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Abstract. The Bernays-Schönfinkel-Ramsey (BSR) class of formulas is the class of
formulas that, when written in prenex normal form, have an ∃∗∀∗ quantifier prefix and
do not contain any function symbols. This class is decidable. We show here that BSR
theories can furthermore be combined with another disjoint decidable theory, so that
we obtain a decision procedure for quantifier-free formulas in the combination of the
BSR theory and another decidable theory.
The classical Nelson-Oppen combination scheme requires theories to be stably-infinite,
ensuring that, if a model is found for both theories in the combination, models agree
on cardinalities and a global model can be built. We show that combinations with
BSR theories can be much more permissive, even though BSR theories are not always
stably-infinite. We state that it is possible to describe exactly all the (finite or infinite)
cardinalities of the models of a given BSR theory. For the other theory, it is thus only
required to be able to decide if there exists a model of a given cardinality.
With this result, it is notably possible to use some set operators, operators on relations,
orders — any operator that can be expressed by a set of BSR formulas — together
with the usual objects of SMT solvers, notably integers, reals, uninterpreted symbols,
enumerated types.

1 Introduction

Many techniques for the formal verification of information systems generate
verification conditions, i.e. formulas encapsulating parts of the reasoning about
the systems. The deduction tools validating these verification conditions should
accept expressive languages, and should require a minimal amount of human
interaction. Combination of theories is the method behind SMT-solvers (SMT
for satisfiability modulo theories) to build decision procedures for very expres-
sive languages, containing interpreted symbols from several decidable theories.
Usually the theory embedded in the solvers is a static combination of linear
arithmetic, uninterpreted symbols, list operators, bit-vectors,. . . For instance, it
is possible to combine a decision procedure for integer linear arithmetic and a
decision procedure for the empty theory (i.e. a decision procedure for equality
and uninterpreted symbols) into a decision procedure to study formulas like

x ≤ y ∧ y ≤ x + f(x) ∧ P (h(x) − h(y)) ∧ ¬P (0) ∧ f(x) = 0.

The Bernays-Schönfinkel-Ramsey (BSR) class is a wide decidable class of
formulas; any set of function-free universal formulas is indeed decidable. We
consider here this class of formulas as a component in a combination of theories.
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The classical Nelson-Oppen combination scheme [11, 16] requires every theory in
the combination to be stably-infinite, i.e. every quantifier-free formula satisfiable
in the theory should have a model with infinite cardinality. BSR theories are not,
in general, stably-infinite: as an example, consider the BSR theory ∀x∀y(x = y)
that only accepts models on a domain with one element. The classical combina-
tion result is not suitable in our case.

It has already been mentioned [17] that a BSR theory can be combined with
a theory T provided

– if a set of ground literals L is T -satisfiable, then the minimal cardinality of
T -models for L can be computed;

– T only has finite models.

We show here that this last strong requirement is not necessary; BSR theories
can in fact be combined with any other decidable theory T (with or without
infinite models, stably infinite or not), provided that, if a set L of ground literals
is satisfiable in T , it is possible to determine if there exists a T -model of a given
finite or infinite cardinality.

Motivations: the incentive for the procedure we present in Section 6 is
double. First, the requirement we impose on the theory T is fulfilled by many
decidable theories; using results in this paper it is possible to extend many
decidable quantifier-languages (for instance, mixing uninterpreted symbols with
linear arithmetic on reals and integers) with new interpreted predicates defined
by a BSR theory. The BSR theory is not required to be stably-infinite. The other
theory is not required to have only finite models.

The second motivation for such a general combination of theories is that
the T -satisfiability of quantifier-free formulas containing operators on sets, re-
lations,. . . can be reduced to studying the satisfiability of sets of literals in the
combinations of T and a BSR theory (see Sections 3 and 4). In Section 5, we
show that there is a straightforward implementation of this method when T is
the empty theory. Good results have been obtained with our prototype on trans-
lations of some problems from the SET domain of the TPTP library. When T
is not the empty theory, we can fall back to the general decision procedure in
Section 6. This decision procedure relies on the computation of model cardinal-
ities of BSR theories. We show in Section 7 that it is possible to know exactly
the cardinalities of BSR theories, and, in particular, we prove that it is possible
to compute if a BSR theory has an infinite model or not.

For convenience, the results in this paper are presented in an unsorted frame-
work, although most SMT-solvers work on a many-sorted logic (see for instance
[5]). The results can easily be transferred to a many-sorted framework, at an
expense of heavier notations.
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2 Notations

A first-order language is a tuple L = 〈V,F ,P〉 such that V is a enumerable set
of variables, F and P are sets of functions and predicates (we refer to “symbols”
for the union of F and P). Every function and predicate symbol is assigned an
arity. Nullary predicates are propositions, and nullary functions are constants.
The set of terms on language L is defined in the usual way. A ground term is
a term without variables. An atomic formula is either t = t′ where t and t′ are
terms, or a predicate symbol applied to the right number of terms. Formulas are
built from atomic formulas, connectors (¬, ∧, ∨, ⇒, ≡), and quantifiers (∀, ∃).
A formula with no free variable is closed. A theory is a set of closed formulas.
Two theories are disjoint if no predicate (except the equality) or function symbol
is interpreted in both theories.

