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Abstract

In second language learning, it is crucial to identify gaps in
knowledge of the language between second language learn-
ers and native speakers. Such a gap exists even when learning
a single word in a second language. As the semantic broad-
ness of a word differs from language to language, language
learners must learn how broadly a word can be used in a lan-
guage. For example, certain languages use different words for
“period” in “a period of time” or “period pains” yet both are
nouns. Learners whose native languages are such languages
typically have only partial knowledge of a word, even though
they think they know the word “period,” producing a gap be-
tween them and native speakers. Language learners typically
want explanations for these word usage differences, which
even native speakers find it difficult to explain and find it
costly to annotate. To support language learners in noticing
these challenging differences easily and intuitively, this pa-
per proposes a novel supervised visualization of the usages
of a word. In our method, the usages of an inputted word in
large corpora written by native speakers are visualized, tak-
ing the semantic proximity between the usages into account.
Then, for the single inputted word, our method makes a per-
sonalized prediction of word usages that each learner may
know, based on his/her results of a quick vocabulary test,
which takes approximately 30 minutes. The experiment re-
sults show that our method produces better usage frequency
counts than raw usage frequency counts in predicting vocab-
ulary test responses, implying that word usage prediction is
accurate.

Introduction
Acquiring a second language requires repeated efforts to
narrow the gap between language learners’ knowledge of the
language and that of native speakers. Making such gaps intu-
itively understandable greatly helps language learners self-
teach the language and also helps researchers build effec-
tive language tutoring systems. Some gaps such as vocabu-
lary size, or time spent in language learning are intuitively
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easy to understand and, hence, are well studied. However,
in second language learning, most gaps are related to mean-
ing and semantics and are inherently abstract. Hence, visu-
alizing these gaps is essential to make these gaps intuitively
understandable.

The broadness of a word, or how a word can be used in
the language to express different concepts, is one such ab-
stract gap (Read 2000). Because the meaning of a word dif-
fers from language to language, when learning a word in a
second language, there typically exists a gap between what
learners think the word means and how the word is actu-
ally used in the language. Polysemous words are examples
that are easy to understand: “book” can mean an item asso-
ciating with reading, or it can mean to make a reservation.
Other than these examples, to which the part-of-speech tag-
ging techniques in natural language processing (NLP) seem
applicable, some examples are more subtle: some languages
always use different words for “time” in “in a short time”
or “for a time,” in which the word “time” refers to a period,
and “time and space” or “time heals all wounds,” in which
“time” is used as an abstract concept. In another example,
many languages use different words for “period” in “a pe-
riod of time”, and “period” in “period pains”. In this way,
the granularity of the word’s senses should be distinguished
for second language acquisition, as it varies from word to
word.

Polysemous words encode different concepts in one word:
hence, they have been one of the central topics in knowl-
edge engineering. A substantial amount of work has been
conducted to automatically recognize polysemous words for
practical applications by using machine learning, includ-
ing those in the previous AAAI-MAKE workshops (Ram-
prasad and Maddox 2019; Hinkelmann et al. 2019; Lau-
renzi et al. 2019). However, even among few such applica-
tions for second language acquisition (Heilman et al. 2007;
Dias and Moraliyski 2009) in the artificial intelligence (AI)
community, the challenging problem of different granularity
of the word’s senses in second language acquisition has not
been addressed. In second language acquisition, as learners
are typically not linguistic experts, i.e., novices, hence, sys-
tems to support their learning need to be intuitively under-
standable. Our goal is to make the gaps among word usages
intuitively understandable, even for novice language learn-
ers.



To this end, this paper proposes a novel supervised visu-
alization method for word usages to assist in learning the
different usages of a word. Our method first searches all
usages of the target word in a large corpus written by na-
tive speakers. Then, it calculates the vector representation of
each usage, or occurrence, of each word by using a contex-
tualized word embedding method (Devlin et al. 2019). Con-
textualized word embedding methods (Peters et al. 2018;
Devlin et al. 2019) are recently proposed methods to embed
each occurrence of a word, capturing the context of each us-
age of the word.

