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Abstract. We present a formally verified reference implementation of the JAVA CARD

API. This case study has been developed with the KeY verification system. The KeY
system allows us to symbolically execute the JAVA source code of the API in the KeY
verification environment and, in turn, prove correctness of the implementation w.r.t.
formal specification we developed along the way. The resulting formal API framework
(the implementation and the specification) can be used to prove correctness of any JAVA

CARD applet code. As a side effect, this case study also serves as a benchmark for the
KeY system. It shows that a code base of such size can be feasibly verified, and that
KeY indeed covers all of the JAVA CARD language specification.

1 Introduction

We present a formally verified reference implementation of the JAVA CARD API
version 2.2.1 [11]. JAVA CARD is a technology used to program smart cards and it
comprises a subset of the desktop JAVA; a subset of the programming language
itself, and a cut down version of the API. Reference implementations of the API
that are normally available for JAVA CARD are developed for a particular running
environment, usually a JAVA CARD simulator or emulator. Some of the API rou-
tines are not implementable in JAVA alone. For example, JAVA CARD transaction
mechanism functionality is normally provided by the JAVA CARD VM and/or the
operating system of the actual smart card hardware. A simulator provides similar
functionality through JAVA Native Interface (JNI). Thus, the API implementa-
tion consists of the JAVA part and the JNI part, the latter reflecting the low-level
behaviour of the card. Both parts together enable the API implementation to
run on a simulator. In contrast, our API implementation has been developed
for the KeY interactive verification system1 [1]. That is, the implementation is
designed to be symbolically executed in a formal verification environment. Sim-
ilarly to a simulator, the KeY verifier also needs to handle low-level JAVA CARD

specific routines. In this case the JNI functionality is provided by the formal
model of the JAVA CARD environment embedded in the KeY verifier logic; a set
of specialised logic rules to symbolically execute JAVA CARD native method calls.
Figure 1 shows corresponding architectures of the API implementations.

Along with the implementation we developed a set of formal specifications
for the API. And, naturally, we used the KeY system to prove the correctness

1 http://www.key-project.org
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of our implementation w.r.t. to the specification. The proving is done by means
of symbolic execution of the JAVA source code of the API implementation in
the KeY system and then evaluating the specification formulae on the resulting
execution state.

Fig. 1. Architecture of
JAVA CARD API imple-
mentations

This case study serves three main goals: (i) an API
framework (implementation and specification) for ver-
ification of JAVA CARD applet source code, (ii) consis-
tency of the informal API specification [5], and (iii) as
a benchmark for the KeY system and as a verification
case study itself that explores the usability of formal
methods in practice. We elaborate on these goals in
the following paragraphs.

In the current PinPas JAVA CARD project2 we inves-
tigate fault injection attacks on smart cards. A possi-
bility for a fault injection calls for appropriate coun-
termeasures. One of such countermeasures are simply
modifications to JAVA applet source code to detect and
neutralise faults. Such modifications can result in a
complex code. One of our goals in the project is to be able to formally verify such
modified source code, i.e., that the more complex fault-proof code behaves the
same way as the simple fault-sensitive code, as described in earlier work [4]. For
this we need a verification tool that faithfully reflects JAVA CARD programming
language semantics, and also a faithful reflection of the API behaviour. The veri-
fication tool of our choice, the KeY system, already provides the formalisation of
the whole of JAVA CARD programming language semantics. We said earlier that
JAVA CARD is a subset of JAVA. In practice, because of the specifics of the smart
card technology, JAVA CARD introduces additional complications to the language.
Namely, two different kinds of writable memory (persistent EEPROM and tran-
sient RAM), an atomic transaction mechanism, and applet firewall mechanism.
All these features are embedded into the JAVA CARD Virtual Machine (JCVM)
running on a card. In effect, this sometimes changes the semantics of the primi-
tive JAVA statements in the context of a smart card application. The KeY system
already supports all of the mentioned JAVA CARD specific features [1, Chapter 9],
with a notable exception of the firewall mechanism, which is being integrated
into KeY in parallel to this work.