An interpretation I for a first-order language assigns a set of elements D to
the domain, a total function I[f ] on D with appropriate arity to every function
symbol f , a predicate I[p] on D with appropriate arity to every predicate symbol
p, and an element I[x] to every variable x. By extension, an interpretation gives
a value in D to every term, and a truth value to every formula. A model for a
formula (or a theory) is an interpretation that makes the formula (resp. every
formula in the theory) true. A formula is satisfiable if it has a model. It is
unsatisfiable otherwise. A formula G is T -satisfiable if it satisfiable in the theory
T , that is, if T ∪ {G} is satisfiable. A T -model of G is a model of T ∪ {G}. A
formula G is T -unsatisfiable if it has no T -model.

The cardinality of an interpretation (or model) is the cardinality of the do-
main of this interpretation. The restriction of a predicate p on domain D to
domain D′ ⊆ D is the predicate p′ with domain D′ such that p and p′ have the
same truth value for all arguments in D′.

A conjunctive (disjunctive) normal form is a conjunction of clauses, i.e. a
conjunction of disjunctions of literals, (resp. a disjunction of conjunctions of lit-
erals). It is always possible to transform a quantifier-free formula into a logically
equivalent conjunctive (disjunctive) normal form. A formula is universal if it
is of the form ∀x1 . . . ∀xn.ϕ where ϕ is quantifier-free. A Skolem formula is a
formula where all universal quantifiers appear with a positive polarity only, and
all existential quantifiers appear with a negative polarity only. It is always pos-
sible to transform a given formula into an equisatisfiable Skolem formula, using
Skolemization. We refer to [3] for Skolemization and conjunctive (disjunctive)
normal form transformations.

3 From operators to BSR theories

Objects such as sets, relations, or arrays of bits can be viewed as predicates. For
instance, sets can be unambiguously represented by their characteristic function
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Equality ≈ λp q. ∀x. p(x) ≡ q(x)
membership ∈ λx p. p(x)
∅ ∅ λx. ⊥
Ω Ω λx. ⊤
Enumerate {a1, . . . an} λx. (x = a1 ∨ . . . x = an)
Intersection ∩ λp q. λx. p(x) ∧ q(x)
Union ∪ λp q. λx. p(x) ∨ q(x)
Difference \ λp q. λx. p(x) ∧ ¬q(x)
Subset ⊆ λp q. ∀x. p(x) ⇒ q(x)

A. Sets

Equality ≈ λp q. ∀x y . p(x, y) ≡ q(x, y)
Transitive Trans λp. ∀x y z . [p(x, y) ∧ p(y, z)] ⇒ p(x, z)
Symmetric Sym λp. ∀x y . p(x, y) ≡ p(y, x)
Antisym. ASym λp. ∀x y . ¬p(x, y) ∨ ¬p(y, x) ∨ x = y

Total Tot λp. ∀x y . p(x, y) ∨ p(y, x)
Reflexive Refl λp. ∀x p(x, x)
Irreflexive ARefl λp. ∀x ¬p(x, x)
Identity Id λx y. x = y

Product × λp q. λx y. p(x) ∧ q(y)

B. Relations

Equality ≈ λp q. ∀x. p(x) ≡ q(x)
Reading read λp i. p(i)
Writing write λp i x. λj. (j = i ⇒ x) ∧ (j 6= i ⇒ p(j))

C. One-dimensional arrays of bits

Fig. 1. Operators

and operators on sets can be viewed as operators on predicates. In Figure 1,
we give a few examples of set-like operators, operators on relations, operators to
encode read and write operations on arrays of bits. In those examples, we assume
p and q are predicates of appropriate arity and x, y, z are (first-order) variables.
Notice that set-like operators can also be defined for relations; for instance, the
intersection of relations is defined as λp q. λx, y. p(x, y) ∧ q(x, y).

We consider formulas that are written in a first-order language augmented
with the operators — defined as λ-terms given in Figure 1 — applied to the
right number of objects of appropriate type.

Example 1. if A, B, C are unary predicates used to represent sets, a formula
may contain A ≈ B ∩ C which becomes, after substitution of ∩ and ≈ by their
definition

[λp q. ∀x. p(x) ≡ q(x)] (A, (λp q. λx. p(x) ∧ q(x))(B, C)) .

After β-reduction, this becomes

∀x.A(x) ≡ [B(x) ∧ C(x)] . (1)

In general, the formulas obtained after elimination of operators mentioned
in this section are first-order, but may contain quantifiers. Those quantifiers
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come directly from the λ-terms; for instance the quantifier in (1) comes from
the definition of ≈. It is easily shown however, that, if the original formula
(with operators on sets, relations. . . ) does not contain quantifiers, the resulting
first-order formula is a Boolean combination of (atoms and) formulas of the form
∀x1 . . . xn ϕ where ϕ is quantifier-free. Furthermore, quantified variables are used
only as arguments of predicates, that is, no function has a quantified variable as
an argument.