Then, our method is trained to visualize the contextual-
ized word embedding vectors by plotting each usage as a
point in a two-dimensional space. Unlike a typical visual-
ization method that merely projects the vectors to a two-
dimensional space, our method is trained to fit and visu-
ally explain a given supervision dataset. This means that
the same vectors are visualized in different ways if the su-
pervision dataset differs. Here, the supervisions are a vo-
cabulary test result dataset that consists of a matrix-format
data, recording which learner answered correctly/incorrectly
to which word question. The method visualizes the areas a
learner user may know by classifying each usage point in
the visualization into known/not known to the learner. This
classification is conducted in a personalized manner because
learners’ language skills and specialized fields are different.
The learner only needs to take a 30-minute vocabulary test
for this purpose.

Figure 1 shows an example visualization using our
method. “To haunt” has two different meanings in English,
the first being “to chase” and the other “to curse,” or to be af-
fected by ghosts or misfortune. Each point shows the usage
of the word in a corpus written by native speakers. The dif-
ferences in point colors indicate whether they are predicted
to be known to the learner. The right side of the figure, within
the dotted curve, is predicted to be known to the learner. In
this way, our method visualizes the semantic area the learner
knows.

Our contribution is as follows:

• For second language vocabulary learning, we propose
a novel supervised visualization model that captures
word broadness via a personalized prediction of learner’s
knowledge of usages.

• As our visualization uses a vocabulary test result dataset
as supervisions, learners can understand which usage of
the inputted word is predicted to be known/not known to
him/her. Unlike previous methods that output automatic
explanation of machine-learning models, our method is
much more intuitive and novice-friendly for language
learners in the sense that language learners do not need
to know about machine learning models.

• We evaluated our method in terms of predictive accuracy
of vocabulary test result dataset and achieved better re-
sults compared to baselines.

Figure 1: Usage of “haunt” predicted to be familiar to the learner.

Figure 2: An example of concordancer.

Related Work
Explainable machine learning studies
While deep learning-based methods outperformed conven-
tional machine learning methods such as support vector ma-
chines (SVMs) in many tasks, parameters of deep learn-
ing methods are typically more difficult to interpret com-
pared to those in conventional models. To this end, in the
machine learning and artificial intelligence community, a
number of methods have been proposed to extract expla-
nations from trained machine-learning models, or training
models taking explainability into accounts (Ribeiro, Singh,
and Guestrin 2016; Koh and Liang 2017; Lundberg and Lee
2017; Ribeiro, Singh, and Guestrin 2018).

However, the purpose of these methods is to explain
machine-learning models to help machine-learning engi-
neers and researchers in understanding the models. Obvi-
ously, second language learners are usually not machine-
learning engineers and researchers. Therefore, methods of
these studies have different purposes, and it is difficult to
apply these methods to help their understanding of the mod-
els. Language learners are typically even not interested in
the models. Rather, learners’ interests reside in understand-
ing their current learning status and what they should learn



to improve it. Hence, to meet learners’ needs, a model is de-
sirable for a learner to see his/her current learning status and
what he/she needs to learn in the near future.

Word Embedding Visualization Studies

Word embedding techniques are techniques that have been
extensively studied in natural language processing (NLP) to
obtain vector representations of words typically using neu-
ral networks. The word2vec is a seminal paper in these lines
of studies (Mikolov et al. 2013). The following papers re-
port improvement of their accurateness to represent words
as vectors, typically by comparing the distances between
word vectors with human judgments on semantic proximity
between words (Pennington, Socher, and Manning 2014).
Early studies on word embeddings address how to make
one vector for each word. As one vector representation is
modeled to point one meaning, this limitation is obviously
problematic to deal with polysemous words. Several pre-
vious studies tackled this problem and proposed methods
to estimate the number of a word’s meanings and to esti-
mate an embedding for each meaning of the word (Athi-
waratkun, Wilson, and Anandkumar 2018). However, re-
cently, contextualized word embeddings (Peters et al. 2018;
Devlin et al. 2019) became quickly popular. With these
methods, we can obtain an embedding for each usage, or
occurrence, of a word, considering the context of the occur-
rence of the word in a running sentence. These methods can
also be seen as a method to estimate word embeddings for
polysemous words, with an extreme assumption that each
occurrence of a word has different meanings. As contextual-
ized word embeddings are shown to be successful in many
tasks, in current NLP, the former strategy to estimate both
the number of meanings of a word and an embedding for
each meaning is employed only when it is necessary.