When it comes to the API behaviour, however, our approach so far was to
specify and implement only those API methods that are required for a given
verification task at hand [1, Chapter 14]. Ultimately, to be able to verify any

given JAVA CARD applet code w.r.t. wide range of properties, the specification
and the implementation for the whole of the API should be present. The need

2 http://www.win.tue.nl/pinpasjc/
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for having both the specification and implementation is justified as follows. First
of all, reasoning on the level of interfaces, i.e., relying on method contracts only,
is not sufficient for some properties. In particular, strong invariant properties re-
quire the evaluation of all intermediate atomic states of execution, including the
ones that result from the execution of an API method. Moreover, in principle,
method contracts cannot be applied in the context of JAVA CARD transactions.
Here, sometimes a special “transaction aware” contract is needed, which in some
cases can only be constructed by hand based on the actual implementation of the
method. In essence, one needs to state the behaviour of the method in terms of
conditionally updated data, rather than the actual data. For some API methods
that interact heavily with the transaction mechanism giving a suitable contract
is not possible at all [1, Chapter 9]. Finally, in some few cases, formal reasoning
based on the code instead of the specification can be simply more efficient.

We tried to make the reference implementation as faithful as possible, i.e.,
closely reflecting the actual card behaviour. The official informal specifications
were closely followed, and sometimes also the actual cards were tested to clarify
the semantics of some API methods. However, some JAVA CARD aspects had to
be omitted in the implementation and it is obvious that certain gaps will always
remain between our reference implementation executing in a formal verification
environment and API implementations executing on actual smart cards. We
discuss those issues in detail in Section 3.

One of the other goals of the PinPasJC project is to discover inconsistencies
between the actual cards and the official informal JAVA CARD specifications, i.e.,
to simply find implementation bugs on the cards. Implementing the whole of the
JAVA CARD API gave us a good chance to review the informal specification and
identify “hot spots” – descriptions that are likely to be ignored or misinterpreted,
unintentionally or on purpose. We mention this briefly in Section 4.

Finally, our reference implementation serves as a verification case study. First
of all, it gives a general idea of how big a code base can be subjected to for-
mal verification by the KeY tool. The JAVA CARD API consists of 60 classes
adding up to 205KB of JAVA source code (circa 5000 LoC) and 395KB of formal
specifications (circa 10000 LoC). The KeY system managed to deal with it giv-
ing satisfying verification results, although not without problems, see Section 4.
Moreover, the case study shows the compliance of the KeY system to the JAVA

CARD language specification – the reference implementation utilises practically
all of the JAVA CARD language subset and was successfully verified by the KeY
system. Last, but not least, this case study will serve to further optimise and
tune the KeY system in terms of performance (resource-wise) and minimising
user interaction.

Related Work. The work we present here is one of many that formally treats the
JAVA CARD API library. However, to the best of our knowledge, we are the first
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ones to give a relatively full, (soon) publicly available reference implementation
of version 2.2.1 of the API together with specifications. The older JAVA CARD

development kits distributed by Sun contained a reference implementation of
the API up to version 2.1.1.3 Since that version the source code of the API is no
longer available with the development kits. Our code borrows ideas from Sun’s
reference implementation, there are however two major differences to be noted.
First, our implementation treats the newer API version which introduces many
new features. Secondly, our back-end system is the KeY JAVA CARD model, while
Sun’s API is implemented for the JCWDE simulator.

When it comes to formal treatment of the API, a full set of JML specifica-
tions4 [9] for the API version 2.1.1 has been developed for the LOOP verification
tool [6] and ESC/JAVA2 [2]. These efforts, however, do not include the implemen-
tation itself, only specifications. As a side effect of our work, we also constructed
lightweight JML specifications of the API version 2.2.1 for ESC/JAVA2.5 More-
over, in an earlier work we investigated specification of the JAVA CARD API in
OCL [7].

Recently a work has been published on a method to formally verify native
API implementations based on specification refinement [10]. Three levels of spec-
ifications for the native API code are given in the Coq language: functional speci-
fication, high-level description, and low-level description. The last level is not yet
the actual implementation of the code on the card (normally written in C or even
assembly), but is claimed to have a one to one correspondence with the code run-
ning on the card. The correctness of the low-level description is verified by means
of refinement relation between the three levels of specification. The main goal is
to verify the actual API implementations found on cards, while we aim at pro-
viding a JAVA source code verification framework to be used outside of the card.

Structure of the Paper. The rest of this paper is organised as follows. Section 2
describes tools and methodologies we used: the KeY system, its logic, the JAVA

CARD formal model on top of which our reference implementation was written,
and a discussion about the choice of the specification language. Section 3 de-
scribes the implementation and its specification in more detail with samples of
both, while Section 4 gives some insights into the verification effort and discusses
our experience. Finally, Section 5 concludes the paper.