4 From FOL formulas to combination of theories

The formulas obtained in the previous section are Boolean combinations of
quantified formulas. In this section we describe the process to reduce the T -
satisfiability problem of these quantified formulas, to the satisfiability prob-
lem for sets of literals in the union of two theories: T and a disjoint Bernays-
Schönfinkel-Ramsey theory L∀. For the rest of the paper, we only impose one
restriction on the decidable theory T : if a set of literals is T -satisfiable, it is pos-
sible to compute if there exists a model of a given cardinality. We also assume
that all predicates occurring in operators from Figure 1 are uninterpreted for T .

The form of the formulas issued in the previous section is such that a struc-
tural Skolemization (see for instance [3]) will never introduce Skolem functions,
but only Skolem constants. We assume that the formula is Skolemized, using
such a structural Skolemization. The obtained formula is a Boolean combina-
tion of universal formulas (and atoms), the universal formulas appearing with a
positive polarity only.

The usual technique used in SMT-solvers to check the satisfiability of a
quantifier-free formula in a theory T is a (loose or tight) cooperation of a Boolean
satisfiability checker, and a procedure to check the satisfiability of literals within
T . This cooperation splits the problem into two parts: first, pure Boolean model
searches, and second, T -satisfiability checks for the corresponding conjunctive
sets of literals. For simplicity, we consider here that the split is realized by con-
verting the formula to disjunctive normal form. The formula is satisfiable if
and only if at least one conjunction of literals in the disjunctive normal form
is satisfiable. Now assume Ψ is the obtained formula after Skolemization. The
formula is transformed into disjunctive normal form, the quantified parts being
left unchanged. Since the formula has been Skolemized, the remaining (univer-
sal) quantifiers all appear with a positive polarity. Each conjunction of literals
in the disjunctive normal form only contains:

– first-order literals;

– formulas of the form ∀x1 . . . xn ϕ, where ϕ is a quantifier-free formula, such
that no x1 . . . xn is used within a function;
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Example 2. Suppose we want to study the satisfiability of the formula:

a = b ∧ f(a) ∈ A ∧ f(b) /∈ C ∧ [f(b) /∈ A ∨ A ∪ B ≈ C ∩ D] .

Substituting operators ∈, ∪, ∩, ≈ by their definition and applying β-reduction,
one obtains

a = b ∧ A(f(a)) ∧ ¬C(f(b)) ∧
[

¬A(f(b)) ∨ ∀x. [A(x) ∨ B(x)] ≡ [C(x) ∧ D(x)]
]

Structural Skolemization leaves this last formula unchanged, since the sole
universal quantifier appears with a positive polarity. The corresponding disjunc-
tive normal form contains the two conjunctive sets of literals:

{a = b, A(f(a)),¬C(f(b)),¬A(f(b))} (2)

{a = b, A(f(a)),¬C(f(b)), ∀x. [A(x) ∨ B(x)] ≡ [C(x) ∧ D(x)]} (3)

The first set can easily be identified as being unsatisfiable. The second set only
contains first-order (quantifier-free) literals and formulas of the form ∀x1 . . . xn ϕ,
where ϕ is a quantifier-free formula, such that no x1 . . . xn is used within a
function.

In order to study the satisfiability of a set of literals in the combination of
disjoint theories, one usually first computes a separation of the set of formulas
along the languages in the disjoint theories.1 Each part of the separation contains
only the symbols from one theory in the combination; the only shared symbols
are equality and variables. We apply the same technique to separate predicates
that appear in quantified formulas from the rest of the symbols. For instance,
the set (3) is logically equivalent (in whatever theory) to the union of the sets

Lg = {a = b, y = f(a), z = f(b)},

L∀ = {A(y),¬C(z), ∀x. [A(x) ∨ B(x)] ≡ [C(x) ∧ D(x)]},

where y, z are introduced variables. In general, a separation can be built using
the following method.

Algorithm: Initially, L is a set containing literals and universal formulas, and no
quantified variable as argument of a function. The separation algorithm builds
two sets Lg (g for ground), and L∀ (for quantified formulas and related predi-
cates):

– for every uninterpreted predicate p that occurs in a quantified formula in L,
for every occurrence p(t1, . . . tn) of this predicate (in a quantified formula or
not), for every subterm ti that is not a variable (shared or not), introduce a
new shared variable x, add x = ti to Lg, and replace ti by x in L. Handle
similarly all occurrences of the form t1 = t2 in a quantified formula in L. This
is possible since no quantified variable is used as an argument of a function;

1 See for instance [6] for a formal presentation of the separation technique.
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– for every uninterpreted predicate p that belongs to a quantified formula in
L, add every literal p(t1, . . . tn) (or ¬p(t1, . . . tn)) from L to L∀. The previous
two steps ensure that here, t1, . . . tn are variables;

– add every quantified formula from L to L∀. Those formulas are universal
formulas, and the previous steps ensures that they are function-free.

– finally, every literal in L that does not belong to L∀ is added to Lg.

In this algorithm:

– the computed L∀ is a set of function-free universal formulas, i.e. a BSR theory;
– the initial L is T -satisfiable if and only if Lg ∪ L∀ is also T -satisfiable;
– the shared terms in Lg and L∀ are all variables.