Following the rise of word embedding techniques, visual-
ization studies were propose to visualize word embeddings.
The study by (Smilkov et al. 2016) simply reported that their
development of a tool to visualize embeddings for different
words. The study by (Liu et al. 2017) introduces applying
visualization of word embeddings to analyze semantic re-
lationships between words. Both paper deals with principal
component analysis (PCA) and t-SNE (Maaten and Hinton
2008) for visualization. To our knowledge, we are the first
to visualize contextualized word embeddings, in which each
occurrence of a word, rather than a word, is visualized, with
a practical purpose on language education.

In addition to the visualization, our method can also pre-
dict the usages that each learner is familiar/unfamiliar with,
in a personalized manner, when vocabulary test result data of
dozens of learners are provided, such as the data in (Ehara
2018). While there exist previous studies (Ehara 2018;
Lee and Yeung 2018; Yeung and Lee 2018) for predicting
the words that each learner is familiar/unfamiliar with using
such data by using simple machine-learning classification,
our method tackles a more difficult problem that deals with
predicting which usages of a word is known/unknown to the
learner.

Concordancer studies
While our proposed method is novel as a visualization,
software tools that search the usages of an inputted word
for educational purposes and display them itself are not
novel: such software is known as concordancers. Concor-
dancers target learners, educators, and linguists as primary
users. They are interactive software tools that retrieve all
usages of the inputted word in a large corpus and display
the list of the usages, each of which comes with the sur-
rounding word patterns (Hockey and Martin 1987). Concor-
dancers were also studied to support translators, who are
second language learners in many cases (Wu et al. 2004;
Jian, Chang, and Chang 2004; Lux-Pogodalla, Besagni, and
Fort 2010).

Figure 2 shows a screenshot from a current concordancer
1. In this screenshot, the word “book” is searched. Then, the
list of word usages is shown. Each word usage comes with
surrounding words so that language learners can see how the
word is used. While the list is sorted in alphabetical order of
the previous word, we can see that the list shows “a book”
and “the book” in totally different positions and are not help-
ful for language learners. While some concordancers sup-
port listing the usage of “book” as nouns by attaching texts
with part-of-speeches in advance, this is not helpful to see
the different usages of the word when the part-of-speeches
of the usages are identical. For example, the word “bank”
have polysemous meanings sharing the same part-of-speech:
one as financial organizations, and another as embankments.

Personalized complex word identification studies
In this study, a part of our goals is to identify complex us-
ages of a word in a running text. In other words, for one
word, one usage of the word in running text is complex
for a learner, and another usage of the word is not. There
are previous studies that identify complex words in a per-
sonalized manner in the NLP literature (Ehara et al. 2012;
Lee and Yeung 2018). These studies predict the words that
each learner knows based on each learner’s result of a short
vocabulary test, which a learner typically takes 30 minutes
to solve. Also, there are also many studies that identify com-
plex usages in a non-personalized manner, as summarized in
(Paetzold and Specia 2016; Yimam et al. 2018).

However, to our knowledge, the task of identifying com-
plex usages in a personalized manner is novel. Our method
is also novel in that it trains how to visualize the usages so
that learners can visually understand the usage differences
by using the learners’ vocabulary test data.

Preliminary System and Experiments
Before entering the technical details of our method de-
scribed in the Proposed Method section, we first show the
preliminary system and some experiment results to intro-
duce the motivation of the proposed method.

The preliminary system visualizes contextualized word
embeddings by using the conventional visualization of prin-
cipal component analysis (PCA). Figure 3 shows the layout

1https://lextutor.ca/conc/eng/



Figure 3: System layout. CWE means contextualized word embed-
dings.

Figure 4: Example of searching the word book.

of the preliminary system. Once a user provides a word to
the system, it automatically searches the word in the corpus
in a similar way to typical concordancers. Unlike concor-
dancers, the system has a database that stores contextualized
word embeddings for each usage or occurrence of each word
in the corpus. We used half a million sentences from the
British National Corpus (BNC Consortium 2007) as the raw
corpus. We built the database by applying the bert-base-
uncased model of the PyTorch Pretrained the BERT project
2(Devlin et al. 2019) to the corpus. We used the last layer,
which was more distant from the surface input, as the em-
beddings.