2 Tools and Methodology

In this section we describe the main building blocks of our case study: the KeY
system, the KeY model of the JAVA CARD environment, and briefly the JAVA CARD

Dynamic Logic, which we used a specification language.

3 http://java.sun.com/products/javacard/dev_kit.html
4 http://www.sos.cs.ru.nl/research/escjava/esc2jcapi.html
5 Available at http://www.cs.ru.nl/~woj/software/software.html
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2.1 Verification Tool

The verification tool of our choice for this case study is the KeY system. The
KeY system is a highly automated interactive program verifier for JAVA and JAVA

CARD programs. Currently KeY supports verification of sequential JAVA without
floating point arithmetic and dynamic class loading, and practically all of JAVA

CARD
6 including the JAVA CARD transaction mechanism and (non)persistence of

the JAVA CARD memory [1, Chapter 9]. The formalism behind the KeY system
is the JAVA CARD Dynamic Logic (JAVA CARD DL) [1, Chapter 3] built on top
of first order logic. The rules of the logic are used to symbolically execute JAVA

programs in the KeY prover and then evaluate the properties to be verified. We
describe this idea with a simple example. Take the following JAVA code:

public void decreaseCounter() { if(counter > 0) counter--; }

What we would like to specify and prove is that assuming the counter is non-
negative it will stay non-negative after the execution of the method, i.e., that the
method preserves the invariant counter >= 0. A corresponding JAVA CARD DL
formula would take the following form (we use the actual KeY system syntax):

self != null & self.counter >= 0 ->

\<{ self.decreaseCounter(); }\> self.counter >= 0

The formula itself does not contain any class or method definitions, these are
implicitly present in the prover. The left side of the implication (->) represents
the state in which we are about to execute the program, i.e., the precondition of
the program. The program itself, calling of a method decreaseCounter on the
object self, is included in the diamond modality \<·\>. The formula attached
to the modality is to be evaluated after the program in the modality executes,
thus, the formula represents the postcondition of the program. In JAVA CARD DL
the diamond modality requires the program to terminate and do so in a non-
abrupt fashion. In particular, the program is not allowed to throw any exceptions.
Contrary to the diamond modality, the box modality \[·\] does not require
(non-abrupt) termination. In our work, however, the stronger (for deterministic
programs) diamond semantics is always used.

The first few simplification steps transform the formula above into a JAVA

CARD DL sequent:

self != null, self.counter >= 0 ==>

\<{ self.decreaseCounter(); }\> self.counter >= 0

The left side of the sequent (marked by ==>), the antecedent, represents the
assumptions and the right side, the succedent represents the proof goal. The
next few rules of the symbolic execution unfold the sequent into two branches:

6 With a notable exception of the JAVA CARD firewall mechanism. However, this does not limit the
set of JAVA CARD programs that can be verified with KeY, only the set of properties, see Section 3
for details.



Fully Verified JAVA CARD API Reference Implementation 141

self != null, self = null, self.counter >= 0 ==>

\<{ throw new NullPointerException(); }\> self.counter >= 0

self != null, self.counter >= 0 ==>

\<{ if(self.counter > 0) self.counter--; }\> self.counter >= 0

The first branch represents the null value check for accessing the object self.
Whenever an object is accessed (field access or method call), the JAVA CARD DL
calculus establishes non-nullness of the referenced object which, if not satisfied,
would cause a null pointer exception. This branch is easily closed (proved) by
a contradiction in the antecedent self = null and self != null. We skip
further null pointer checks in the rest of the example.

The JAVA CARD DL rule for the if statement splits the second sequent into
two branches that correspond to the execution paths of the if statement:

self != null, self.counter >= 0, self.counter > 0 ==>

\<{ self.counter--; }\> self.counter >= 0

self != null, self.counter >= 0, self.counter <= 0 ==>

\<{ }\> self.counter >= 0

The second branch does not contain any program in the modality anymore, the
modality is removed and the postcondition can be evaluated to true based on the
assumptions. The first branch contains an assignment. Applying a corresponding
JAVA CARD DL rule results in a state update of the program under execution,
which is represented in the following way:

self != null, self.counter >= 0, self.counter > 0 ==>

{self.counter := self.counter - 1}\<{ }\> self.counter >= 0

JAVA CARD DL state updates are very much like JAVA assignments, except that
they are only allowed to appear in their canonical form, in particular, the right
hand side of an update has to be side effect free. Further steps in the proof
remove the empty modality from the sequent and apply the state update on the
formula that is attached to it:

self != null, self.counter >= 0, self.counter > 0 ==>

self.counter - 1 >= 0

This sequent is easily closed (proved) by simple integer arithmetic reasoning.
Obviously, this simple example cannot discuss all of the details of the logic,

in particular, how dynamic method binding is done or how object aliasing is
handled by the state update mechanism. All the details can be found in [1,
Chapter 3]. However, the last thing we want to discuss here is the treatment
of exceptions. The diamond modality requires that no exceptions are thrown.
Nevertheless, one can easily construct a proof obligation stating that a method
is allowed to throw a given kind of exception by simple program transformation:

exc = null & ... -> \<{ try { self.decreaseCounter(); }

catch(SomeException e) { exc = e; } }\> self.counter >= 0
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Here, SomeException possibly thrown by method decreaseCounter is caught by
the try-catch block resulting in a non-abruptly terminating program. Moreover,
it is possible to distinguish the abrupt termination state in the postcondition by
making a case distinction on the value of exc. A non-null value of exc determines
that an exception indeed occurred. This exception treatment is essential to how
exceptions are treated when higher level specification languages are translated
into JAVA CARD DL. The KeY system provides interfaces for both JML [8] and
OCL [14]. A specification written in JML or OCL together with the associated
code is automatically translated into JAVA CARD DL and then can be verified
with the KeY prover. If the specification happens to state exceptional behaviour,
e.g., with JML’s signals clause, the mechanism described above is used during
translation.

2.2 JAVA CARD Native Interface

Each JAVA CARD API implementation relies on a native interface to the under-
lying smart card execution environment (actual hardware or a simulator). Our
implementation is meant to be symbolically executable in the KeY system. Thus,
the native code interface has to be provided by KeY itself. For this purpose, we
equipped the KeY system with a dedicated JAVA class with a number of JAVA

CARD specific native methods. As a convention all such methods are named with
a jvm prefix. Here is an excerpt from the KeYJCSystem class:

public static native byte jvmIsTransient(Object theObj);

public static native byte[] jvmMakeTransientByteArray(

short length, byte event);

public static native void jvmBeginTransaction();

public static native void jvmCommitTransaction();

public static native void jvmArrayCopy(byte[] src, short srcOff,

byte[] dest, short destOff, short length);

Whenever the KeY system encounters a call to one of these methods an axiomatic
JAVA CARD DL rule is used to reflect the result of execution in the KeY verifier.
For example, a call like this:

\<{ transType = KeYJCSystem.jvmIsTransient(obj); ... }\> ...

results in a state update of the following form:

{transType := obj.<transient>}\<{ ... }\> ...

Here <transient> is an implicit attribute associated with each object in the
KeY JAVA CARD model that indicates whether a given object is persistent (kept
in card’s EEPROM) or transient (kept in RAM). For example, the code resulting
from the execution of jvmMakeTransientByteArray sets this attribute to event

in the array that is being created. The value of event indicates on which event
(card reset or applet deselection) the contents of the transient array should be
cleared.
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All of the native methods declared in the KeYJCSystem class have such corre-
sponding JAVA CARD DL axiomatic rules. Then it is possible to give the reference
implementation of the JAVA CARD API in terms of this native interface, for ex-
ample:

public class JCSystem {

public static byte isTransient(Object theObj){

if(theObj == null) return NOT_A_TRANSIENT_OBJECT;

return KeYJCSystem.jvmIsTransient(theObj); }

public static byte[] makeTransientByteArray(short length, byte event)

throws SystemException, NegativeArraySizeException {

if(event != CLEAR_ON_RESET && event != CLEAR_ON_DESELECT)

SystemException.throwIt(SystemException.ILLEGAL_VALUE);

if(length < 0) throw KeYJCSystem.nase;

return KeYJCSystem.jvmMakeTransientByteArray(length, event); } }

2.3 Specification Language

The KeY system supports specifications written in JML or OCL. OCL is not best
suited for a case study like this one, it is relatively high level and not too closely
coupled to JAVA [7]. A perfect solution would be to use JML, which provides a
specification language closely related to JAVA. Moreover, large parts of existing
JML specifications for JAVA CARD API [9] could be reused. JML too, however,
currently poses one major problem for this case study, namely, the semantics
of the generated proof obligations (or rather method contracts associated with
a given class and method specification), and the current inability of KeY to
manipulate easily the way the contracts are generated. Without going into too
much detail, we want our contracts to preserve invariants for the objects of our
choice. In most cases this is simply the object a given method is invoked on, and
possibly objects passed as parameters or stored in instance attributes. Currently
the KeY system does not allow such fine grained selection of object invariants
when generating proof obligations from JML specifications.