To summarize, studying the T -satisfiability of a given formula with operators
as described in Figure 1 can be reduced to studying the T -satisfiability of sets
Lg ∪L∀. Another point of view is to study the satisfiability of the sets of literals
Lg, in the combination of the disjoint theories T and L∀. In the following sections,
we show that this problem is decidable, for any decidable theory T , as long as
it is possible to determine if Lg accepts a T -model of a given cardinality.

5 Combining a BSR theory with the empty theory

The method in the previous section leads to checking the satisfiability of a set
of literals Lg in the union of T and a BSR theory L∀ (Lg and L∀ share only
variables). We assume in this section that T is the empty theory. That is, every
function and predicate in Lg is left uninterpreted.

The classical Nelson-Oppen combination scheme cannot be used, since the
theory L∀ is not necessarily stably-infinite, that is, it may be satisfiable only
in finite models. For instance, if the original formula uses the “Enumerate”
operator, the resulting sets of formulas may contain a formula of the form

∀x. x = a ∨ x = b ∨ x = c

which would make L∀ non stably-infinite; the formula accepts models of cardi-
nality at most three. However we known that the empty theory can be combined
with any theory, not only stably-infinite ones [7, 17]. We now recall the combi-
nation algorithm.

Given a partition P of a set of terms, an arrangement induced by P is
the set of all equalities between any two terms in the same class of P, and all
disequalities between any two terms in different classes in P. For instance, the
arrangement induced by {{x1, x2}, {x3}} is {x1 = x2, x1 6= x3, x2 6= x3}. Assume
we have to study the satisfiability of the separation L1∪L2 in the combination of
the stably-infinite disjoint theories T1 and T2, where Li (i ∈ {1, 2}) only contains
symbols from Ti and variables. The classical result for combining stably-infinite
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disjoint theories states that L1 ∪ L2 is satisfiable in the combination of T1 and
T2 if and only if there exists an arrangement A on the set of shared variables
between L1 and L2, such that Li ∪ A is Ti-satisfiable, for i = 1 and i = 2.
The procedure terminates, since the set of shared variables is finite, as well as
the set of arrangements. In the case where T1 is the empty theory, and T2 is
any theory (not necessarily stably-infinite), the result still holds [7], but the
arrangement has to be considered on a larger set of terms; the arrangement has
to be considered on all terms and variables in L1 ∪ L2.

2

Applied to our present case, Lg is satisfiable in the combination of the empty
theory and L∀, if and only if there exists an arrangement A of all ground terms
and free variables in Lg such that A∪ Lg and A∪ L∀ are both satisfiable.

Example 3. As an application, consider again the previous example:

{a = b, A(f(a)),¬C(f(b)), ∀x. [A(x) ∨ B(x)] ≡ [C(x) ∧ D(x)]}

one has to study the satisfiability of the unions of the sets

Lg = {a = b, y = f(a), z = f(b)},

L∀ = {A(y),¬C(z), ∀x. [A(x) ∨ B(x)] ≡ [C(x) ∧ D(x)]},

which is equivalent to study the satisfiability of Lg in the combination of the
empty theory and L∀. The combination framework then ensures that Lg ∪ L∀

is satisfiable if and only if there exists an arrangement A of {a, y, z} (the other
terms being necessarily equal to one in this set) such that A ∪ Lg and A ∪ L∀

are satisfiable. There are well known decision procedures for both satisfiability
problems.

5.1 Towards an implementation

The set of formulas A ∪ L∀ is also a BSR theory. It is satisfiable if and only if
A∪ Linst is, where Linst is a set of well-chosen instances of formulas in L∀. This
leads to the following result:

Theorem 1. Given a theory T , a set of literals Lg, a BSR theory L∀ such that
Lg and L∀ only share variables, then Lg∪L∀ is satisfiable (in the empty theory) if
and only if Lg ∪Linst is, where Linst is a set of instances of L∀: for every formula
∀x1 . . .∀xnϕ(x1, . . . xn) in L∀ (ϕ(x1, . . . xn) being quantifier-free), and terms or
free variables t1, . . . tn in Lg ∪ L∀, Linst contains the formula ϕ(t1, . . . tn).

Example 4. Applying this result on the previous example:

Lg = {a = b, y = f(a), z = f(b)},

L∀ = {A(y),¬C(z), ∀x. [A(x) ∨ B(x)] ≡ [C(x) ∧ D(x)]},

2 Another approach considers arrangements on the set of shared variables only, computes minimal
cardinalities of models for the empty theory, and ensures there is a model with a larger (or equal)
cardinality for the other theory [17].
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gives the formula

{a = b, y = f(a), z = f(b), A(y),¬C(z), ϕ(y), ϕ(z), ϕ(a)}

where ϕ(x) = [A(x) ∨ B(x)] ≡ [C(x) ∧ D(x)].

Deciding formulas that only contain operators like those in Figure 1, can
be done easily using the capabilities implemented in any SMT-solver (for in-
stance [1, 12]): the ability to deal with a Boolean combination of terms that only
contain uninterpreted symbols. This language being handled very efficiently by
modern solvers, the tools do cope well even if the number of generated instances
is large. A näıve implementation can be realized by doing β-reduction, Skolem-
ization, and instantiation as a preprocess, feeding a Boolean combination of
terms with only uninterpreted symbols to the SMT-solver.