Choice of dimension reduction methods
Principal component analysis (PCA) and t-SNE (Maaten
and Hinton 2008) are famous dimension reduction methods,
and t-SNE is notable for its intuitiveness and well clustered

2https://github.com/huggingface/pytorch-pretrained-BERT

Figure 5: Another example of searching the word book.

points (Maaten and Hinton 2008).
Knowing t-SNE, we did not employ t-SNE for visualiza-

tion for the following reasons: First, in our visualization,
the distances between usage points are important. While t-
SNE often produces intuitive clusters between data points,
the distance between points in the visualization is compli-
cated compared to those of PCA. Hence, to interpret dis-
tances between points, PCA is This is stated in the original t-
SNE (Maaten and Hinton 2008) paper. Moreover, many blog
posts such as 3 for engineers address this fact to encourage
the proper understanding of t-SNE. For these reasons, we
employed PCA for the basis of our visualization.

Second, even if the data to visualize is fixed, t-SNE
returns different results depending on its hyperparameter
called perplexity. In contrast, PCA returns the same re-
sults if the data to visualize is fixed. This dependence on
the hyperparameter is elaborated in the original t-SNE pa-
per (Maaten and Hinton 2008) in the first place. We can also
find some blog posts targeting engineers that advocates to
carefully set the perplexity parameter such as 4. Various re-
sults on fixed data can be useful when the data is difficult to
be pre-processed so that the following dimension-reduction
methods are easy to handle. However, in this study, the data
to be visualized are embeddings vectors; hence, the data can
be easily pre-processed before we feed them into the data.
Hence, for the purpose of this study, the feature that the re-
sults vary on fixed data is unlikely to be useful. Rather, this
may possibly complicate the interpretation of the visualiza-
tion.

Third, practically, t-SNE is computationally heavy com-
pared to PCA. Computing a t-SNE visualization involves
calculations for every pair of the given data points. While
how to deal with this heavy computational complexity is ad-
dressed in studies such as (Tang et al. 2016), practically, t-

3https://mlexplained.com/2018/09/14/paper-dissected-
visualizing-data-using-t-sne-explained/

4https://distill.pub/2016/misread-tsne/



Figure 6: Variance of usage vectors vs. log word frequency.

SNE is usually computationally heavy when compared to
PCA. Strictly speaking, PCA has a similar complexity as
it involves the computation of singular values and vectors
in singular value decomposition (SVD). However, the cal-
culation of SVD has a number of applications other than
PCA-based visualization, sophisticated calculation methods
for large data were previously proposed (Halko et al. 2011).

Preliminary System by using PCA
We built a preliminary system and conducted some exper-
iments to see how contextualized word embedding vectors
are plotted in the system. Figure 4 depicts such an exam-
ple of searching for the word book. Users can directly type
the word in the textbox shown at the top of Figure 4. Be-
low is the visualization of the usages found and their list.
Each dark-colored point is linked to each usage. Two dark
colors are used to color each usage point according to the
results of a Gaussian mixture model (GMM) clustering with
2 components, as this value was reported to work well (Athi-
waratkun, Wilson, and Anandkumar 2018). The light-red
colored point is the probe point: the usages are listed in
the nearest order of the probe point. No usage is linked to
the probe point. Users can freely and interactively drag and
move the probe point to change the list of usages below the
visualization. Each line of the list shows the usage identi-
fication number and the surrounding words of the usage,
followed by a checkbox to record the usage so that learn-
ers can refer to it later. In Figure 4, the probe point is on
the left part of the visualized figure. In the first several lines
of the list, the system successfully shows the usages of the
word book as a publication. In contrast, Figure 5 depicts
the case in which the users drag the probe point from the
left to the right of the visualization. The first several lines
of the list show the usages of the word book, which means
to reserve. We can see that the words surrounding the word
book vary: merely focusing on the surrounding words, such
as “to” before book, cannot distinguish the usages of book,
which means to reserve, from the usages of book for reading.