To solve this problem, we used JAVA CARD DL itself as a specification lan-
guage, i.e., provided readily generated JAVA CARD DL contracts customised to
our needs. This approach does not introduce any complication into the process
of constructing specifications. The semantics of JAVA CARD DL expressions and
the actual syntax is very close to those of JML. The main difference is that a
JAVA CARD DL specification already constitutes a full method contract, thus, one
has to manually specify which invariants for which objects are to be included
in the precondition and the postcondition of the method. For example, suppose
we have the following class with JML annotations:

public class MyClass {

int a=0; //@ invariant a >= 0;

/*@ requires val >= 0; ensures a = val; assignable a; @*/

void setA(int val) { a = val; } }
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Then, assuming that we want to establish preservation of the invariant only for
one instance of the class (self), the corresponding JAVA CARD DL contract takes
the following form:

MyClass_setA_contract { \programVariables { MyClass self; int val; }

self.a >= 0 & val >= 0 ->

\<{ self.setA()@MyClass; }\> (self.a = val & self.a >= 0)

\modifies { self.a } };

One more advantage of specifying contracts directly in JAVA CARD DL is
the possibility to take “shortcuts”. For example, one can directly specify the
persistency type of an object by referring to its <transient> attribute. In JML
that would require including the isTransient method call in the specification.
Such shortcuts improve considerably on the size of the resulting proofs.

Our approach of considering invariants for single object instances assumes
that changes to one instance of an object cannot influence the invariant of an-
other instance. That is, we assume there is no inter-object data aliasing. To get
confidence that this is indeed the case we would also have to prove that data
is properly encapsulated within objects. Currently we cannot do this in KeY
in a simple way, proof obligations for proving encapsulation have to be created
manually [1, Section 8.5.2]. For a case study of this size this is infeasible. It is of
course also possible to employ other formal techniques to prove data encapsula-
tion, for example data universes [3]. On the other hand, for the JAVA CARD API
this is not a big issue. Our implementation hardly ever copies data by reference
and declares most of the relevant data private, which prohibits direct violation
of other objects’ invariants.

Finally, we should mention that the KeY JML front-end undergoes heavy
refactoring at the moment (partly because of the described deficiencies). Once
complete, verification based on JML version of our specification should be pos-
sible.

3 Implementation and Specification of the API

The JAVA CARD API [11, 12] provides an interface for smart card specific rou-
tines. It is relatively small (60 classes and interfaces) and does not really share
common features with the regular desktop JAVA API. Only the very basic classes
(like Object and NullPointerException) are present in both APIs. Apart from
that the JAVA CARD API version 2.2.1 provides support for the following smart
card specific features: JAVA CARD applets, APDU (Application Protocol Data
Units) communication, AID (Applet IDentifiers) registry lookup, owner PIN ob-
jects, the atomic transaction mechanism, JAVA CARD inter applet object sharing
through the JAVA CARD applet firewall, the JAVA CARD Remote Method Invo-
cation (RMI) interface, cryptographic keys and ciphers, and simple JAVA CARD

utility routines. The specifics of the JAVA CARD platform requires the API to have
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a small memory footprint. Thus, JAVA CARD does not support strings and asso-
ciated classes, collections, etc. Moreover, most of the classes that are present in
the API are modified to enable low resource usage. For example, cryptographic
routines are implemented with a smaller amount of interfaces and methods (com-
pared to JAVA Cryptography Extensions) and operate only on byte arrays.

Our reference implementation follows the official documentation as closely
as possible. However, implementation of some features would be very difficult
and the amount of work required would not compensate for the possible gains.
Moreover, an over-engineered implementation would be very difficult to verify.
Another reason for leaving out certain features is the inability to formally reason
about them in KeY.

The first item on the unimplemented feature list are the cryptographic rou-
tines. Giving a functional implementation of ciphers and keys in JAVA that would
be easy to understand and verify is simply infeasible. In fact, actual smart cards
incorporate a cryptographic coprocessor and highly optimised native code is used
for the implementation of ciphers and keys. Thus, our implementation does not
contain any actual cryptographic routines. However, all the other features of
the cipher and key classes are implemented. For example, the lengths of encryp-
tion blocks depending on the encryption algorithm are accurately calculated, or
CryptoExceptions are reported on all conditions that do not involve checking
the result of cryptographic calculations, e.g., that the key is initialised or that
the plain text does not exceed its maximum allowed length.