A working prototype has been implemented. We ran this prototype on the
translation of problems SET008+3p, SET064+1p, SET143+3p, SET171+3p,
SET580+3p, SET601+3p SET606+3p, SET623+3p, and SET609+3p from the
TPTP library [15]. Unsurprisingly, these are all solved in a few milliseconds.
We should however mention that it is not really relevant to compare these per-
formances with ones of the FOL provers, since the set theories in which the
problems are checked for satisfiability are not the same for both approaches. For
instance, our approach implicitly assume sets cannot contain other sets, whereas
no such assumption is made in the TPTP problems.

6 Combining BSR theories with arbitrary decidable

theories

In the previous sections we considered formulas that contain uninterpreted sym-
bols, as well as other symbols such as set and relation operators. We show in this
section that there is a decision procedure for formulas that contain such set and
relation operators and interpreted symbols from an arbitrary decidable theory
T , provided (1) there is a decision procedure for the arbitrary theory that is able
to state if there is a model of a given cardinality (2) set and relation operators
are applied on uninterpreted symbols only. We have to study the satisfiability
of the set of ground literals Lg in the combination of the disjoint theories T and
L∀, where Lg only contains symbols from T and variables.

Theorem 2. Given a theory T , a set of literals Lg, and a BSR theory L∀ such
that Lg and L∀ only share variables, then Lg is satisfiable in T ∪L∀ if and only
if there exists an arrangement A of variables shared by Lg and L∀ such that
A ∪ Lg has a T -model, and A ∪ L∀ has a model, both models having the same
cardinality.
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This theorem is an adaptation of the general result to combine non-stably-infinite
theories (see for instance [17]).

For theoretic discussions, the process of combining stably-infinite theories
usually implies guessing an arrangement on a set of variables. In practice, it
is equivalent, and more efficient that decision procedures exchange disjunctions
of equalities (see for instance [6] for a presentation of this equivalence). We can
imagine a similar treatment here for cardinalities. The decision procedures could
negotiate the size of the models by exchanging constraints. For simplicity, a näıve
decision procedure for the combination can be:

– build Lg and L∀ according to the method presented in section 4. Both sets
only share variables, and no symbol in L∀ is interpreted by T ;

– guess an arrangement A on shared variables. Notice there is only a finite
number of such arrangements: this guess can thus be replaced by a terminat-
ing loop;

– if the code on Fig. 2 returns “succeed” for A, the Lg ∪ L∀ is T -satisfiable;

– If every arrangement returns “fail” for the code on Fig. 2, Lg ∪ L∀ is T -
unsatisfiable.

The procedure concludes to T -satisfiability if and only if a model is found that
meets the conditions of Theorem 2. It remains to check that that every step
of the code on Fig. 2 is tractable. The test on line 1 is decidable since the T -
satisfiability problem for sets of literals is decidable, and since A∪ L∀ is a BSR
theory (decidable fragment). The results in the following section state that it
is possible to determine exactly what cardinalities are accepted for models of
any BSR theory, and in particular for A ∪ L∀: the tests on lines 3 and 7 are
decidable, and it is possible to enumerate (within finite time) the cardinalities
in line 4. The tests on lines 5, 8 and 13 are possible thanks to the condition
on theory T . For the test on line 15, checking if A ∪ Lg has a T -model with
cardinality greater or equal to k is simply reduced to checking the T -satisfiability
of A∪ Lg ∪

⋃

1≤i≤k

⋃

i<j≤k{ai 6= aj} where a1, . . . ak are fresh constants.

7 Cardinalities of BSR theories

The previous section states that to combine a BSR theory with another theory
is mainly a matter of getting the cardinalities of the models of the BSR theory.
We give now a necessary and sufficient criteria to determine if there is an infinite
model for such a theory, and if not, what are the finite cardinalities for which
there exists a model. For simplicity, we assume here that we have a BSR theory,
with no free variables, but only constants. If this requirement is not met, one can
transform the problem into an equivalent one by replacing free variables with
fresh constants.
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1: if A ∪ Lg is T -unsatisfiable or
A∪ L∀ is unsatisfiable then

2: return fail
3: if A ∪ L∀ only has finite models then

4: for each cardinality j of models of A∪ L∀ do

5: if A∪ Lg has a T -model with cardinality j then

6: return succeed
7: if A ∪ L∀ has an infinite model then

8: if A∪ Lg has an infinite T -model then

9: return succeed
10: else

11: k := the number of free variables and constants in A∪ L∀

12: for each j < k do

13: if A∪ Lg has a T -model with cardinality j and
A ∪ L∀ has a model with cardinality j then

14: return succeed
15: if A∪ Lg has a T -model with cardinality ≥ k then

16: return succeed
17: return fail

Fig. 2. Inspecting arrangement A

Given a BSR theory T using k constants, we first recall the simple result
that states that, if T has a model of (finite or infinite) cardinality i greater than
k, then it has a model for every cardinality j such that k ≤ j ≤ i. We then
show that there is a number k′ (> k), computable from T , such that, if there
is a model of cardinality greater or equal to k′, then there is an infinite model.
Altogether, this implies that T either has a model for every cardinality greater
or equal to k (example in Figure 3), or there exists a j smaller than the known,
finite, number k′, such that T has a model of every cardinality between k and j,
and no model of cardinality greater than j (example in Figure 3). Alternatively,
one can also decide if a theory with n distinct quantified variables has an infinite
model by checking if it has a n-repetitive model (see subsection 7.2).