Clustering Results
The GMM clustering was accurate but not perfect: 0 er-
rors in the 42 usages of “book”, 1 error in the 22 usages

Figure 7: Recap: usage of “haunt” predicted to be known to the
learner.

of “bank”, when manually checked in the excerpt. Hence,
learners can choose not to use this, as in the video. Figure 6
shows the variance of the usage vectors of each word against
its log frequency in the excerpt. It showed a statistically sig-
nificant moderate correlation (r = 0.56, p < 0.01 by F-test),
implying that frequent words tend to have complex usages.

Motivating Examples
From the example of “book” in the previous sections, we can
easily see that the usages of “book” about reading are more
frequent than those of “book” about a reservation. Hence,
when counting the number of usages, it is intuitive to assume
that learners are not familiar with all usages but are familiar
with the usages within a certain radius in the vector space.
This is the motivation of our method descried in the next
section.

Before entering the technical details of our visualization
method in the next section, we show some usage predic-
tion result examples of our method in a manner similar to
the previous examples of “book” so that readers can in-
tuitively understand our motivation, as shown in Figure 7
and Figure 8. The markers are changed to triangular to de-
note that the colors reflect prediction results, rather than the
GMM-based clustering results explained above. The color-
ing and darkness of the points in the visualization follow
those of the previous examples; the red light-colored point
is the probe point, and the other dark points denote usages.
Figure 7 shows an example of the familiar usage prediction
in case of searching the word “haunt”. The right-hand side
of the cross-marked circle is the area in which usages are
predicted to be familiar to this learner. The probe point is lo-
cated within the circle. We can see that the usages of “haunt”
about chasing are listed below. Figure 8 shows another ex-
ample of “haunt”. As the probe point is located outside of
the circle, in the left side of the visualization, the list below
shows the list of the usages predicted to be unfamiliar to this
learner. We can see that“haunt” about “to curse” are mainly
listed.



Figure 8: Usage of “haunt” predicted not to be known to the learner.

Proposed Method
As stated in the Related Work section, some previous stud-
ies address methods to predict the words that a learner knows
based on his/her short vocabulary test result. However, since
our application requires personalized prediction of the us-
ages of the word that the learner does not know. Hence, we
propose a novel model that does this.

Let us write the set of words as {v1, . . . , vI}, where I is
the number of words (in type), and write the set of learners
as {l1, . . . , lJ}, where J is the number of learners. Then, in
previous studies, based on the Rasch model (Rasch 1960;
Baker 2004), the following logistic regression model Equa-
tion 1 is used to predict whether learner lj knows word vi or
not. Here, σ(x) := 1

1+exp(−x) and yi,j is the response of the
learner in the vocabulary test; yi,j = 1 if learner lj answered
correctly to the question of word vi, and yi,j = 0 otherwise.
We have two types of parameters to tune: alj is the ability of
learner lj and dvi is the difficulty of word vi.

P (yi,j = 1|lj , vi) = σ(alj − dvi) (1)

Here, how to model dvi , or the difficulty parameter of
word vi, is the key to our purpose. Previous studies report
that the negative logarithm of the word frequency correlates
well with the perceived difficulty of words (Tamayo 1987;
Beglar 2010). As in Figure 1, our key idea is to count the fre-
quency of word usages only within a certain distance from
the typical usage of the word. Hence, we propose the follow-
ing model to implement this idea.

For each vi, we have ni vectors that are vector representa-
tion of each of the ni occurrences of word vi. We write these
vectors as Xi = {~x1,i, . . . , ~xni,i}. Each vector ~xk,i is T1 di-
mensional. Among Xi, let ~ci be the one closest to their cen-
ter 1

ni

∑ni

k=1 ~xk. Let freq(vi) be the frequency of the vectors
in Xi within distance ε measured from the central vector ~ci.
We write this frequency simply as freq(vi) = N(~ci, ε,Xi).
Here, n is the number of usages of word vi and let each ~xk
be each usage vector obtained from contextualized word em-
bedding methods. Let ReLU(z) = max(0, z) be the recti-

fied linear unit function, and M be a large positive constant,
such as 100. Let G be a linear projection matrix from a T1
dimensional space to a T2 dimensional space. Let de(~a,~b) be
the Euclidean distance between two vectors. By using these
formulations, we modeled the difficulty of words as follows:

dvi = − log(freq(vi) + 1) (2)
freq(vi) = N(~ci, ε,Xi) (3)