The second unimplemented feature is the low-level APDU communication,
i.e., the routines that are normally responsible for sending and receiving data
from the card reader. Our implementation simply assumes that communication
happens behind the scenes implicitly. This is not a real limitation. During formal
verification of applet code it is sufficient to specify what the contents of the
APDU buffer is. Knowing that it has in fact been transported to or from the
card terminal is usually not necessary.

The third gap in the implementation are the routines related to RMI dis-
patching. Again, this would be possible, but very difficult to implement, result-
ing in a unjustifiably large code. On the other hand it is very easy to verify
RMI based applet code without knowing the details of how RMI methods are
dispatched. That is, it is not necessary to know how a given RMI method is mar-
shaled or unmarshaled to verify its code. Moreover, even if we did implement
the RMI dispatching routines in our API, it would not be possible to reason
about them with the KeY system. Such reasoning would require (at least par-
tial) support for class and method reflection which is not present in KeY at the
moment.

Finally, the JAVA CARD platform is capable of tracking and reporting memory
consumption on the card through API methods. This is implementable only to
certain extent, namely, dedicated methods for allocating transient memory can
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keep track of transient memory usage. Tracking persistent memory usage is not
possible. In principle, this would require hooking some JAVA code into the built-
in new operator. On the other hand, it would be possible to delegate the job of
tracking memory usage to KeY, i.e., in principle memory usage properties could
be verified during symbolic execution. The support for reasoning about memory
usage properties is yet another feature currently being integrated into KeY.

Apart from that our implementation includes all of the JAVA implementable
features specified in the official JAVA CARD documentation [11]. Notably, the
following items are taken into account.

The JAVA CARD firewall mechanism enforces object access checks on two
levels, the JAVA CARD VM level and the API level. All checks required on the
API level are included in our implementation. The routines to provide shareable
interface objects to client applets across the firewall are also implemented. In the
KeY system, the modelling of the checks on the VM level requires changes to the
JAVA CARD DL. The work to incorporate the firewall mechanism formalisation
into JAVA CARD DL is underway. Without this formalisation, the API firewall
checks are transparent during verification. All objects in verified JAVA CARD

programs are treated as if they are owned by the JAVA CARD system, i.e., all
objects are privileged and access is always allowed.

All features related to transaction mechanism and memory types (persistent
or transient) are included. In particular, it means that (i) methods specified in
the documentation to be atomic utilise the transaction mechanism in a suit-
able way, (ii) data that is required to be transient is kept in transient memory
blocks, and (iii) updates to all data that are to be excluded from the transaction
mechanism are implemented in a suitable way. A notable example of the last is
the PIN try counter [4]. The KeY system fully supports the JAVA CARD transac-
tion mechanism and different memory types, and thus all of the code involving
transactions can be faithfully specified and verified with KeY.

All cryptographic interfaces (ciphers and keys) have associated implementing
classes, but do not include the actual cryptographic logic as described above. A
possibility to declare a cipher to be shareable or non-shareable between differ-
ent applets, or for a key to implement internal key data encryption (the Key-

Encryption interface) are both included in the implementation.

A lightweight applet registry is implemented to track applet identifiers (AID
registry) and applet installation, activation, and selection. A possibility of an
applet to be multi-selectable is also taken into account. The registry is minimal
in the sense that it is just sufficient to provide meaningful results to methods of
the API that require the applet registry functionality, e.g., the method getAID

of the JCSystem class.

In the remainder of this section we give two samples of our implementation
and associated specifications. The first example is the implementation of the
method partialEquals of the AID class. The method is simply responsible for
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comparing length bytes of the provided byte array to the AID bytes stored
in the object. The comparison itself is simply a call to the arrayCompare util-
ity method. First, however, some checks for the firewall mechanism have to be
performed:

public final boolean partialEquals(byte[] bArray,

short offset, byte length) throws SecurityException,

ArrayIndexOutOfBoundsException {

if (bArray==null) return false; // resp. documentation

if(length > _theAID.length) return false; // resp. documentation

// Firewall check:

if (KeYJCSystem.jvmGetContext(KeYJCSystem.jvmGetOwner(bArray))

!= KeYJCSystem.jvmGetContext(

KeYJCSystem.jvmGetOwner(KeYJCSystem.previousActiveObject))