0 k k′

0 k k′j

Fig. 3. Theories with infinite (above) and finite cardinalities.
A dot means there is a model with given cardinality.
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7.1 BSR theories and finite models

Intuitively, the following theorem states that, given a model for a BSR theory,
the elements in the domain that are not assigned to ground terms (i.e. the
constants) can be eliminated, keeping it a model:

Theorem 3. Given a model M for a BSR theory T with domain D, then M′

such that

– the domain is a non-empty set D′ ⊆ D, with M[a] ∈ D′ for every constant
a in T ;

– for every predicate p, M′[p] is the restriction of M[p] to the domain D′;

is also a model for T

Proof. Since M is a model for T , for each closed formula ∀x1 . . . xn.ϕ in T (where
ϕ is function and quantifier-free), and for all d1,. . . dn ∈ D′ ⊆ D, Mx1/d1,...xn/dn

is a model for ϕ. This also means that, for all d1,. . . dn ∈ D′, M′
x1/d1,...xn/dn

is a
model for ϕ, and finally that M′ is a model for ∀x1 . . . xn.ϕ. ⊓⊔

Corollary 1. Assume k is the number of constants in a BSR theory T , or 1
if T has no constant. If there is a T -model of cardinality j, there is a finite
T -model with any cardinality i with k ≤ i ≤ j. If there is an infinite T -model,
there is a T -model with any cardinality i with k ≤ i.

7.2 BSR theories and infinite models

We known that a BSR theory either has models for every finite and infinite
cardinality greater than k, or it only has models of finite cardinalities all smaller
than a number k′. What is missing is a way to decide if one theory has an infinite
model or not. If it has no infinite model, the number k′ can be computed (näıvely)
by checking all finite models by increasing cardinalities until k′ is found.

The following definition expresses some symmetry properties of models. We
later show that the existence of an infinite model is equivalent to the existence
of a finite model having such symmetry properties.

Definition 1. Let M be an interpretation on domain D for a BSR theory T .
Let A = {M[a] | a is a constant in T } and B = D \ A. M is n-repetitive if
|B| ≥ n and if there exists a total order ≺ on elements in B such that

– for every m ≤ n;
– for every two strictly increasing (with respect to ≺) series e1, . . . em and

e′1, . . . e
′
m of elements in B;

– for every k-ary predicate symbol p used in T ;
– for every d1, . . . dk ∈ A ∪ {e1, . . . em};
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M[p](d1, . . . dk) = M[p](d′
1, . . . d

′
k), with d′

i = e′j if di = ej for some j, d′
i = di

otherwise. By extension, a theory is n-repetitive if it has a n-repetitive model.

Observe that, thanks to Theorem 3, a theory is n-repetitive if it has a n-
repetitive model M such that |B| = n, in the previous definition.

Example 5. Assume T is a theory with constants a1,. . . an0
, unary predicates

p1
1,. . . p

1
n1

, binary predicates p2
1,. . . p

2
n2

.
T is 1-repetitive, if and only if T ∪ R1(b) is satisfiable, with

R1(b) =def {b 6= a1, . . . b 6= an0
}.

In other words, a theory T is 1-repetitive if it accepts a model with an element
in the domain that is not assigned to a constant used in T .

T is 2-repetitive, if and only if

T ∪
⋃

i∈{0,1}

R1(bi) ∪ R2(b0, b1)

is satisfiable, with

R2(b0, b1) =def {b0 6= b1}

∪ {p1
i (b0) ≡ p1

i (b1) | i ∈ [1..n1]}

∪ {p2
i (b0, b0) ≡ p2

i (b1, b1) | i ∈ [1..n2]}

∪ {p2
i (aj, b0) ≡ p2

i (aj , b1) | i ∈ [1..n2], j ∈ [1..n0]}

∪ {p2
i (b0, aj) ≡ p2

i (b1, aj) | i ∈ [1..n2], j ∈ [1..n0]}

T is 3-repetitive, if and only if

T ∪
⋃

i∈{0,1,2}

R1(bi) ∪
⋃

i < j
i, j ∈ {0, 1, 2}

R2(bi, bj) ∪ R3(b0, b1, b2)

is satisfiable, with

R3(b0, b1, b2) =def {p
2
i (b0, b1) ≡ p2

i (b1, b2) ≡ p2
i (b0, b2) | i ∈ [1..n2]}

∪ {p2
i (b1, b0) ≡ p2

i (b2, b1) ≡ p2
i (b2, b0) | i ∈ [1..n2]}

Theorem 4. If a BSR theory T with n distinct quantified variables has a n-
repetitive model with cardinality k, then it has (n-repetitive) models with any
(finite or infinite) cardinality k′ ≥ k.