≈
ni∑
k=1

tanh (M · ReLU(ε− de(G~ci,G~xk,i)))(4)

The tricky part is that Equation 3 can be approximately
written as Equation 4, whose parameter can be easily tuned
and optimized by using neural machine learning framework
such as PyTorch. In Equation 4, due to the ReLU func-
tion, negative values within the function is simply ignored.
Hence, as de is the Euclidean distance, if ε = 0, i.e., the
size of the circle is 0, the terms inside ReLU is negative,
and freq(vi) = 0. If ε− de(G~ci,G~xk,i) > 0, due to M and
tanh, the resulting value is almost 1. This means that we are
counting only the cases that ε surpasses de, i.e., counting the
usages within ε measured from ~ci.

Notably, the following characteristics are important to un-
derstand our model.

Not merely a logistic regression
Notably, the proposed model is not merely a logistic regres-
sion. Our model has more parameters such as ε,~ci, alj ,G.
Because of having different extra parameters compared to
the logistic regression, to train our model, we typically need
to use a neural network machine learning framework to
model and optimize, such as PyTorch. To optimize using
such models, as it is difficult to differentiate the loss func-
tions of such models by hand, the model loss function is
desirable to be mostly continuous and smooth so that its pa-
rameters can be tuned using auto-gradient. We specifically
designed Equation 4 to meet these conditions. In the experi-
ments, we used the Adam optimization method (Kingma and
Ba 2015) to optimize the loss function.

Trainable G

As Equation 4 is mostly continuous and smooth, matrix G
can also be trained by using deep-learning framework soft-
ware. As G is a projection matrix from T1 to T2, if we set
T2 = 2 to consider a projection to a two-dimensional space,
training G via supervisions means training visualization via
supervisions. Here, in our task setting, the supervisions are
vocabulary test dataset of second language learners, i.e., a
matrix in which the (j, i)-th element denotes whether learner
lj correctly answered the question of word vi.

εj: Personalized ε
In Equation 4, for easier understanding, we write ε to be a
constant that does not depend on learner index j. In reality,
we can personalize ε by making ε dependent to learner index
j as εj ; in this case, each learner lj has his/her own region
that he/she can understand, and the radius of this region is



εj . This personalized version is the one that we used in the
experiments.

Experiments
Quantitative Results of Prediction
Quantitative evaluation of this personalized prediction of us-
ages of a word is difficult; to this end, we need to test each
learner multiple times for different usages of the same word.
However, when tested with the same word multiple times,
learners easily notice that the word has multiple meanings.
Hence, instead, we evaluated the accuracy of personalized
prediction of the words that the learner knows under an
experiment setting similar to (Ehara 2018). Our proposed
method is based on neural classification with a novel exten-
sion to adjusted counting the frequency of the usages within
distance εj . Since a typical logistic-regression classifier is
identical to one-layer neural classifier, comparing our model
with a typical logistic-regression classifier using a frequency
feature in terms of accuracy can be used to indirectly evalu-
ate how the idea of adjusted frequency is a practical method
for evaluation.

The proposed model estimates the number of occurrences,
i.e., usages, that each learner knows. In other words, this
can be regarded as modifying the word frequency so that
the model fits to the given vocabulary test dataset. In this
regard, we can evaluate how well the proposed model can
correct word frequency when an unbalanced corpus is given.
Each document in the British National Corpus (BNC) (BNC
Consortium 2007) is annotated with a domain Table 1. We
evaluated how the proposed model can correct the word fre-
quency in the “arts” domain.

We used the vocabulary test result data in which each of
100 learners answered 31 vocabulary questions on the pub-
licly available dataset (Ehara 2018). In 3, 100 vocabulary
test responses, we used 1, 800 to train the model, and the
rest was used for the test. The baseline model is simply a lo-
gistic regression in which the logarithm of word frequency is
the only feature. The logarithm of word frequency has been
used as a simple rough measure for word difficulty and pre-
viously used to analyze and predict word difficulty based
on vocabulary test data (Beglar 2010; Ehara et al. 2013;
Lee and Yeung 2018; Yeung and Lee 2018). The proposed
model counts only the number of usages within the radius
εj . We used the PyTorch neural network framework to auto-
matically tune the radius εj and the center of the sphere by
using its powerful automatic gradient support (Paszke et al.
2017).