&& KeYJCSystem.jvmGetPrivs(bArray) != KeYJCSystem.P_GLOBAL_ARRAY)

throw KeYJCSystem.se; // System owned singleton instance

// Actual comparison:

return Util.arrayCompare(bArray, offset, _theAID, (short)0, length)==0;

}

The firewall check establishes that the caller of this method (previousActive-
Object) was privileged to access the bArray parameter. If not, a system owned
singleton instance of SecurityException is thrown. The reason for storing sin-
gleton instances of all exceptions is to follow the JAVA CARD paradigm of limiting
the memory consumption, and also to separate system owned exceptions from
applet owned ones. The calling of the method arrayCompare may result in an
ArrayIndexOutOfBoundsException, which is allowed according to the docu-
mentation of partialEquals. The formal specification for this method is the
following:

\programVariables { AID aidInst; boolean result;

byte[] bArray; short offset; byte length; }

(bArray != null -> length >= 0 & offset >= 0 &

offset + length <= bArray.length)

& {\subst AID aid; aidInst}(\includeFile "AID_inv.key";)

-> \<{

result = aidInst.partialEquals(bArray, offset, length)@AID;

}\> (

(bArray = null | length > aidInst._theAID.length -> result = FALSE)

& (bArray != null & length <= aidInst._theAID.length ->

(result = TRUE <-> \forall int i; ( i >= 0 & i < length ->

aidInst._theAID[i] = bArray[offset+i])))

& {\subst AID aid; aidInst} (\includeFile "AID_inv.key";))

\modifies {result}

The first part of the precondition guarantees that no ArrayIndexOutOfBounds-

Exception would be thrown. The second part assumes the class invariant (for
easy reuse stored in a separate file) for the execution of the method:

aid._theAID != null & aid._theAID.<created> = TRUE

& aid._theAID.<transient> = JCSystem.NOT_A_TRANSIENT_OBJECT

& aid._theAID.length >= 5 & aid._theAID.length <= 16
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The byte array storing the AID should not be null, should be allocated in the
persistent memory, and its length should be between 5 and 16 according to the
documentation.

The postcondition describes the value of the result in detail. It is true if and
only if the first length bytes in the provided array bArray starting at offset are
equal to length bytes stored in the theAID instance attribute. Additionally the
invariant for the AID class has to be reestablished after the method executes.
Finally, this method does not modify any data, except for the local result

variable.
The second example we want to present is the throwIt method of one of

the JAVA CARD specific exception classes – TransactionException. Although
the implementation and the specification of this and sibling methods are very
simple they are quite important. Such methods are frequently used both in the
rest of our API implementation as well as in many JAVA CARD applets. The
specific feature of these methods is that it only provides exceptional behaviour,
i.e., its sole purpose is to throw a system owned instance of a given exception:

public static void throwIt(short reason) throws TransactionException {

_instance.setReason(reason);

throw _instance; }

The throwIt method is static and its execution is guarded with a corre-
sponding static invariant, which simply says that the static attribute storing the
singleton instance of the exception ( instance) is not null. Additionally, for
this particular instance the instance invariant for the exception class should be
maintained, which states that the reason array is properly allocated in tran-
sient memory. Reason codes of exceptions should be cleared every time the card
loses power, so the variable storing the reason code needs to be allocated in a
transient memory. In JAVA CARD only arrays can be allocated in transient mem-
ory. Thus, the reason code has to be stored in a short array of size 1 instead of
a simple short attribute. The static and the instance invariant are part both of
the method’s precondition and postcondition:

(\includeFile "TransactionException_static_inv.key";)

& {\subst TransactionException exc; TransactionException._instance}

(\includeFile "TransactionException_inv.key";)

-> \<{ #catchAll(TransactionException t) {

TransactionException.throwIt(reason)@TransactionException;

} }\>

( t = TransactionException._instance & t._reason[0] = reason

& (\includeFile "TransactionException_static_inv.key";)

& {\subst TransactionException exc; TransactionException._instance}

(\includeFile "TransactionException_inv.key";))

\modifies { TransactionException._instance._reason[0] }

This contract describes the exceptional behaviour of the method. The #catchAll
construct declares that the method can possibly throw an exception of the de-
clared type. The value t representing the thrown exception can be checked in the
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postcondition. A null value indicates no exception (normal behaviour), a non-
null value indicates that the exception indeed occurred (exceptional behaviour).
In the postcondition it is required that t is equal to the singleton instance of
the exception, and so is not null by the assumption. Thus, this postcondition
requires the method to throw the exception. Finally, the postcondition also spec-
ifies that the reason code of the thrown exception (a corresponding location is
included in the \modifies clause) is equal to the parameter of the method.