Proof. Assume M is a n-repetitive T -model of cardinality k on domain D. Let
A be {M[a] | a is a constant in T }, and B = D \A (|B| = k−|A| ≥ n). Assume
also that ≺ is the total order on B mentioned in Definition 1. Choose a strictly
increasing (with respect to ≺) series of n distinct elements e1, . . . en ∈ B.

Let E be such that E∩D = ∅, and |D∪E| = k′. We define an interpretation
M′ on domain D′ = D ∪ E. The total order ≺ on B is extended to B ∪ E. We
then require that M′[a] = M[a] for every constant a in T , and that, for every
m-ary predicate p in T and every d′

1, . . . d
′
m ∈ D′:
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– if |{d′
1, . . . d

′
m} \ A| > n, M′[p(d′

1, . . . d
′
m)] does not matter;

– if {d′
1, . . . d

′
m} ⊆ D, M′[p(d′

1, . . . d
′
m)] = M[p(d′

1, . . . d
′
m)];

– otherwise, let e′1, . . . e
′
n be a strictly increasing series including all elements

in {d′
1, . . . d

′
m}\A. M′[p](d′

1, . . . d
′
k) = M[p](d1, . . . dk), with di = ej if d′

i = e′j
for some j, di = d′

i otherwise.

By construction, M′ is n-repetitive.
Every formula in T is of the form ∀x1 . . . xm.ϕ(x1, . . . xm), with m ≤ n. For

all elements d′
1 . . . d′

m ∈ D′, the truth value for M′
x1/d′

1
,...xm/d′m [ϕ(x1, . . . xm)] is

Mx1/d′
1
,...xm/d′m [ϕ(x1, . . . xm)] (i.e. true), if {d′

1, . . . d
′
m} ⊆ D. Otherwise, assume

e′1, . . . e
′
n is a strictly increasing series including all elements in {d′

1, . . . d
′
m} \ A.

Since the model M′ is n-repetitive, then M′
x1/d′

1
,...xm/d′m

[ϕ(x1, . . . xm)] is equal

to Mx1/d1,...xm/dm
[ϕ(x1, . . . xm)] (i.e. true) where di = ej if d′

i = e′j for some j,
di = d′

i otherwise. Finally, M′ is a model of ∀x1 . . . xn.ϕ(x1, . . . xm). ⊓⊔

Theorem 5. If a BSR theory T has a model with a cardinality greater than
a number k′ computable from the theory, then it has a n-repetitive model on
domain D = A ∪ B, where A = {M[a] | a is a constant in T }, A ∩ B = ∅ and
|B| = n.

Proof. Assume T has a finite model M′ on domain D′. We define the sets
A = {M′[a] | a is a constant in T } and B′ = D′ \ A. Choose an order ≺ on B′.
We now compute the size of B′ so that there exists a n-repetitive model. A
suitable k′ can then be computed from |B′|.

Given two ordered (with respect to ≺) series e1, . . . em and e′1, . . . e
′
m of ele-

ments in B′, we will say that the configurations for e1, . . . em and e′1, . . . e
′
m are

the same if for every k-ary predicate p, and for every d1, . . . dk ∈ A∪{e1, . . . em},
M′[p](d1, . . . dk) = M′[p](d′

1, . . . d
′
k), with d′

i = e′j if di = ej for some j, d′
i = di

otherwise. Notice that there are only a finite number of different configura-
tions for m elements in B′: more precisely a configuration is made of at most
b =

∑

p [m + |A|]arity(p) Boolean values, where the sum ranges on all predicates
in the theory. Thus the number of different configurations is bounded by C = 2b.

Understanding colors as being configurations, one can use Theorem 6 (in
Appendix A) to state that, if |B′| > f(n, N, C), then there exists a model of
cardinality |A|+N for T with the same configuration for any m ordered distinct
elements. Recursively applying this procedure for every m ∈ [1..n], it is possible
to compute the cardinality k′ of the original model so that there exists a n-
repetitive model with the suitable cardinality. ⊓⊔

From both previous theorems:

Corollary 2. Given a BSR theory T using n distinct quantified variables. T
has an infinite model if and only if it has a n-repetitive model.

Checking if a BSR theory T has an n-repetitive model is reduced to check-
ing the satisfiability of another BSR theory T ′, basically, T augmented with
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some quantifier-free formulas. For formulas containing operators discussed in
Section 3, we have n ≤ 3, and predicates have an arity of at most 2: T ′ is given
in Example 5. If T does not have an infinite model, then there is a maximum
cardinality j for its models. The theory accepts a model for every cardinality
between the number k of constants in T and j. This number j is bounded by a
computable number k′. Unluckily, we currently lack an efficient (if there exists)
way to compute this j. A näıve process to determine this number is to try every
cardinality greater than k; the process will eventually terminate. Finally notice
that this inefficient process is not necessary when combining a BSR theory with
theories that only have infinite models.

8 Conclusions

In Section 3, we noticed that the use of some operators to encode sets, properties
on relation,. . . would imply to have to verify the T -satisfiability of FOL formu-
las with quantifiers. It was also shown that this satisfiability problem can be
reduced to the satisfiability problem of literals in the combination of the theory
T and another decidable theory, precisely a set of Bernays-Schönfinkel-Ramsey
formulas.