First, we perform experiments on T1 = T2 and G = I,
a setting where no projection is performed and the model
deals with T1 dimensional hyperspheres. Table 2 shows the
results. It can be seen that the accuracy of the prediction of
the word test data of language learners using the biased text
of arts domain only is lower than that using the word fre-
quency of all domains. The proposed method was able to
improve the accuracy of the word frequency of the arts do-
main only by counting the frequency in the region on the
contextual word expression vector space where the exami-
nee is estimated to be reacting. This effect was also observed

Table 1: Number of sentences in each domain of the BNC
corpus in the total of 100, 000 sentences.

imaginative 21,946
arts 18,289
natural sciences 5,256
social science 7,777
commerce 4,378
leisure 20,300
belief and thought 3,441
world news 764
applied science 2,625
world affairs 15,224

Table 2: Accuracy of predicting learners’ vocabulary test re-
sponses by using the raw freqiencies and the corrected fre-
quencies by the proposed model in each domain.

Domain Correction Accuracy
Arts Raw 0.61
Arts Corrected 0.64

All domains Raw 0.67
All domains Corrected 0.72

for all domains. This seems to be the effect of frequency
counting excluding the cases where the proposed method is
outlier. The improvement in accuracy before and after cor-
rection (p < 0.01, Wilcoxon test) was statistically signifi-
cant when modifying word frequencies in the arts domain
alone or in all domains.

“Trained” visualization

In the above experiments, we considered the case where no
projection was conducted, by fixing G = I . Next, let us con-
sider the case where G is a projection to a two-dimensional
space, i.e., G is a 2 × T1 matrix. Tuning G and radius εj
to fit the vocabulary test dataset by using Equation 4 means
that we can actually train the visualization to explain the vo-
cabulary test dataset in a supervised manner.

Figure 9 and Figure 10 show the result of the visualiza-
tion. The initial value of G was set to a two-dimensional
projection matrix by principal component analysis (PCA).
Though the initial value is the projection by PCA, it should
be noted that the projection matrix G itself is trained from
the vocabulary test dataset as well as the radius εj .

From Figure 9 and Figure 10, we can see that the pro-
posed method counts only the main meanings within the red
circle. To qualitatively evaluate the results, in Table 3, the
two farthest or closes example occurrences of “period” from
its center point, i.e., the center of the red circle in Figure 9
are shown. It can be seen that the farthest cases are exam-
ples of the use of technical terms such as “period pain” and
“magnetic field period”, while the closest two cases are ex-
amples of nouns representing periods such as “this period”
and “the period”.



Table 3: Farthest (F.) and closest (C.) two occurrences of
“period” from the center of the circle in Figure 9.

F. period pains can be severe and disruptive.
F. to produce a slight spread of magnetic field period .
C. design during this period was in the plan .
C. the pub designer of the period ,

Figure 9: Trained visualization example of “period”. Each trian-
gle point represents an occurrence, or a usage, of the word “pe-
riod” in the “arts” domain in the BNC corpus. The entire projec-
tion of the original contextualized word embedding vectors to the
two-dimensional space, namely G, and the radius εj was optimized
to fit the vocabulary test dataset (ref. Equation 1, Equation 3, and
Equation 4). Intuitively, a large εj denotes that learner lj has a high
language ability as he/she is estimated to understand many of the
occurrences of the word “period” within the red circle.

Figure 10: Trained visualization example of “figure”. The setting
of the training is identical to that of Figure 9.

Conclusions
In this paper, we propose a supervised visualization method
to predict which usages of a word are known to each learner,
by using a vocabulary test result dataset as supervisions. Our

neural method automatically tunes the projection matrix to
visualize and the radius of each learner in the visualization
so that the counted frequency within the circles fits to the
supervisions. Experiments on actual subject response data
show that the proposed method can predict subject response
more accurately by modifying the frequency even when the
use cases are biased to a specific domain. As a future work,
we are planning to make our method more interactive.
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