( s t ) =r e  on s t ru  t (R2P( gr ) ) (  o l l e  t e d ( s t ) ∪ network ( s t ) ) "Then, when termination is reahed, the network is empty, and the reon-strution applied to the olleted messages gives the omputation tree.5 |_| denotes the ardinality of _ .



A Mehanization of Phylogeneti Trees 355 ConlusionIn this paper, we have proposed a mehanization of phylogeneti trees. Startingfrom basi set theory, we have introdued phylogeneti trees through hierarhiesand trees. Then, we have de�ned generi transformations. We note that setsbased representations, although already suggested in the literature[10℄, are notwidely used in omputer siene. To the best of our knowledge, the representa-tion of a tree through the set of its leaves together with a generative partitionor relation, as well as the study of dediated transformations, are original. Wehave given a onrete example, where suh notions have been applied to treereonstrution and shown how suh a reonstrution ould be validated. It isinteresting to remark that thanks to theorem proving tehniques, suh a vali-dation was possible; atually we have onsidered an unknown number of nodesand unbounded natural vetors. Usual model heking tehniques annot handlesuh problems.Most of our results have been proved formally within Isabelle. In fat, ourtrees are �unordered� trees. Suh a data type ould be onsidered as an indutivedata type where Sigma would play the role of a onstrutor; however, due tothe negative ourrene 6 most of the logial frameworks (HOL [9℄, Isabelle [13℄,PVS [4℄, Coq [1℄) do not support suh a de�nition shema. Vos and Swiestra [17℄have studied restritions for aepting indutive data types with negative our-renes; sine our trees are �nite, we ould have reused their work. This workis not known to be available within the Isabelle framework. An alternative waywould have been to introdue �unordered� trees through an equivalene rela-tion [14℄ over ordered trees where subtrees are onstruted with a list. It wouldbe interesting to ompare the subsequent developments of phylogeneti trees,generative relations and partitions.With respet to the formalization of trees and biology related results, numer-ous works have been published. Among the more reent, we an ite [16℄ whoonsider the problem of tree inlusion in a ategorial setting. [11℄ reviews ba-si network models for reasoning about biology; he noties that appliations tobiology of existing tools from algebra is just beginning. To the best of our knowl-edge, the mehanization of these works has not been onsidered yet. We thinkthat our work ould be reused as a starting point for establishing algorithmsorretness but also for the orretness of their proposed proofs7.6 The negative ourrene is due to the fat that the parameter of Sigma, onsidered as a onstrutor,is a set of trees.7 It is interesting to remark that the analysis of the algorithm of [5℄ is reported to be inorretin [15℄.
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