Combining a BSR theory with the empty theory is possible, and this is the
basis to build a decision procedure for formulas that contain uninterpreted func-
tions and predicates, some operators on sets, relations,. . . A prototype has been
built, and the first results are promising. When formulas containing operators
from Section 3 have to be studied in some decidable (non-empty) theory T , the
combination process with the BSR theory is more complicated. The method pre-
sented in Section 6 is not in itself a practical procedure: its complexity prevents
a direct application. However we believe that it can be the basis for a useful
tool, with implementation-oriented improvements and proper heuristics.

We mainly target the B [2] and TLA+ [9] formal methods. Those language
heavily rely on some set theories, and we believe that the results in this pa-
per can help automating the proof of some parts of the verification conditions,
which often mix arithmetic symbols, uninterpreted functions, and set operators.
Verification conditions generated within those formal methods are usually small,
within reach of a decision procedure even if it is inefficient. For verification con-
ditions that are not fully within the language of the decision procedure, we built
a certified (through proof reconstruction [8, 10]) cooperation between a proof
assistant and the automated tool. At the present time, this cooperation can be
used to delegate the proof of theorems from Isabelle to our prototype implemen-
tation (see Section 5), and have the proofs rechecked by the kernel of Isabelle,
ensuring consistency of the whole cooperation of both tools.
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A direction for further research is to investigate how to use the knowledge
and engineering embedded in state-of-the-art first order provers (for instance [14,
13, 4]) to handle the BSR theories within a combination of decision procedures.

Acknowledgments: I am grateful to Yves Guiraud, Yuri Gurevich, Stephan
Merz, Silvio Ranise, Christophe Ringeissen, and Duc-Khanh Tran for the inter-
esting discussions on this subject.
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A n-monochromatic theorem

We define a n-subset of S to be a subset of n elements of S. An n-overgraph in
S is a set of n-subsets of S. In particular, a 2-overgraph is a (undirected) graph.
The complete n-overgraph of S is the set of all n-subsets of S, and its size is
the cardinality of S. A n-overgraph G is colored with a set of colors C if there
is a coloring function that assigns an element in C to every n-subset in G. In
particular, a colored 2-overgraph (that is, a colored graph), is a graph where
all edges are assigned a color. A colored n-overgraph is monochromatic if the
coloring function assigns the same color to every n-subset. A colored n-overgraph
A is a sub-overgraph of a colored n-overgraph B if each n-subset S ∈ A belongs
to B, and if the color associated to S is the same in both colored n-overgraphs.

Theorem 6. There exists a computable function f such that, for every set of
colors C, for every n, N ∈ N, and every complete n-overgraph G colored with
C, if the size of G is greater or equal to f(n, N, |C|), there exists a complete
monochromatic n-sub-overgraph of G of size greater or equal to N .

Proof. We proceed by induction on n and the size of C.
Notice first that f(n, N, 1) = N for every n, since a n-overgraph is colored

with a unique color is monochromatic. Also, f(1, N, 2) = 2N , since a set of 2N
elements that have one color in a pair {b, w} contains at least N elements of the
same color.

We now consider f(n, N, 2). Assume G is a complete n-overgraph in S colored
by c using colors in {b, w}. We build the series Si and ei such that

– S0 = S
– ei is any element in Si

– To build Si+1, we consider the complete (n−1)-overgraph in Si\{ei}, colored
by cei

, where cei
assigns to each (n − 1)-subset A of Si \ {ei} the color given

by c to the n-subset A ∪ {ei}. Using the induction hypothesis, if |Si| ≥
f(n− 1, x, 2), there is a subset Si+1 ⊆ Si \ {ei} such that |Si+1| ≥ x and the
complete (n − 1)-overgraph of Si+1 colored by cei

is monochromatic.

Let B be the set of ei such that the (n−1)-overgraph in Si+1 is colored by b, and
W be the set of ei such that the (n − 1)-overgraph in Si+1 is colored by w. The
n-overgraphs in B and W colored by c are monochromatic. To have |B| ≥ N or
|W | ≥ N it is sufficient that |S2N | = n − 1. Defining function g to be such that
g(∗) = f(n − 1, ∗, 2), it is sufficient to have |S0| ≥ gN(N)

It remains to define f(n, N, |C|) when |C| > 2. Assume G is a n-overgraph
in S colored by c using colors in C ∪ k (k /∈ C). We now consider all colors
in C as one sole color; using the induction hypothesis, if |S| ≥ f(n, N ′, 2) then
there exists S ′ ⊆ S such that |S ′| ≥ N ′ and the complete n-overgraph of S ′

colored by c only uses colors in C, or is monochromatic with color k. Any way,
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if one chooses N ′ as being greater than f(n, N, |C|), there exists a subset S ′′

of S ′ such that |S ′′| ≥ N and the complete n-overgraph of S ′′ colored by c is
monochromatic. We thus define f(n, N, |C| + 1) = f(n, f(n, N, |C|), 2). ⊓⊔