One may argue that the specification for the method throwIt is over-en-
gineered, the contract for the method is actually bigger than the code of the
method itself. In fact, for most of the practical applications, a much simpler
specification would suffice. However, we treat specifications like this as an ex-
ercise for the KeY system. It shows that detailed verification w.r.t. complex
specifications is easily achieved.

4 Verification and Experience

All of the methods have been specified and verified with the KeY system. That
includes the simplest methods that just return a value of an instance attribute,
but also the most complex and elaborate methods, like the buildKey of the
KeyBuilder class or all of the methods of the Cipher implementation. The
proofs were performed in a fully modular way. Whenever a method was calling
another method in the API, a corresponding contract was used to discharge
the method call, i.e., the proofs were always performed by contract application,
instead of in-lining the code of the called method. It turned out in the process
that the approach of applying method contract is the only feasible one. For a case
study like this one in-lining of method calls results in proofs of unmanageable
size.

The level of automation of the proofs is satisfactory, the majority of the
methods are proved fully automatically, most of the rest require minor inter-
actions, like simple quantifier instantiations. The only really heavy spots w.r.t.
user interaction are loops (10 in total). Since our proof obligations require ter-
mination, a suitable specification for each of the loops has to be provided: the
loop invariant, modification set, and loop variant. For at least two of the loops
the loop invariant turned out to be quite complex and far from obvious just by
looking at the code, a careful analysis of the open proof goals was necessary.
Finally, it was not necessary to involve external tools to support verification.
The KeY system allows to employ external decision procedures to discharge first
order logic formulae, e.g., the Simplify theorem prover. For this case study the
KeY prover was able to discharge all proof goals on its own.

On a darker side, some of the proofs were very heavy on computing resources.
It was not uncommon for the prover to use up to 1.5GB of heap space and run
for over an hour to finish a proof for one method. Such performance certainly
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makes the round-trip specification engineering infeasible. For this case study one
possible solution to this problem is to rewrite parts of the API implementation
to improve on the prover performance. It turned out, for example, that the
switch statements sometimes cause large growth of the proof. It is our belief
that rewriting those switch statements into highly optimised if statements
would partly solve the problem. This matter is currently under investigation.
Moreover, for some of the proofs a minor modification of the KeY’s automatic
rule application mechanism was necessary to prevent proof size blowup. The
modification in question is more of a hack that happens to work for this case
study and not yet a proper solution to the problem.

Finally, the careful analysis of the JAVA CARD documentation allowed us to
identify hot spots in the specification, places where actual card implementations
are likely to be incorrect due to, e.g., documentation ambiguity or unusual com-
plexity. Indeed, we did find a bug in one of the commercially sold cards. One of
the firewall rules [12, Section 6.2.8.6] is ignored resulting in granting access to a
shareable object in a situation where it is forbidden by the specification.

5 Conclusions and Future Work

We presented a formally verified reference implementation of the JAVA CARD

API. The level of detail of the implementation is relatively high considering
that the running environment of the implementation is a symbolic execution
environment, the KeY verification system. This API implementation will serve
us as a framework for verifying various JAVA CARD applets in our project. All
of the implementation has been formally specified and verified with KeY. We
found the verification process feasible, however, we do have some reservations
to the performance of the KeY system. After some clean-ups and minor fixes to
the code and the specification we will make the case study available on the web.

For the future we plan to look into the following. First we want to modify the
API implementation code to improve on the verification performance. Secondly,
our experience will be used to rectify the issues and problems we found in the
KeY system (we have already communicated the most pressing issues to the KeY
development team). Next we plan to implement the firewall functionality in the
KeY logic. Then it will be possible to verify the API implementation again to
make sure that the implemented firewall checks are consistent. The fourth step
is to rewrite all of our specifications in JML. Here the work on improving the
KeY’s JML interface has to be finished first. Finally, it could be worthwhile to
update our implementation to the newest stable version of the JAVA CARD API
2.2.2 [13], which introduced some minor updates. At the time we started our
work the version 2.2.2 was not yet official. Moreover, none of the cards on the
market actually implement JAVA CARD 2.2.2, thus, for the practical purpose of
verifying realistic applet code the version 2.2.1 is sufficient.
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